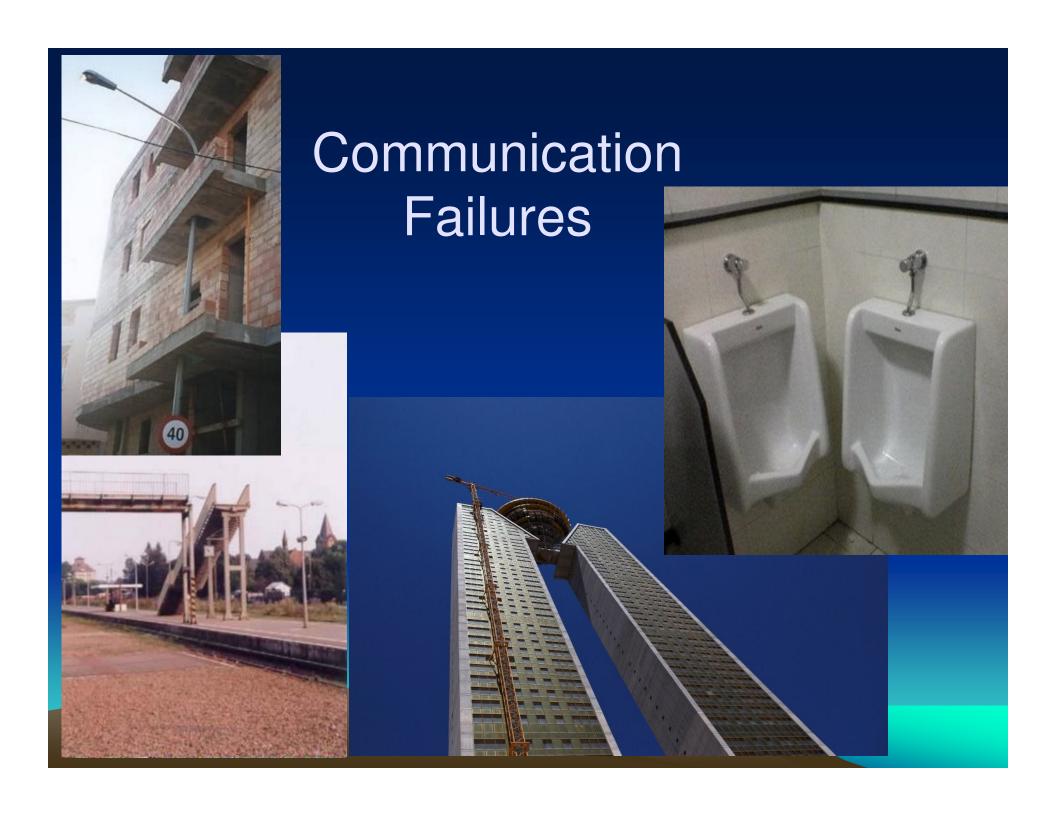
SUPPORTING ENGINEERING PROFESSIONAL PRACTICE WITH CONTENT AND COMPETENCY

Franz-Josef Kahlen

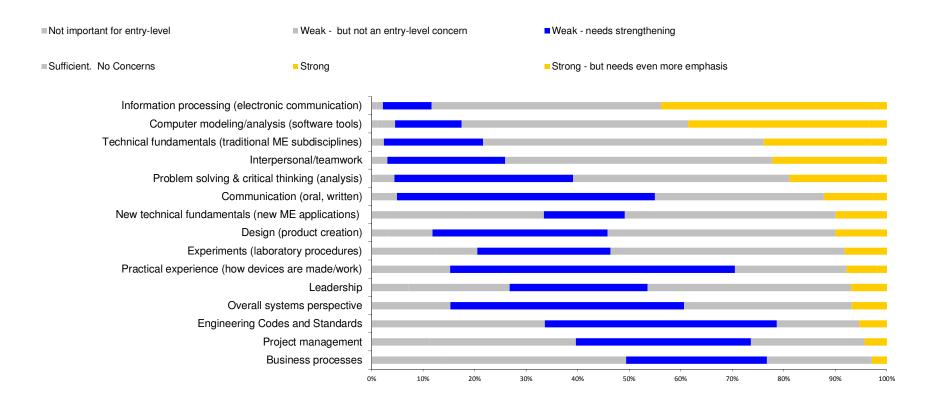
University of Cape Town
Department of Mechanical Engineering
Cape Town
South Africa
T + 27 21 650 4444

fj.kahlen@uct.ac.za

Anabela C. Alves
University of Minho
Department of Production
and Systems Eng.
Guimarães
Portugal


