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𝑐𝑐𝐶𝐶 =   (1 − 𝜋𝜋𝑝𝑝𝑝𝑝(0)) × 𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛾𝛾+1)⁄⁄⁄ × ℎ𝑝𝑝 + 𝑆𝑆 × 𝜋𝜋𝑝𝑝(0) × 𝜆𝜆𝑑𝑑 .  
where 𝜋𝜋𝑝𝑝𝑝𝑝(0) and 𝜋𝜋𝑝𝑝(0) are calculated according to Eq. A.2 and Eq. A.4 respectively (see Appendix). 
 
Proof: Similar to lemma 2 for calculating 𝑐𝑐𝐵𝐵, all possible states can be divided into two partitions, based on the fact 
that part storage is empty, with the probability of 𝜋𝜋𝑝𝑝𝑝𝑝(0), or not empty, with the probability of 1 - 𝜋𝜋𝑝𝑝𝑝𝑝(0). Completing 
the steps lead to lemma 3. 

 
Lemma 4: 𝑐𝑐𝐷𝐷 can be written as follows: 
𝑐𝑐𝐷𝐷 = 𝐷𝐷 × (𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 + 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑝𝑝) . 

 
 

where 𝜋𝜋𝑚𝑚(𝛼𝛼) and 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽) are calculated according to lemma 1 and Eq. A.3, respectively. 
 
Proof: Since the mean time for decomposing returned items is assumed to be negligible, cost of block D only includes 
disposal costs. Therefore, there is no inventory on hand in this block. As mentioned in section 2, the returned items 
can be disposed under three circumstances: first, when the returned items are not recoverable and they will be disposed 
with the rate of 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 ; second, when the material storage is full with probability of 𝜋𝜋𝑚𝑚(𝛼𝛼), the recovered item is 
disposed with the rate of 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 , and thirdly, when the part storage is full with probability of 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽), the 
recovered item is disposed with the rate of 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑝𝑝. Therefore, the expected total cost of this block can be 
calculated by multiplying the summation of these three disposal rates by disposal cost per unit (D). 
 
Lemma 5: The total cost of the remanufacturing system under proposed (𝑄𝑄,𝛼𝛼,𝛽𝛽, 𝛾𝛾) inventory control policy can be 
expressed as the summation of the related costs of four blocks and is formulated as follows: 
𝑍𝑍 = 𝐸𝐸(𝑥𝑥) × ℎ𝑚𝑚 + 𝜋𝜋𝑝𝑝(𝛾𝛾) × 𝛽𝛽 × ℎ𝑝𝑝𝑝𝑝 +   �1 − 𝜋𝜋𝑝𝑝(𝛾𝛾)� ×  𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛽𝛽+1)⁄⁄⁄ × ℎ𝑝𝑝𝑝𝑝 +  �1 − 𝜋𝜋𝑝𝑝𝑝𝑝(0)� ×
𝐿𝐿𝑞𝑞|𝑀𝑀 𝑀𝑀 1 (𝛾𝛾+1)⁄⁄⁄ × ℎ𝑝𝑝  + 𝑆𝑆 × 𝜋𝜋𝑝𝑝(0) × 𝜆𝜆𝑑𝑑 +  𝐷𝐷 × (𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜋𝜋𝑚𝑚(𝛼𝛼) × 𝜆𝜆𝑚𝑚 +  𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽)  ×  𝜆𝜆𝑝𝑝𝑝𝑝) .    

 

Proof: Putting all cost function for blocks we have calculated we obtained the total cost function above. 
 
4. Solution Procedure 
In this section, we develop a Simulated Annealing (SA) based heuristic to obtain near optimal parameters of inventory 
control policy of proposed cost function. A solution of our problem in the proposed SA is a vector consisted of 
inventory control policy parameters, namely α, β, γ, and Q. The scheme of proposed SA algorithm to find values of 
inventory control policy parameters for our remanufacturing problem is depicted in Table 1. In steps 1 and 2, the initial 
solution and initial temperature are determined. Then, the new solutions are created at each temperature with the 
defined neighborhood function explained in step 5. Number of new solutions in each temperature is equal to the 
number of iterations defined by 𝑇𝑇 (1 + 0.2 ∗ 𝑇𝑇)⁄  (for more details see Lundy and Mees, 1986). If the new solution 
satisfies the conditions of step 7, it is considered as the input of neighborhood function in step 5-a. Furthermore, 
according to step 9, the temperature decreases with the rate c and when the condition in step 10 is satisfied, the 
algorithm terminates.  
 
