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Abstract 

In this paper, we study a single-item multi-stage remanufacturing inventory system using stochastic 
decomposition process. We extend the classic continuous inventory control policy to develop a control 
policy for this remanufacturing system. We use queuing theory techniques to derive steady-state 
probabilities and, consequently, the closed-form cost function of the remanufacturing system is estimated. 
A main contribution of this paper is providing a closed-form cost function for a multi-stage remanufacturing 
system which enables developing solution algorithm to find the optimal policy. Furthermore, a simulated 
annealing algorithm is proposed to find near optimal values of the inventory control policy parameters. 
Finally, sensitivity of the derived model to some parameters is analyzed. 

Keywords: Reverse Logistics, Remanufacturing System, Inventory Control, Queuing System, Simulated 
Annealing. 

1. Introduction
In recent years, manufacturers have paid growing attention to reuse activities that provide material waste reduction 
via the recovery of some content of used products. Motivation behind these product recovery activities is two-fold: 
growing environmental concerns and potential economic benefits (Ahiska, 2008). These reuse processes and related 
activities are studied in terms of reverse logistics. 

Reverse logistics is the process of efficiently planning, implementing, and controlling inbound flow and storage of 
secondary items and related information opposite to the traditional supply chain direction for the purpose of recovering 
value or suitable disposal (Beltran, 2002; Fleischmann, 1997). Remanufacturing is a typical example for economically 
attractive reuse activities. Remanufacturing transforms used products into like new products. After disassembly, 
modules and parts are extensively inspected and problematic parts are repaired, or if not possible, replaced with new 
parts (Ahiska, 2008). 

The literature on inventory control and production planning in reverse logistics is reviewed by Fleischmann et al. 
(1997). They stated that recovery process effect three main areas, namely distribution planning, inventory control, and 
production planning. This paper belongs to the inventory control area. Due to uncertainty of product returns and 
coordination of product recovery option with regular procurement, inventory control for recoverable manufacturing 
systems is more complex than traditional systems (Inderfurth and van der Laan, 2001).  

Papers such as Dobos  and  Richter (2006), Heyman (1977), Inderfurth  and van der Laan (2001), Kiesmuller and van 
der Laan (2001), van der Laan et al. (1996), van der Laan and Salomon (1997), van der Laan and Teunter (2006), 
Muckstadt and Isaac (1981), Ouyang and Zhu (2006), Roy et al. (2009), Tang and Grubbstrom (2005), and Bagherpour 
et al. (2009). Each model in the literature differs from other models with respect to its assumptions. Assumptions must 
be made on the demand and return processes, existence of a disposal option for returned items, relevant cost 
parameters, lead times of production and remanufacturing activities, and the length of planning horizon. 

The physical design of the remanufacturing system we study in this paper is based Takahashi et al. (2007) who studied 
a remanufacturing system with a stochastic decomposition process (see Fig. 1). In the decomposition process, a 
returned item is disposed or decomposed into parts or materials. The recovered materials and parts are stored to be 
used in the production process. For this remanufacturing system, Takahashi et al. (2007) developed a Markov chain 
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model and flow balance equations. Takahashi et al. (2007) stated that they used the numerical methods presented in 
Bolch et al. (1998) in order to solve the flow balance equations. To the best of our knowledge, the average cost of a 
remanufacturing system with stochastic decomposition process is not yet derived in the form of a closed-form function. 
 
To determine the steady-state probabilities of finite Markov chains, three different approaches are commonly used: 
direct or iterative numerical methods and techniques that yield closed-form results. Direct methods operate and modify 
the parameter matrix. They use a fixed amount of computation time independent of the parameter values and there is 
no issue of convergence (Bolch et al., 1998). Among the techniques most commonly applied, Gaussian Elimination 
(GE) and Grassmann Algorithm (GA) (Kumar et al., 1987) can be named. Whereas direct methods yield exact results, 
iterative methods are generally more efficient, both in time and space. So, they are commonly used for larger models 
(Bolch et al., 1998). Power Method, Jacobi's Method, and Gauss-Seidel Method are some examples of iterative 
methods (for more details see Bolch et al., 1998 and Stewart, 1994). Though closed-form of steady-state probabilities 
are highly advantageous, they can be obtained for only a small class of models and normally the steady-state 
probabilities are not interpreted as closed-form functions for Markov chains with a more general structure (see for 
example Pourghannad, 2013, and Bagherpour et al., 2009). 

 
To the best of our knowledge, for the first time in the literature, this paper develops the closed-form steady-state 
probabilities for a single-item remanufacturing system with stochastic decomposition process. Afterwards, the closed-
form steady-state probabilities are used to estimate the system cost function. The closed-form cost function has some 
advantages over numerical methods. Firstly, numerical algorithms have round-off errors resulting from finite precision 
arithmetic (Bolch et al., 1998). Secondly, the closed-form version of cost function is valuable because it provides a 
base to analyze the cost function more efficiently. In addition, the closed-form cost function enhances time efficiency 
of possible optimization algorithms. 
 
In our paper, the traditional continuous review policy is developed and a (Q, α, β, γ) policy is proposed. Then, queuing 
system analysis is implemented to derive the closed-form cost function of the understudy remanufacturing system 
under proposed policy. Simulation experiments are used in order to evaluate the performance of estimated closed-
form cost function. Statistical hypothesis test with 95% confidence level reveals that, statistically, there is no 
significant difference between the proposed cost function and simulation results. 
 
Main contribution of this paper is to present the closed-form cost function. Furthermore, to determine the values of 
inventory control policy parameters in derived optimization problem, we apply a widely available and easily 
programmed metahurestic procedure, Simulated Annealing (SA). We compared results obtained by our SA with 
Genetic Algorithm which is used extensively in the literature for remanufacturing problems and other supply chain 
applications (see for example Roy et al. (2008), Pourghannad et al. (2015)and Aliabadi et al. (2013)). This comparison 
shows that our proposed SA provides the solutions that are reliable. Consequently, via extensive simulation 
experiments, we recognized that our proposed estimated cost function is accurate, and the proposed SA is a convenient, 
reliable, and effective approach for practical application. 
 