Shannon Flumerfelt
Oakland University
Pawley Lean Institute
Educational Leadership
Rochester, MI
USA

Anna Bella Siriban-Manalang
De La Salle University
Department of Industrial Eng.
Manila
The Philippines


9 January 2014

Overview

- Why is Engineering Professional Practice a problem worth considering?
- Development of manufacturing strategies and paradigms
- Examples
- The "What" and the "How" Systems Engineering and Lean Engineering
- Impact on engineering education
- Content and competency mastery
- The dirty word Holistic
- Summary

ASME Vision 2030 – Early results

Engineering Professional Practice

Workforce Development

Engineering Education

Life-Long Learning

Problem Solving

Globalization

Safety

Program Development

Faculty Development

Diversity

Systems Thinking

Sustainability

Communication

Ethics

Program Governance

Where are we (ME) teaching (any of) this?

Complexity, not Integration (Source Functions)

- Engineering sciences the basics
- Engineering mechanical, electrical, optical components into smaller packages
- Cause-effect chains and networks, unknown and not in plain sight
- Airbus A320 / A333 / Boeing 777 / 787
- DWH, Fukushima, HDD, others
- Supplier qualification

Project Execution (Environmental Functions)

- Team work
- Different educational backgrounds and disciplines, conflicting values
- Leadership
- Project
- Communication and appreciation of strategies, risks and their mitigation
- Decision-making culture

Product Development Framework

- Work is carried out in teams
- Team members have various cultural, ethnical, professional backgrounds and specializations
- Different training different risk awareness / classification
- Teams are not necessarily co-located
- Sequestration (e.g., Google) does not work for all teams
- Non-co-located teams pose huge communication issues

Career Planning / Career Advancement / Leadership (1)

- Graduating from HS: How to envision a career? Who can guide you? Friends, parents, GC?
- Globalization of markets has globalized the workplace, requirements to compete successfully have increased
- International corporations global recruitment market
- SMEs need international staff to support their global customers and suppliers
- New types of jobs, previously unknown
- Product innovation
- Talent Management

Career Planning / Career Advancement / Leadership (2)

Solid professional foundation (source function) plus compentency to navigate professional environment (environmental function) plus decision-making culture (e.g. leadership skills).

Development of manufacturing strategies and paradigms

	Arts & crafts	Mass Prod.	Lean	Agile
Manual Skills	High (5)	Low (2)	Medium (3)	Medium (3)
Part Quality (interchange)	Low (2)	Medium (4)	High(5)	High (5)
Production Flexibility	High (5)	Low (1)	Medium (4)	High (5)
Required Systems				
Competencies	Low (1)	Low (1)	High (5)	High (5)
Professional Specialization	Low (0)	Medium (4)	Excess	sive (?)

The "What" and the "How" – Systems Engineering and Lean Engineering

- Systems Engineering "an interdisciplinary approach and means to enable the realization of successful systems" (INCOSE)
- Defining customer needs, required functionality, documentation
- Systems Engineering considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the user needs
- Design synthesis and system validation while considering the complete problem: Operations, Performance, Test, Manufacturing, Cost & Schedule, Training & Support, and Disposal.
- Systemic break-up of project into hierarchical structure
- Unknown cause-effect chains

Where Content meets Competency

Systems Engineering

- A system is not 100% deterministic
- System may not follow reductionist approach
- Focused on technology
- Engineering Sciences and Basic Sciences