5. Computational Results 
In subsection 5.1, validation of proposed estimated cost function is investigated. Then, in subsection 5.2, performance 
of the proposed SA is evaluated by comparing its results with near optimal values obtained by a Genetic Algorithm 
(GA) proposed by Roy et al. (2008) for a remanufacturing problem. 
 
The real GA is used with following parameters: population size = 30, probability of crossover = 0.2, probability of 
mutation = 0.1, and maximum number of generation = 300. Similar to our proposed SA, these parameters are selected 
by trial and error to obtain good performance. The SA procedure was run with the following set of parameters: initial 
temperature: 0.5, cooling schedule rule: exponential, TK+1 = 0.9TK, the values of decreasing and increasing: 1, initial 
inventory policy parameters are values considered to be α = β = γ = Q =1. The values of the mentioned parameters 
and cooling schedule rule are selected by trial and error through experiments to tune the algorithm for a good 
performance. 
 
To construct scenarios, we consider five parameters, namely, material inventory cost (hm), part inventory cost (hpa), 
product inventory cost (hp), shortage cost (S), and disposal cost (D), to be changeable. Other parameters are assumed 
to be constant and are set as follows λm=2.5; λpa=2.5; λdis=1; λd=6; Mp=5; and Mpa=4. We assign values randomly 
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selected from integers between 1 and 20 to the five changeable parameters. Using this method, 30 different scenarios 
are randomly obtained and each scenario is labeled by (S,D,hm,hp,hpa). 

 
Table 1. Simulated annealing algorithm for the inventory control policy parameters optimization. 

1. [Set initial control policy parameters configuration.] Set α ← 1, β ← 1, γ ← 1, and Q ← 1. 
2. [Set initial temperature T0.] Set T← 0.5. 
3. [Initialize step for number of iterations for terminating algorithm.] Set S ← 0. 
4. [Initialize step for number of iterations in each temperature.] Set I ← 0. 
5. [Create new configurations of control policy parameters.] 

a) [Create a copy of control policy parameters configuration.] Set α′ ← α, β′ ← β, γ′ ← γ, and Q′ ← Q.  
b) [Create 2 numbers: increase value and decrease value.] Set increase value ← u, and decrease value ← l. 
c) [Determine a parameter, among four control policy parameters (α, β, γ, and Q), to modify.] Set 𝑍𝑍𝑣𝑣← 

[rand(1…4)]. 
d) [Determine whether the selected parameter will increase or decrease.] Set b ← [rand(0,1)]. 
e) If 𝑍𝑍𝑣𝑣 = 1, then  

if b = 1; set α ← α + u,  
if b = 0; set α ← α – l, 

In addition, if α ≤ 0; set α ← 1. 
f) If 𝑍𝑍𝑣𝑣 = 2, then 

if b = 1; set β ← β + u,  
if b = 0; set β ← β – l, 

In addition, if β ≤ 0; set β ← 1. 
g) If 𝑍𝑍𝑣𝑣 = 3, then 

if b = 1; set γ ← γ + u, 
if b = 0; set γ ← γ – l, 

In addition, if γ ≤ 0; set γ ← 1. 
h) If 𝑍𝑍𝑣𝑣 = 4, then 

if b = 1; set Q ← Q + u, 
if b = 0; set Q ← Q – l, 

In addition, if Q > α; set Q ← α. 
6. [Calculate energy differential.] Set ∆𝐸𝐸 ← Z (α, β, γ, Q) - Z (α′, β′, γ′, Q′). 
7. [Decide upon acceptance of new configuration.] Accept new configuration, if ∆𝐸𝐸 > 0, or, following the 

Boltzmann probability distribution, if  ∆𝐸𝐸 < 0 and 𝑒𝑒𝑒𝑒𝑒𝑒 �−∆𝐸𝐸
𝑇𝑇
� > rand(0…1), set α ← α′, β ← β′, γ ← γ′, and 

Q ← Q′. 
8. [Repeat for current temperature.] Set I ← I + 1. If I < maximum number of iterations in each temperature, go 

to step 4. 
9. [Lower the annealing temperature.] Set T ← c × T (0 < c < 1). 
10. [Check if progress has been made.] Set S ← S + 1. If S < maximum number of iterations, go to step 4; 

otherwise, stop. 