The rest of this paper is organized as follows. In Section 2 notations are introduced and problem definition is presented. 
The proposed queuing system analysis which is used to derive cost function of inventory remanufacturing model is 
presented in Section 3. In addition, in Section 4, the SA method to find near optimal value of estimated cost function 
is explained. The accuracy of estimated cost function and performance of the proposed solution method are evaluated 
by using simulation in Section 5. Sensitivity of model to some parameters is surveyed in section 6. Finally, in section 
7, conclusion and some suggestions for future research are presented. 
 
2. Problem Description and Notations 
We study a remanufacturing system which consists of three processes: decomposing, producing parts, and producing products. 
Also, there are three storages for storage of materials, parts, and products, as shown in Fig. 1.  We assume (1) There is one single 
finished product, (2) by decomposing a returned item, either a part or a material is obtained, or the returned item is disposed, (3) 
unsatisfied demands are lost, (4) for raw material, there is a purchasing process with lot size equal to Q and zero lead time, and (5) 
the storages have limited capacities. The capacities of material, part, and product storages are α, β, and γ, respectively. These 
assumptions are standard assumptions which are used in most of inventory problems (see Frenk et al. (2014) for general 
discussions) 
 
The vector (𝑄𝑄,𝛼𝛼,𝛽𝛽, 𝛾𝛾) represents inventory control policy and is defined as follows. Materials are purchased with lot size Q when 
the system runs out of raw material. Parts are produced, unless the stock of parts reaches the upper limit β, or the stock of materials 
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runs out. Products are produced, unless the stock of products reaches the upper limit γ, or the stock of parts runs out. When the 
stock of materials reaches the upper limit α, the recovered materials will be disposed; also, when the stock of parts reaches the 
upper limit β, the recovered parts will be disposed. 

 
Fig. 1. Schematic model of remanufacturing 

Our mathematical model is developed based on the following notations. 
𝜆𝜆𝑑𝑑 : Demand rate per unit time, according to a Poisson process 
𝜆𝜆𝑟𝑟 : Recovery rate per unit time, according to a Poisson process 
𝑀𝑀𝑝𝑝 : Mean time for producing each product, according to an Exponential process 
𝑀𝑀𝑝𝑝𝑝𝑝 : Mean time for producing each part, according to an Exponential process 
𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 : Rate of disposal of decomposed recovered items per unit time, according to a Poisson process 
𝜆𝜆𝑚𝑚 : Rate of reuse of decomposed recovered items as material per unit time, according to a Poisson process 
𝜆𝜆𝑝𝑝𝑝𝑝 : Rate of reuse of decomposed recovered items as part per unit time, according to a Poisson process 
α : Capacity of  material storage 
β : Capacity of  part storage 
γ  : Capacity of  product storage 
𝜋𝜋𝑝𝑝(𝑥𝑥) : Steady-state probability of having x units of products on hand  
𝜋𝜋𝑝𝑝𝑝𝑝(𝑥𝑥) : Steady-state probability of having x units of parts on hand 
𝜋𝜋𝑚𝑚(𝑥𝑥) : Steady-state probability of having x units of materials on hand 
𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 𝑦𝑦 𝑧𝑧⁄⁄⁄  : Average number of q (product/part/material in storage) when queue system is M/M/y/z  
ℎ𝑝𝑝𝑝𝑝 : Part holding cost per unit per unit time 
ℎ𝑝𝑝 : Product holding cost per unit per unit time 
ℎ𝑚𝑚 : Material holding cost per unit per unit time 
S : Shortage cost per unit at the product storage 
D : Disposal cost per unit 
𝑐𝑐𝑑𝑑 : Expected cost related to block i; i = A, B, C, and D 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 : Expected total cost 
r: Utilization factor that expresses the proportion of time the system is busy and is equal to the ratio of system output 
rate to its input rate. 
 
3. Cost Function Derivation 
The total cost equals to the summation of costs in blocks A, B, C, and D, i.e. 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑐𝑐𝐴𝐴 + 𝑐𝑐𝐵𝐵 +  𝑐𝑐𝐶𝐶 + 𝑐𝑐𝐷𝐷 . The total cost includes holding costs in all the three mentioned storages, shortage cost 
in block D, and disposal cost in block A.  
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Lemma 1:  𝑐𝑐𝐴𝐴 that represents the expected inventory cost in block A can be presented as cA = E(x) × hm with E(x) =
∑ x.πm(x) α
x=1 and πm(x) = �1 − πpa(β)� × πm(x|part storage is not full) + πpa(β) ×

πm(x|part storage is full). Where, 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽) is the steady-state probability of fullness of part storage and is calculated 
according to Eq. A.3 (see Appendix). We have 
                                                                      1−𝑟𝑟

Q−𝑟𝑟α−Q+1 ∑ 𝑟𝑟𝑖𝑖Q−1
𝑖𝑖=0

                                x = 1 

πm(𝑥𝑥|part storage is not full) = 

 

   
 

� 𝑟𝑟𝑖𝑖
𝑥𝑥−1

𝑖𝑖=0
πm(1) 2  ≤  x ≤  Q 

   
                                                                    𝑟𝑟𝑥𝑥−Q ∑ 𝑟𝑟𝑖𝑖Q−1

𝑖𝑖=0 πm(1)                   Q + 1 ≤ x ≤ 𝛼𝛼 
 
where r is the utilization factor and is equal to  𝜆𝜆𝑚𝑚𝑀𝑀𝑝𝑝𝑡𝑡 and, in the steady-state, if part storage is full, r tends to infinity. 
Therefore, 
 