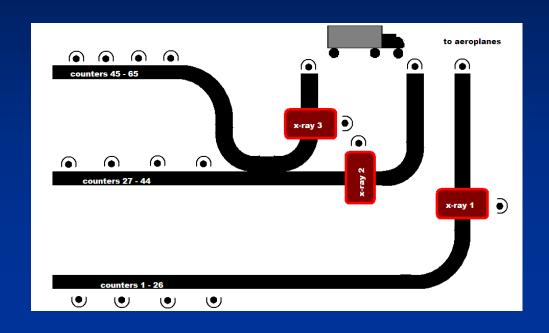
Lean Engineering

- Purpose, process, people
- Workforce development
- Continuous evolution
- Teamwork

Source Functions

CONTENT

Environmental Functions


COMPETENCIES

Case Studies

- CPT airport
- On-site machining
- Health care

Why has it worked?

Non-contact Measurements – Baggage Sortation at CPT

Condition:

- Frequent breakdowns
- Low throughput
- Slow
- Safety

Old System (until 2009)

Outlook for 2010 World Cup:

Not suitable

Baggage Sortation at CPT (2)

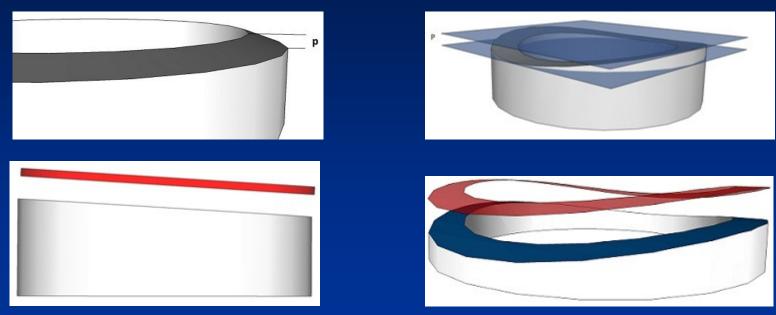
- Throughput demands automation of the BSF (length of several km)
- 24 / 7 operation at peak times
- Real-time preventive maintenance and condition monitoring
- Automatic identification and localization of impending malfunctions
- Escalating safety levels

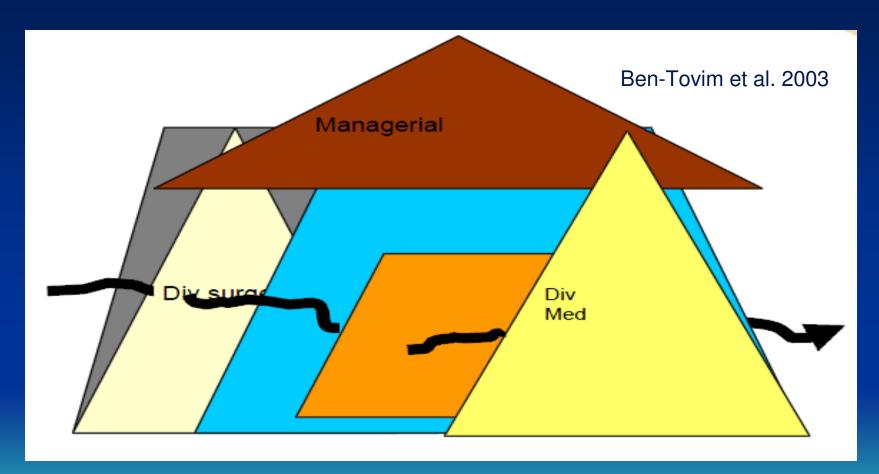
Baggage Sortation at CPT (3)

	Vibration Analysis	Oil Debris Analysis	Thermal Imaging	Balancing & Alignment	Performance Monitoring
Bearings	•	•	•	•	•
Belts	•			•	•
Electric Motors	•		•	•	•
Frame			•		
Gearboxes	•	•	•	•	•
Rollers	•		•	•	•