𝜋𝜋m(𝑥𝑥|part storage is full) = 
 

        0     1 ≤ x ≤ α - 1 
 
        1     x = α                                

 

Proof: For brevity, we only outline the main steps which should be follow to stablish the results in this lemma. First, 
tThe steady-state probability of occurrence of this state is represented by 𝜋𝜋𝑚𝑚(𝑥𝑥|part storage is not full). Second 
partition refers to the case in which part storage is full. So, the output rate of block A is zero, and consequently r tends 
to infinity. The steady-state probability of occurrence of this state is represented by 𝜋𝜋𝑚𝑚(x|part storage is full). The 
inventory on hand is an irreducible continuous time Markov chain, the proof of which is presented by Ouyang and 
Zhu (2006) and also Bagherpour et al., (2009). This continuous time Markov chain has a unique steady-state 
probability 𝜋𝜋𝑚𝑚(𝑥𝑥)𝑓𝑓𝑥𝑥 = ∑ 𝜋𝜋𝑚𝑚(𝑦𝑦)𝑓𝑓𝑦𝑦𝑥𝑥 𝛼𝛼

𝑦𝑦=1 . The steady-state probabilities can be obtained as follow. 
 

πm(𝑥𝑥)= 

 

1 − 𝑟𝑟
𝑄𝑄 − 𝑟𝑟𝛼𝛼−𝑄𝑄+1 ∑ 𝑟𝑟𝑖𝑖𝑄𝑄−1

𝑖𝑖=0
 

x=1 
 

� 𝑟𝑟𝑖𝑖
𝑥𝑥−1

𝑖𝑖=0
.𝜋𝜋𝑚𝑚(1) 2 ≤ x ≤ Q 

  𝑟𝑟𝑥𝑥−𝑄𝑄 ∑ 𝑟𝑟𝑖𝑖𝑄𝑄−1
𝑖𝑖=0 .𝜋𝜋𝑚𝑚(1)  Q+1 ≤ x ≤ 𝛼𝛼  

 
Lemma 2: 𝑐𝑐𝐵𝐵 can be written as follows. 

𝑐𝑐𝐵𝐵 = 𝜋𝜋𝑝𝑝(𝛾𝛾) × 𝛽𝛽 × ℎ𝑝𝑝𝑡𝑡 +   �1 − 𝜋𝜋𝑝𝑝(𝛾𝛾)� ×  𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛽𝛽+1)⁄⁄⁄ × ℎ𝑝𝑝𝑡𝑡 . 
 

where 𝜋𝜋𝑝𝑝(𝛾𝛾) that is the steady-state probability of fullness of the product storage is calculated according to Eq. A.1 
(for more details see Appendix). 
 
Proof: We use M/M/1/ (𝛽𝛽 + 1)  queuing system with proper input and output rates and solve for the limiting 
probabilities. By using conditional probability for these two partitions, the expected cost for block B can be expressed 
as follows 
𝑐𝑐𝐵𝐵
= �𝑃𝑃(𝐶𝐶𝑝𝑝𝑑𝑑𝐶𝐶 1) × 𝐸𝐸[𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝑡𝑡𝑡𝑡𝑟𝑟𝑦𝑦 𝑡𝑡𝐼𝐼_ℎ𝑝𝑝𝐼𝐼𝑑𝑑 𝑑𝑑𝐼𝐼 𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡 𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑝𝑝𝑡𝑡𝐶𝐶 | 𝐶𝐶𝑝𝑝𝑑𝑑𝐶𝐶 1 ]
+ 𝑃𝑃(𝐶𝐶𝑝𝑝𝑑𝑑𝐶𝐶 2)
× 𝐸𝐸[𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝑡𝑡𝑡𝑡𝑟𝑟𝑦𝑦 𝑡𝑡𝐼𝐼_ℎ𝑝𝑝𝐼𝐼𝑑𝑑 𝑑𝑑𝐼𝐼 𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡 𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑝𝑝𝑡𝑡𝐶𝐶 | 𝐶𝐶𝑝𝑝𝑑𝑑𝐶𝐶 2 ]� × ℎ𝑝𝑝𝑡𝑡 . 

 

If the product storage is full, i.e. the first case, then,  

𝐿𝐿𝑞𝑞 = 𝑡𝑡𝑑𝑑𝑚𝑚
𝑟𝑟→∞

�
𝑟𝑟

1 − 𝑟𝑟
−

(𝛽𝛽 + 2)𝑟𝑟𝛽𝛽+2

1 − 𝑟𝑟𝛽𝛽+2
−
𝑟𝑟(1 − 𝑟𝑟𝛽𝛽+1)

1 − 𝑟𝑟𝛽𝛽+2
� = 𝛽𝛽 .     

 

By substituting the corresponding values, lemma 2 can be easily obtained.  
 
Lemma 3: 𝑐𝑐𝐶𝐶  can be written as follows. 
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𝑐𝑐𝐶𝐶 =   (1 − 𝜋𝜋𝑝𝑝𝑡𝑡(0)) × 𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛾𝛾+1)⁄⁄⁄ × ℎ𝑝𝑝 + 𝑆𝑆 × 𝜋𝜋𝑝𝑝(0) × 𝜆𝜆𝑑𝑑 .  
where 𝜋𝜋𝑝𝑝𝑡𝑡(0) and 𝜋𝜋𝑝𝑝(0) are calculated according to Eq. A.2 and Eq. A.4 respectively (see Appendix). 
 
Proof: Similar to lemma 2 for calculating 𝑐𝑐𝐵𝐵, all possible states can be divided into two partitions, based on the fact 
that part storage is empty, with the probability of 𝜋𝜋𝑝𝑝𝑡𝑡(0), or not empty, with the probability of 1 - 𝜋𝜋𝑝𝑝𝑡𝑡(0). Completing 
the steps lead to lemma 3. 