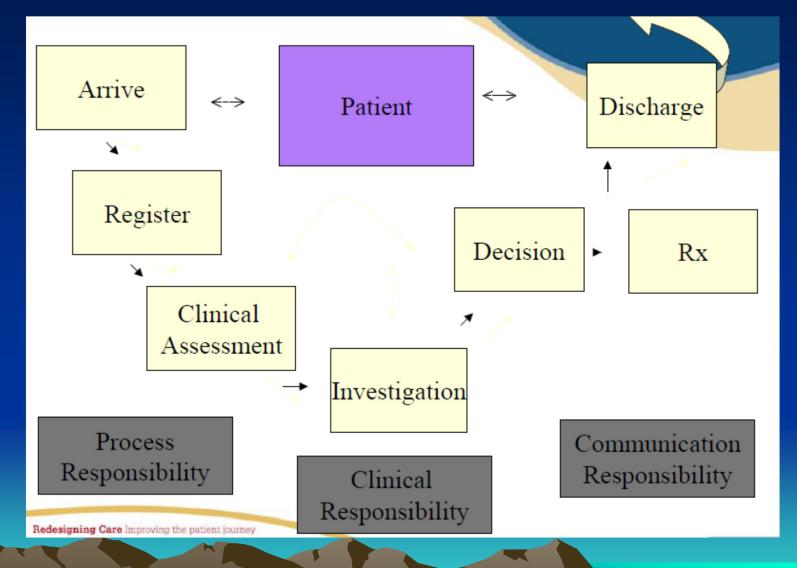
- 200 separate conveyor belts, at least one motor each
- Motor damage mostly due to defective bearings and damage to electrical insulation
- Maladjustments during installation or due to shocks during operation
- Breakdown of lubrication
- Limited access to damaged rollers / damage not obvious; proof often indirect (bearing conditions)

On-Site Circular Milling


- Portable machine tool
- Assembled on-site, mounts directly to work.


- Re-aligned to work for each job.
- Primary use: finishing slewing bearing seating surfaces to within set unflatness tolerances.

Metrology Challenges


- Aim: To reduce the combined Un-flatness and taper error.
- Reduce localised stresses in slewing bearing raceways.
- Decreased fatigue in bearing.
- Increased in service lifespan.
- Potential for larger load capacity.

Self-Organization – Medical Service Delivery

A horizontal journey through a vertical enterprise.

Flinders Medical Centre

Case Studies (Pittsburgh)

Allegheny GH:

of patients with intraveneous infections 37 -> 6

Associated deaths 19 -> 1

Southside Hopsital

time spent searching for meds - 60 %

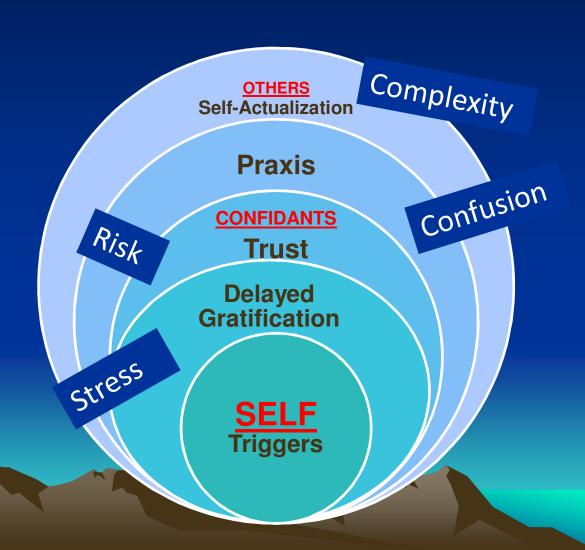
stock-outs - 85 %

Shadyside Hospital

estimated nurse time spent on

patient-controlled anaesthesia pumps -2900 h p.a.

Biological System – TKA – 4th / y


Adverse effects of prosthetic wear debris include:

- Prosthetic structural failure
- Biological incompatibility
 - Toxicity
 - Osteolysis

Wear debris pseudotumor following total knee arthroplasty: a case report. Mavrogenis, A.F., et al. 9304, s.l.: BioMed Central, November 29, 2009, Journal of medical case reports, Vol. 3.

Why has it worked?

LEARNING PROCESS Holistic Development

Barriers to Holistic Development

Poor Theory X Management Scientific Mgt Philosophies Domination Structures Silos Typecasting Wasteful Lack of **Traditions** incentives

Mass Production Paradigms

-Allocation of Power, Space, Conditions

-Roles, Duties

-HR Policy, Rules

-HR Philosophy, Culture

Lean Production Paradigms

-Allocation of Power, Space, Conditions

-Roles, Duties

-HR Policy, Rules

-HR Philosophy, Culture

LEAN LEARNING SYSTEMS Transformational

CANONS

Body of Knowledge
Contracted
Transactional

- STANDARDS
- NORMS

Taught
Expected

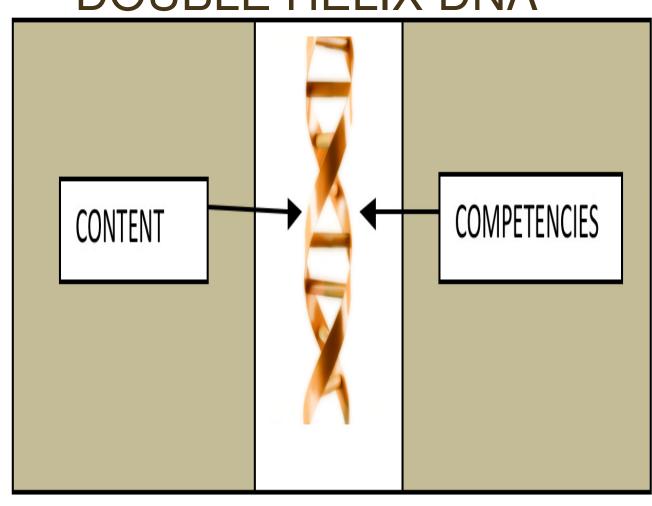
Expectic
Didactic
Outside/In

COMPETENCIES

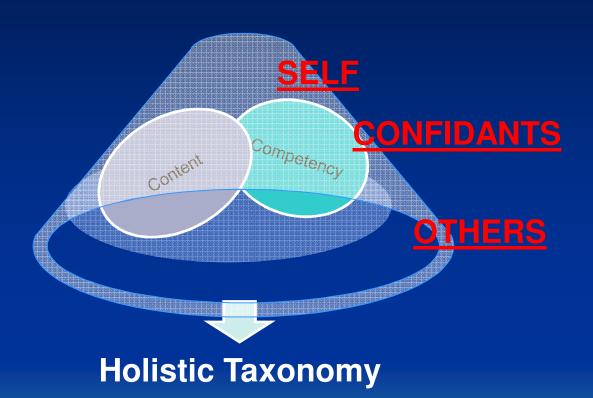
Body of Practice
Internalized
Transformational

THINKING

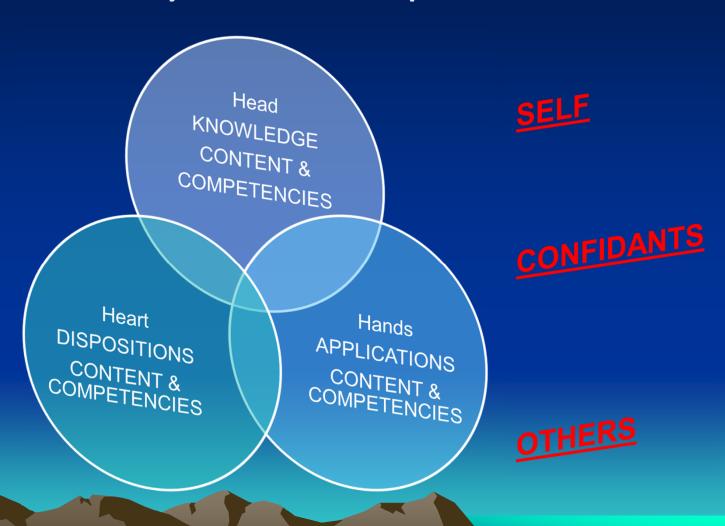
Developed


Developed For

Hoped For


Hoped For

Socratic


PARADIGM SHIFT: HOLISTIC DEVELOPMENT DOUBLE HELIX DNA

Content & Competency Development

Holistic Taxonomy of Development

LEADERSHIP LEARNING: KNOWLEDGE DEVELOPMENT

Talk with others about leadership ideas and seek support, criticism

Seek to understand what others know about leadership

Examine leadership mistakes and how to improve

Use new language, strategies, ideas to solve, mediate, manage change or connect theory to general settings