 
Lemma 4: 𝑐𝑐𝐷𝐷 can be written as follows: 
𝑐𝑐𝐷𝐷 = 𝐷𝐷 × (𝜆𝜆𝑑𝑑𝑖𝑖𝑑𝑑 + 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 + 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑡𝑡) . 

 
 

where 𝜋𝜋𝑚𝑚(𝛼𝛼) and 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽) are calculated according to lemma 1 and Eq. A.3, respectively. 
 
Proof: Since the mean time for decomposing returned items is assumed to be negligible, cost of block D only includes 
disposal costs. Therefore, there is no inventory on hand in this block. As mentioned in section 2, the returned items 
can be disposed under three circumstances: first, when the returned items are not recoverable and they will be disposed 
with the rate of 𝜆𝜆𝑑𝑑𝑖𝑖𝑑𝑑 ; second, when the material storage is full with probability of 𝜋𝜋𝑚𝑚(𝛼𝛼), the recovered item is 
disposed with the rate of 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 , and thirdly, when the part storage is full with probability of 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽), the 
recovered item is disposed with the rate of 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑡𝑡. Therefore, the expected total cost of this block can be 
calculated by multiplying the summation of these three disposal rates by disposal cost per unit (D). 
 
Lemma 5: The total cost of the remanufacturing system under proposed (𝑄𝑄,𝛼𝛼,𝛽𝛽, 𝛾𝛾) inventory control policy can be 
expressed as the summation of the related costs of four blocks and is formulated as follows: 
𝑍𝑍 = 𝐸𝐸(𝑥𝑥) × ℎ𝑚𝑚 + 𝜋𝜋𝑝𝑝(𝛾𝛾) × 𝛽𝛽 × ℎ𝑝𝑝𝑡𝑡 +   �1 − 𝜋𝜋𝑝𝑝(𝛾𝛾)� ×  𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛽𝛽+1)⁄⁄⁄ × ℎ𝑝𝑝𝑡𝑡 +  �1 − 𝜋𝜋𝑝𝑝𝑡𝑡(0)� ×
𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛾𝛾+1)⁄⁄⁄ × ℎ𝑝𝑝  + 𝑆𝑆 × 𝜋𝜋𝑝𝑝(0) × 𝜆𝜆𝑑𝑑 +  𝐷𝐷 × (𝜆𝜆𝑑𝑑𝑖𝑖𝑑𝑑 + 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 +  𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑡𝑡) .    

 

Proof: Putting all cost function for blocks we have calculated we obtained the total cost function above. 
 
4. Solution Procedure 
In this section, we develop a Simulated Annealing (SA) based heuristic to obtain near optimal parameters of inventory 
control policy of proposed cost function. A solution of our problem in the proposed SA is a vector consisted of 
inventory control policy parameters, namely α, β, γ, and Q. The scheme of proposed SA algorithm to find values of 
inventory control policy parameters for our remanufacturing problem is depicted in Table 1. In steps 1 and 2, the initial 
solution and initial temperature are determined. Then, the new solutions are created at each temperature with the 
defined neighborhood function explained in step 5. Number of new solutions in each temperature is equal to the 
number of iterations defined by 𝑇𝑇 (1 + 0.2 ∗ 𝑇𝑇)⁄  (for more details see Lundy and Mees, 1986). If the new solution 
satisfies the conditions of step 7, it is considered as the input of neighborhood function in step 5-a. Furthermore, 
according to step 9, the temperature decreases with the rate c and when the condition in step 10 is satisfied, the 
algorithm terminates.  
 
5. Computational Results 
In subsection 5.1, validation of proposed estimated cost function is investigated. Then, in subsection 5.2, performance 
of the proposed SA is evaluated by comparing its results with near optimal values obtained by a Genetic Algorithm 
(GA) proposed by Roy et al. (2008) for a remanufacturing problem. 
 
The real GA is used with following parameters: population size = 30, probability of crossover = 0.2, probability of 
mutation = 0.1, and maximum number of generation = 300. Similar to our proposed SA, these parameters are selected 
by trial and error to obtain good performance. The SA procedure was run with the following set of parameters: initial 
temperature: 0.5, cooling schedule rule: exponential, TK+1 = 0.9TK, the values of decreasing and increasing: 1, initial 
inventory policy parameters are values considered to be α = β = γ = Q =1. The values of the mentioned parameters 
and cooling schedule rule are selected by trial and error through experiments to tune the algorithm for a good 
performance. 
 
To construct scenarios, we consider five parameters, namely, material inventory cost (hm), part inventory cost (hpa), 
product inventory cost (hp), shortage cost (S), and disposal cost (D), to be changeable. Other parameters are assumed 
to be constant and are set as follows λm=2.5; λpa=2.5; λdis=1; λd=6; Mp=5; and Mpa=4. We assign values randomly 
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selected from integers between 1 and 20 to the five changeable parameters. Using this method, 30 different scenarios 
are randomly obtained and each scenario is labeled by (S,D,hm,hp,hpa). 

 
Table 1. Simulated annealing algorithm for the inventory control policy parameters optimization. 

1. [Set initial control policy parameters configuration.] Set α ← 1, β ← 1, γ ← 1, and Q ← 1. 
2. [Set initial temperature T0.] Set T← 0.5. 
3. [Initialize step for number of iterations for terminating algorithm.] Set S ← 0. 
4. [Initialize step for number of iterations in each temperature.] Set I ← 0. 
5. [Create new configurations of control policy parameters.] 

a) [Create a copy of control policy parameters configuration.] Set α′ ← α, β′ ← β, γ′ ← γ, and Q′ ← Q.  
b) [Create 2 numbers: increase value and decrease value.] Set increase value ← u, and decrease value ← l. 
c) [Determine a parameter, among four control policy parameters (α, β, γ, and Q), to modify.] Set 𝑍𝑍𝐼𝐼← 

[rand(1…4)]. 
d) [Determine whether the selected parameter will increase or decrease.] Set b ← [rand(0,1)]. 
e) If 𝑍𝑍𝐼𝐼 = 1, then  

if b = 1; set α ← α + u,  
if b = 0; set α ← α – l, 

In addition, if α ≤ 0; set α ← 1. 
f) If 𝑍𝑍𝐼𝐼 = 2, then 

if b = 1; set β ← β + u,  
if b = 0; set β ← β – l, 

In addition, if β ≤ 0; set β ← 1. 
g) If 𝑍𝑍𝐼𝐼 = 3, then 

if b = 1; set γ ← γ + u, 
if b = 0; set γ ← γ – l, 

In addition, if γ ≤ 0; set γ ← 1. 
h) If 𝑍𝑍𝐼𝐼 = 4, then 

if b = 1; set Q ← Q + u, 
if b = 0; set Q ← Q – l, 

In addition, if Q > α; set Q ← α. 
6. [Calculate energy differential.] Set ∆𝐸𝐸 ← Z (α, β, γ, Q) - Z (α′, β′, γ′, Q′). 
7. [Decide upon acceptance of new configuration.] Accept new configuration, if ∆𝐸𝐸 > 0, or, following the 

Boltzmann probability distribution, if  ∆𝐸𝐸 < 0 and 𝐶𝐶𝑥𝑥𝑝𝑝 �−∆𝐸𝐸
𝑇𝑇
� > rand(0…1), set α ← α′, β ← β′, γ ← γ′, and 

Q ← Q′. 
8. [Repeat for current temperature.] Set I ← I + 1. If I < maximum number of iterations in each temperature, go 

to step 4. 
9. [Lower the annealing temperature.] Set T ← c × T (0 < c < 1). 
10. [Check if progress has been made.] Set S ← S + 1. If S < maximum number of iterations, go to step 4; 

otherwise, stop. 

We express our finding in Table 2 using %deviation between two methods’ cost function in which % deviation 

=
|𝑍𝑍𝑆𝑆𝑆𝑆− 𝑍𝑍𝐺𝐺𝑆𝑆 |

𝑍𝑍𝐺𝐺𝑆𝑆
, where the cost function obtained from SA is denoted by ZSA and the cost function obtained from genetic 

algorithm is denoted by ZGA. We use the following statistical hypothesis test to compare our proposed SA with the 
real GA. 

H0: 𝜇𝜇𝑍𝑍𝑆𝑆𝑆𝑆 ≤  𝜇𝜇𝑍𝑍𝐺𝐺𝑆𝑆  

H1: 𝜇𝜇𝑍𝑍𝑆𝑆𝑆𝑆 >  𝜇𝜇𝑍𝑍𝐺𝐺𝑆𝑆  
The result of proposed statistical hypothesis test indicates a failure to reject the null hypothesis at 95% confidence 
level. Therefore, it is inferred that the proposed SA works better than GA. Also, based on the above statistical 

© IEOM Society International 
666



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bogota, Colombia, October 25-26, 2017 

hypothesis test, there is no significant difference between the results of two mentioned methods.  Consequently, SA 
is a convenient, reliable, and effective approach for our problem.  

Table 2. The results obtained by SA and GA  

Sc
en

ar
io

 
N

um
be

r 

Scenario 
SA  

 
GA 

%
 

de
vi

at
io

n 

𝑍𝑍𝑆𝑆𝐴𝐴 (𝛼𝛼𝑆𝑆𝐴𝐴,𝛽𝛽𝑆𝑆𝐴𝐴, 𝛾𝛾𝑆𝑆𝐴𝐴,𝑄𝑄𝑆𝑆𝐴𝐴) time 𝑍𝑍𝐺𝐺𝐴𝐴 (𝛼𝛼𝐺𝐺𝐴𝐴,𝛽𝛽𝐺𝐺𝐴𝐴 ,𝛾𝛾𝐺𝐺𝐴𝐴,𝑄𝑄𝐺𝐺𝐴𝐴) time 