Learn from a mentor

Read, research, talk, observe if leadership theories have personal relevance and relate to my prior knowledge

Lead in new ways based on theory, research or documentation

Discuss potential results of new concepts with family, peers, allies, leaders

Understand leadership constructs to influence others, share information where some are unfamiliar

Contemplate leadership expectations/ plan how to use concepts, strategies, decision making strategies

Talk informally, "hallway talk," about leadership

Compare personal leadership knowledge with scholarly work, test for validity, evidence, robustness

Take notes, journal, self-talk about leadership

LEADERSHIP LEARNING: VALUES DEVELOPMENT

Construct personal meaning of values by expression and quoting others

Consider depth of personal relevance, benefits/values, costs/risks of leadership

Self-direct leadership development activities

Develop original ideas and share those with stakeholders

Establish new boundaries in professional, personal relationships by taking risks to advance leadership

Inspire others to lead

Self-reflect on dispositions and aligning actions of leadership

Talk with others noting benefits of sharing about leadership problems

Identify leadership disposition strengths/weaknesses

LEADERSHIP LEARNING: APPLICATIONS DEVELOPMENT

Have confidence in my ability to lead

Self-analyze, self-develop, self-evaluate how/when to lead, grow/change

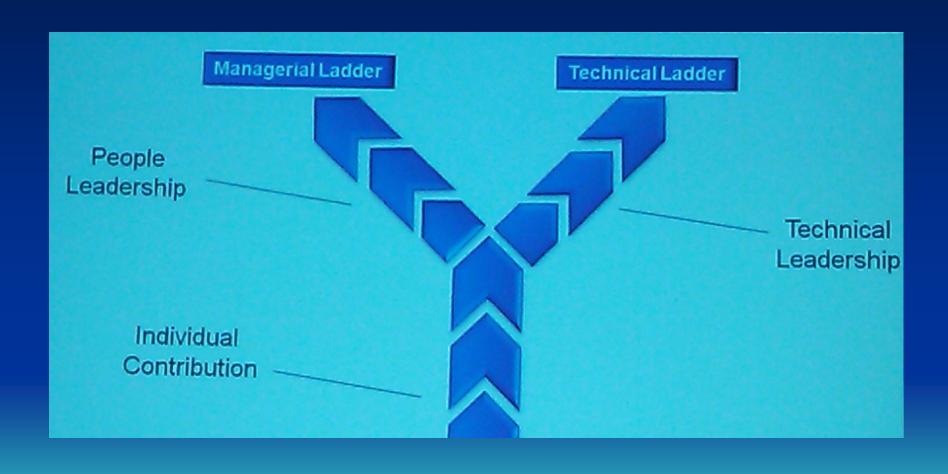
Motivate self to pursue more leadership as others rely on me