1 (14,3,7,11,10) 70.7035 (2,2,3,1) 38.08  74.1904 (2,3,3,2) 37.08 4.699934 

2 (13,9,5,12,14) 85.7106 (2,2,3,1) 36.36  88.552 (3,2,4,2) 36.94 3.208736 

3 (6,19,13,7,5) 93.9671 (2,2,4,1) 37.83  94.0022 (2,2,3,1) 36.75 0.03734 

4 (4,17,14,11,7) 90.9575 (2,2,2,1) 37.73  101.6422 (3,2,5,2) 37.28 10.51207 

5 (2,2,8,7,4) 29.8276 (1,2,1,1) 40.84  31.4553 (1,2,3,1) 38.02 5.174645 

6 (3,14,6,1,7) 61.483 (3,3,4,1) 36.00  64.4805 (6,2,5,2) 34.67 4.648692 

7 (3,7,6,11,14) 50.6801 (2,1,2,1) 34.65  53.8952 (3,1,2,2) 35.51 5.965466 

8 (16,9,5,5,3) 65.9818 (3,3,7,1) 36.14  67.0597 (4,4,6,1) 36.17 1.607374 

9 (4,9,3,3,11) 49.5954 (3,2,6,1) 35.68  51.9829 (3,2,2,1) 36.07 4.592856 

10 (18,17,15,14,6) 122.5864 (2,3,4,1) 30.70  132.904 (2,3,5,2) 36.38 7.763197 

11 (10,4,6,11,13) 65.9017 (2,2,3,1) 33.64  68.3731 (3,2,2,1) 36.13 3.614579 

12 (10,9,2,3,12) 60.0421 (4,2,8,1) 34.70  62.8742 (5,3,6,1) 36.94 4.504391 

13 (1,14,13,2,14) 67.0154 (2,1,1,1) 33.86  74.6019 (2,1,5,2) 36.12 10.16931 

14 (13,7,8,13,11) 82.8988 (2,2,3,1) 37.41  83.0391 (2,2,2,1) 35.82 0.168957 

15 (12,1,4,13,4) 48.1349 (1,3,2,1) 37.12  50.32 (1,4,2,1) 35.81 4.342409 

16 (18,2,7,5,11) 68.8674 (1,3,7,1) 37.90  72.6353 (1,3,3,1) 35.33 5.187423 

17 (14,2,13,11,14) 78.157 (1,2,3,1) 36.70  86.4889 (2,3,4,1) 36.30 9.633491 

18 (10,2,13,2,12) 56.99 (1,2,9,1) 37.09  73.4604 (3,2,3,2) 36.18 22.42079 

19 (20,14,6,4,3) 80.5711 (3,4,10,1) 34.88  88.5711 (4,4,4,2) 35.72 9.032292 

20 (5,12,4,10,13) 69.5019 (3,2,3,1) 38.30  69.6883 (3,1,4,1) 35.73 0.267477 

21 (7,19,14,11,1) 94.3215 (2,4,3,1) 36.90  94.6442 (2,5,3,1) 35.46 0.340961 

22 (13,19,13,12,3) 108.2062 (2,3,3,1) 37.32  113.2094 (4,3,4,1) 32.84 4.419421 

23 (4,12,11,2,15) 73.311 (2,2,9,1) 37.58  80.0305 (3,2,5,2) 36.39 8.396174 

24 (7,4,1,9,5) 39.317 (3,2,2,1) 38.95  41.231 (6,3,3,1) 36.71 4.642138 

25 (19,10,2,13,3) 77.1694 (4,3,4,1) 39.28  79.4728 (2,3,3,1) 36.47 2.89835 

26 (6,1,9,7,4) 36.657 (1,2,2,1) 37.40  37.4607 (1,3,2,1) 36.56 2.145448 

27 (17,20,4,6,7) 95.5097 (4,3,7,1) 38.82  103.4197 (4,2,5,2) 37.08 7.648446 

28 (17,4,15,11,3) 78.333 (1,3,3,1) 40.60  83.1584 (1,5,6,1) 36.88 5.802661 

29 (7,3,1,12,4) 37.2784 (3,2,1,1) 40.32  38.2096 (5,2,2,2) 36.70 2.437084 

30 (15,12,2,10,13) 86.8729 (4,2,4,1) 40.91  90.3022 (4,3,5,2) 39.26 3.797582 
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6. Sensitivity Analysis 
In this section, sensitivity of the model to shortage cost, holding costs, disposal cost and demand rate is analyzed. To 
do these analyses, we assume the following parameters to be fixed as follows: hm=2, hpa=4, hp=5, S=5, D=5, λm=2.5, 
λpa=2.5, λdis=1, λd=6, Mp=5, and Mpa=4. Parameters S and D are two other important parameters to analyze. The 
results of increasing in these two parameters are depicted in Fig. 2.  
 

 
Fig 2. Effect of changing parameters S and D on decision variables (α, β and γ) and total cost 

 

 
Fig 3. Effect of changing parameters λd on decision variables (α, β and γ) and total cost 

 
When S increases the remanufacturing system needs to hold more inventory at the product storage, so the optimum 
value of γ increases to overcome the high shortage cost. When disposal cost per item increases the optimum values of 
α, β, and γ increase. Obviously, when D increases the remanufacturing system tends to decrease the number of disposed 
items. To aim this goal, the system tries to decreases the probability of fullness in the martial storage and part storage 
by increasing the capacities of these storages. Consequently, the optimum values of all three storages increase. The 
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increase in γ is also decreases the probability of fullness in the martial storage and part storage. It is because when γ 
increases the portion of time that the part storage is full due to the fullness of product storage decrees. 
 
Fig. 3 depict the effect of changing in λd. When demand intensity increases, the remanufacturing system tends to hold 
more inventory in the product storage, similar to the case that S increases. So, it mostly affects γ. It is worth mentioning 
that the increase in λd has no effect on α, because lead time is assumed to be negligible. 
 
 
7. Conclusion 
In this paper, we investigated a remanufacturing inventory system with stochastic decomposition process. The 
understudy remanufacturing system is a queuing network system that its close-form steady-state probabilities are 
unknown in the literature. The main contributions of this paper to the literature are developing the closed-form steady-
state probabilities and as a result the closed-form cost function of this remanufacturing system. In stochastic inventory 
models it is always a challenge to derive the closed-form cost function (Sajadifar and Pourghannad, 2012). Having 
the closed-form cost function on-hand not only overcomes the round-off errors of numerical examples, but also it 
facilitates the analysis of cost function and it also increases the efficiency of possible algorithms to optimize the cost 
function by reducing the run time. To formulate the closed-form cost function of this system, we partitioned the system 
into four blocks. The cost function of each block is formulated by using conditional probability and queuing network 
analyses. Finally, the cost function of the system is derived by adding up the cost function of four blocks. 
 
Furthermore, an SA algorithm is developed to generate the near optimum values of inventory control policy. Through 
the comparison between our proposed SA and an existing real GA developed by Roy et al. (2008), we proved that the 
answers provided by SA are reliable. Future studies may focus on more advanced solution procedures such as Neural 
network (Avsar and Aliabadi, 2015), agent-based algorithms (Aliabadi et al., 2017). Besides, in section 6 some 
numerical investigations are presented to provide some managerial insight to the problem. The results indicate that 
when shortage cost or the demand rate rises, increase of the capacity of product storage is recommended to keep total 
operation cost as low as possible. Also, to overcome the effect of increase of disposal cost, one needs to increase the 
capacities of all storages. 
 
For future work in this area, researches can focus on deriving the cost function with considering setup costs for part 
and product manufacturing processes. Also, considering the non-zero lead time for material purchase process is 
another interesting issue. Furthermore, the current works usually focus only on inventory models. One interesting 
direction is integrating the inventory model with finding the optimal location for warehouses (for example by a similar 
model as in Shahraki et al., 2015). Given that return of product induces more transportation, dose the manufacturing 
really reduce the emissions and lead to sustainability?  To do this, one needs to model the supply chain transportation 
network and its emissions (see Shahraki and Turkay, 2014).  
 
References 
Ahiska, SS., 2008 .Inventory optimization in a one product recoverable manufacturing system. Dissertation, North 

Carolina State University. 
Aliabadi, Danial Esmaeili, Murat Kaya, and Güvenç Şahin. "An agent-based simulation of power generation company 

behavior in electricity markets under different market-clearing mechanisms." Energy Policy 100 (2017): 191-205. 
Aliabadi, Danial Esmaeili, Abolfazl Kaazemi, and Behrooz Pourghannad. "A two-level GA to solve an integrated 

multi-item supplier selection model." Applied Mathematics and Computation 219.14 (2013): 7600-7615. 
Avşar, Bihter, and Danial Esmaeili Aliabadi. "Parallelized neural network system for solving Euclidean traveling 

salesman problem." Applied Soft Computing 34 (2015): 862-873. 
Bagherpour, Matin, Behrooz Pourghannad, and Narges Shahraki. "A New Approach for an Inventory Model of a 

Remanufacturing System with Stochastic Decomposition Process." In Logistik Management, pp. 325-338. Physica-
Verlag HD, 2009. 

Beltran L. S., 2002 .Reverse Logistics: Current Trends and Practices in the Commercial World.   Logistics Spectrum, 
vol. 36(3), pp. 4-8.  

Dobos, I., Richter, K., 2006. A production/recycling model with quality consideration. International Journal of 
Production Economics,104. pp. 571–579.  

Frenk, J. B. G., Murat Kaya, and Behrooz Pourghannad. "Generalizing the ordering cost and holding-backlog cost 
rate functions in EOQ-type inventory models." In Handbook of EOQ Inventory Problems, pp. 79-119. Springer 
US, 2014. 

© IEOM Society International 
669



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bogota, Colombia, October 25-26, 2017 

Fleischmann, M., B-Ruwaard, J., Dekker, R., van der Laan, E., van Nunen, J., Van Wassenhove, L, 1997. Quantitative 
models for reverse logistics: a review. European Journal of Operational Research 103, pp.1–17.  

Heyman, DP., 1977. Optimal disposal policies for a single-item inventory system with returns, Naval Research 
Logistics Quarterly, 24. pp. 385-405.  

Inderfurth, K., 2004. Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. 
International Journal of Production Economics 90. pp. 325–343.   

Inderfurth, K., van der Laan, E., 2001. Leadtime effects and policy improvement for stochastic inventory control with 
remanufacturing. International Journal of Production Economics 71 (1-3), pp.381–390.  

Kiesmüller, G., Laan, V., 2001. An inventory model with dependent product demands and returns. International 
Journal of Production Economics 72 . pp. 73-87.  

Kumar, S., Grassmann, W., Billington., R., 1987.  A Stable Algorithm to Calculate Steady-State Probability and 
Frequency of a Markov System. IEEE Transactions on Reliability, vol. R-36( l). pp.152-159. 
Lundy, M., Mees, A., 1986. Coveregnce of the Annealing Algorithm Math. Prog.34, 111-124. 
Muckstadt, JA., Isaac, MH., 1981. An analysis of single item inventory systems with returns. Naval Research Logistics 

Quarterly, 28. pp. 237-254.  
Ouyang, H., Zhu, X., 2006. An Inventory Control System for Remanufacture with Disposal. IEEE Conference on 

Robatic, Automation and Mechatoronic. pp. 1-5.  
Pourghannad, Behrooz, Abolfazl Kazemi, Narges Shahraki, Payam Chiniforooshan, and Mahdi Azizmohammadi. 

"Developing a new model for dynamic Vendor Managed Inventory with considering time value of 
money." International Journal of Logistics Systems and Management 20, no. 3 (2015): 411-427. 

Pourghannad, Behrooz. A static overbooking model in single leg flight revenue management. Diss. 2013. 
Roy, A., Maity, K., kar, S., Maiti, M., 2009. A production–inventory model with remanufacturing for defective and 

usable items in fuzzy-environment. Computers & Industrial Engineering, Vol. 56(1). pp. 87-96. 
Sajadifar, S. Mehdi, and Behrooz Pourghannad. "Deriving the cost function of an integrated dyadic supply chain with 

uncertainty in the supply." International Journal of Industrial and Systems Engineering 1 11, no. 1-2 (2012): 154-
166. 

Shahraki, Narges, and Metin Turkay "Analysis of interaction among land use, transportation network and air pollution 
using stochastic nonlinear programming." International Journal of Environmental Science Vol. 11 (2014): 2201-2216. 
Shahraki, Narges, Hua Cai, Metin Turkay, and Ming Xu. "Optimal locations of electric public charging stations using 

real world vehicle travel patterns." Transportation Research Part D: Transport and Environment 41 (2015): 165-
176. 

Stewart, W., 1994. Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton, 
NJ. 
Takahashi, K., Morikawa, K., Takeda, D., Mizuno, A., 2007. Inventory control for a MARKOVIAN remanufacturing 

system with stochastic decomposition process. International Journal of Production Economics 108, pp.416–425.  
Tang, O., Grubbstrom, R., 2005. Considering stochastic lead times in a manufacturing/ remanufacturing system with 

deterministic demands and returns.  Journal of Production Economics. 93–94. pp. 285–300.  
van der Laan, E., Dekker, R., Salomon, M., 1996. An (s,Q) inventory model with remanufacturing and disposal. 