Admit when wrong, share apologies

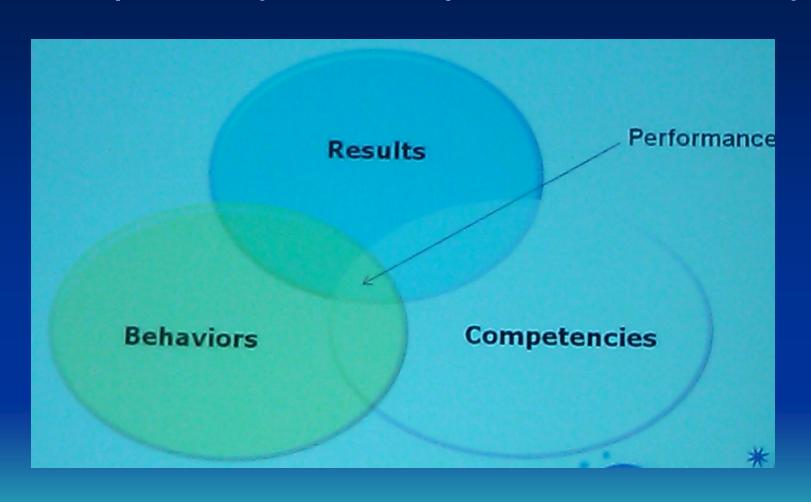
Lead from experience

Survey stakeholders assessing my leadership to set goals

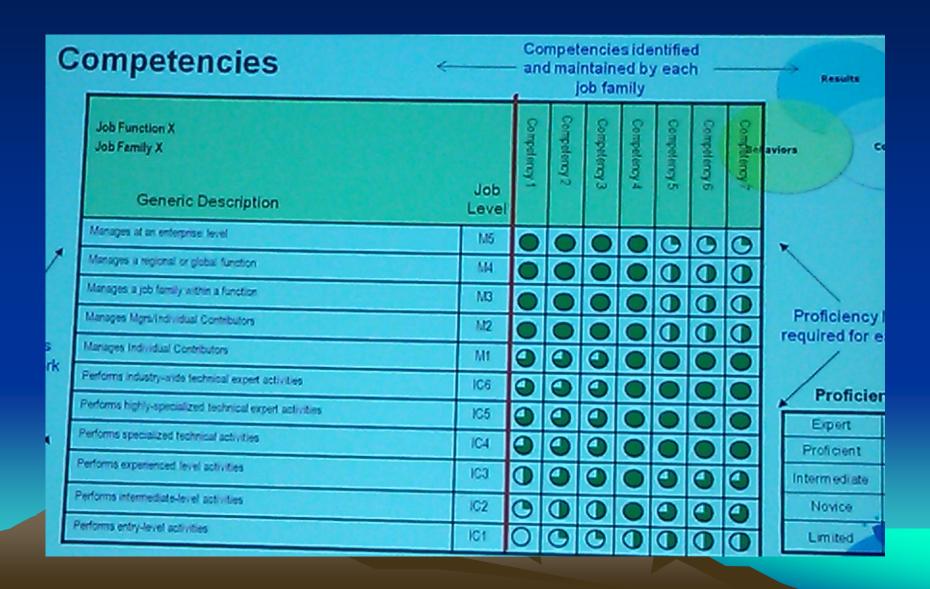
Receive compliments, expressions of confidence by others


Discuss leadership with my family

Level	Phase	Leadership Learning Behavior
Knowledge	Self	Contemplating what is expected of a leader by planning how leadership concepts, decision making processes and strategies can be used.
	Confidants	Learning about leadership from a mentor.
	Confidants	Talking with confidents and noting benefits of sharing about personal leadership dispositions, considerations, and common solutions to leadership dilemmas.
	Others	Using new language, new strategies, new ideas to solve problems, mediate conflict, change or connect leadership theory to generalized situations.
Values	Self	Performing self-directed leadership development activities.
	Confidants	Inspiring peers to get involved in leadership.
Application	Self	Having confidence in my ability to lead.
	Self	Self-analyzing, developing self-awareness, self-evaluating how and when to lead, how to grow/change/improve as a leader and impact a system.
	Confidants	Discussing leadership with my family.
	Others	Receiving compliments and expressions of confidence in me as a leader by colleagues, administrators, staff, subordinates.
	Others	Motivating myself to pursue greater endeavors when I realize others rely on me.


HOLISTIC DEVELOPMENT

	SPECIFIC COMPETENCY	SPECIFIC CONTENT
SELF		
Knowledge		
Values		
Application		
CONFIDANTS		
Knowledge		
Values		
Application		
OTHERS		
Knowledge		
Values		
Application		


Competency Development in Industry

Competency Development in Industry

Competency Development in Industry

Summary

- Competency Development is biggest challenge in workforce development
- Work in non-co-located teams is reality
- Main Challenges: Silos, Communication,
 Visualization, Leadership, Decision-Making
- Ethnical, cultural, value-related, gender gaps and departmental barriers must be bridged
- Content (Systems Engineering) and competency (Lean Engineering) cannot be regarded as separable