International Journal of Production Economics vol. 46-47. pp. 339-350.  
van der Laan, E., Salomon, M., 1997. Production planning and inventory control with remanufacturing and disposal. 

European Journal of Operational Research 102 (2). pp. 264–278.  
van der Laan, E., Teunter, R.H., 2006. Simple heuristics for push and pull remanufacturing policies. European Journal 

of Operational Research 175. pp. 1084–1102.  
  
 
 
 
 
 
Appendix 
In this appendix, values of 𝜋𝜋𝑝𝑝(𝛾𝛾), 𝜋𝜋𝑝𝑝𝑡𝑡(0), 𝜋𝜋𝑝𝑝𝑡𝑡(𝛽𝛽), and 1 − 𝜋𝜋𝑝𝑝(0) that are used to formulate the closed-form total 
cost function of understudy remanufacturing system are calculated. Also, the approach used to derive these steady-
state probabilities is explained.  
The steady-state probabilities of πp(γ), πpa(0), πpa(β), and 1 − πp(0) are calculated as follows: 

πp(γ) =  
𝑆𝑆 × 𝐶𝐶

1 − 𝑆𝑆 × 𝐵𝐵 + 𝑆𝑆 × 𝐶𝐶
 

(A.1) 
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πpa(0) = 1 −  
πp(γ)

A

(A.2) 

πpa(β) = �1 − πp(γ)� × E (A.3) 

1 − πp(0) = πpa(0) × F + �1 − πpa(0)� × G (A.4) 

where A = πp �γ�λ = 1
MP

, µ = λd�  =  
�1− 1

λdMp
�� 1
λdMp

�
γ

1−� 1
λdMp

�
γ+2 , B = 1 − πpa �0�λ = λpa + 1

Mpa
, µ = 0� =  1 , 

C = 1 − πpa �0�λ = λpa + 1
Mpa

,µ = 1
Mp
�  = 1 −  

�1−
λpa+

1
MPa
1
MP

 
�

1−�
λpa+

1
MPa

1
MP

 
�

β+2  , D = πpa �β�λ = λpa + 1
Mpa

, µ = 0�  = 0 , 

E = πpa �β�λ = λpa + 1
Mpa

, µ = 1
Mp
�  =  

�1−
λpa+

1
MPa
1
MP

 
��

λpa+
1

MPa
1
MP

 
�

β

1−�
λpa+

1
MPa
1
MP

 
�

β+2  , F = 1 − πp(0|λ = 0, µ = λd)  = 1 , 

G = 1 − πp �0�λ = 1
MP

, µ = λd�  = 1 −
�1 − 1

λdMp
�

1 − � 1
λdMp

�
γ+2 . 

Proof: In the understudy remanufacturing system, as one can infer form Fig 1, input and output rates of each block 
depends on the fullness or emptiness of other blocks. Considering this fact, steady-state probabilities can be formulated 
by conditioning on the fullness or emptiness of the  beforehand or afterward storage. In this appendix, by using 
conditional probability, we compute 𝜋𝜋𝑝𝑝(𝛾𝛾), 𝜋𝜋𝑝𝑝𝑝𝑝(0), 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽), and 1 − 𝜋𝜋𝑝𝑝(0) as shown by Eqs. (A.5) to (A.8). Other 
steady-state probabilities can be obtained directly using classical queuing theory, e.g. 
𝜋𝜋𝑝𝑝(𝛾𝛾|𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡 𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑝𝑝𝑡𝑡𝐶𝐶 𝑑𝑑𝑑𝑑 𝐼𝐼𝑡𝑡𝑡𝑡 𝐶𝐶𝑚𝑚𝑝𝑝𝑡𝑡𝑦𝑦) is calculated from the existing closed-form relations for steady-state probabilities 
of a clasic M/M/1/ γ queuing system. 

πp(γ) =  �1 − πpa(0)�  × πp �γ�
part storage
is not empty� + πpa(0) ×   πp �γ�

part storage
is empty � (A.5) 

1 − πpa(0) =  πp(γ) × πpa �
part storage 
is not empty�

product storage 
is full

� + 

�1 − πp(γ)� ×   πpa �
part storage 
is not empty�

product storage 
is not full

� 

(A.6) 

πpa(β) = πp(γ) × πpa �β�product storage
is full

� + �1 − πp(γ)� × πpa �β�product storage
is not full

� (A.7)

1 − πp(0) = πpa(0) × πp �product storage 
is not empty �

part storage 
is empty � +

�1 − πpa(0)� × πp �product storage 
is not empty �

part storage 
is not empty�.

(A.8) 

   where, 

πp �γ�
part storage 
is not empty� → πp �γ�λ = 1

MP
, µ = λd�; Let’s call this value A. 

πp �γ�
part storage 

is empty � → πp(γ|λ = 0, µ = λd); This value is equal to 1.
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πpa �
part storage 
is not empty�

product storage
is full

� → 1 − πpa �0�λ = λpa + 1
Mpa

, µ = 0�; Let’s call this value B. 

πpa �
part storage 
is not empty�

product storage
is not full

� → 1 − πpa �0�λ = λpa + 1
Mpa

, µ = 1
Mp
�; Let’s call this value C. 

πpa �β�product storage
is full

� →  πpa �β�λ = λpa + 1
Mpa

, µ = 0�; Let’s call this value D. 

πpa �β�product storage
is not full

� → πpa �β�λ = λpa + 1
Mpa

, µ = 1
Mp
�; Let’s call this value E. 

πp �product storage 
is not empty �

part storage 
is empty � → 1 − πp(0|λ = 0, µ = λd); Let’s call this value F.

πp �product storage 
is not empty �

part storage 
is not empty� → 1 − πp �0�λ = 1

MP
, µ = λd�; Let’s call this value G. 

By solving simultaneous equations (A.5) to (A.8), we get the steady-state probabilities as in equations (A.1) to (A.4). 
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