We express our finding in Table 2 using %deviation between two methods’ cost function in which % deviation 

=
|𝑍𝑍𝑆𝑆𝑆𝑆− 𝑍𝑍𝐺𝐺𝐺𝐺 |

𝑍𝑍𝐺𝐺𝐺𝐺
, where the cost function obtained from SA is denoted by ZSA and the cost function obtained from genetic 

algorithm is denoted by ZGA. We use the following statistical hypothesis test to compare our proposed SA with the 
real GA. 

H0: 𝜇𝜇𝑍𝑍𝑆𝑆𝑆𝑆 ≤  𝜇𝜇𝑍𝑍𝐺𝐺𝐺𝐺  

H1: 𝜇𝜇𝑍𝑍𝑆𝑆𝑆𝑆 >  𝜇𝜇𝑍𝑍𝐺𝐺𝐺𝐺  
The result of proposed statistical hypothesis test indicates a failure to reject the null hypothesis at 95% confidence 
level. Therefore, it is inferred that the proposed SA works better than GA. Also, based on the above statistical 
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hypothesis test, there is no significant difference between the results of two mentioned methods.  Consequently, SA 
is a convenient, reliable, and effective approach for our problem.  

Table 2. The results obtained by SA and GA  
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GA 

%
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at
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𝑍𝑍𝑆𝑆𝑆𝑆 (𝛼𝛼𝑆𝑆𝑆𝑆,𝛽𝛽𝑆𝑆𝑆𝑆, 𝛾𝛾𝑆𝑆𝑆𝑆,𝑄𝑄𝑆𝑆𝑆𝑆) time 𝑍𝑍𝐺𝐺𝐺𝐺 (𝛼𝛼𝐺𝐺𝐺𝐺,𝛽𝛽𝐺𝐺𝐺𝐺 ,𝛾𝛾𝐺𝐺𝐺𝐺,𝑄𝑄𝐺𝐺𝐺𝐺) time 

1 (14,3,7,11,10) 70.7035 (2,2,3,1) 38.08  74.1904 (2,3,3,2) 37.08 4.699934 

2 (13,9,5,12,14) 85.7106 (2,2,3,1) 36.36  88.552 (3,2,4,2) 36.94 3.208736 

3 (6,19,13,7,5) 93.9671 (2,2,4,1) 37.83  94.0022 (2,2,3,1) 36.75 0.03734 

4 (4,17,14,11,7) 90.9575 (2,2,2,1) 37.73  101.6422 (3,2,5,2) 37.28 10.51207 

5 (2,2,8,7,4) 29.8276 (1,2,1,1) 40.84  31.4553 (1,2,3,1) 38.02 5.174645 

6 (3,14,6,1,7) 61.483 (3,3,4,1) 36.00  64.4805 (6,2,5,2) 34.67 4.648692 

7 (3,7,6,11,14) 50.6801 (2,1,2,1) 34.65  53.8952 (3,1,2,2) 35.51 5.965466 

8 (16,9,5,5,3) 65.9818 (3,3,7,1) 36.14  67.0597 (4,4,6,1) 36.17 1.607374 

9 (4,9,3,3,11) 49.5954 (3,2,6,1) 35.68  51.9829 (3,2,2,1) 36.07 4.592856 

10 (18,17,15,14,6) 122.5864 (2,3,4,1) 30.70  132.904 (2,3,5,2) 36.38 7.763197 

11 (10,4,6,11,13) 65.9017 (2,2,3,1) 33.64  68.3731 (3,2,2,1) 36.13 3.614579 

12 (10,9,2,3,12) 60.0421 (4,2,8,1) 34.70  62.8742 (5,3,6,1) 36.94 4.504391 

13 (1,14,13,2,14) 67.0154 (2,1,1,1) 33.86  74.6019 (2,1,5,2) 36.12 10.16931 

14 (13,7,8,13,11) 82.8988 (2,2,3,1) 37.41  83.0391 (2,2,2,1) 35.82 0.168957 

15 (12,1,4,13,4) 48.1349 (1,3,2,1) 37.12  50.32 (1,4,2,1) 35.81 4.342409 

16 (18,2,7,5,11) 68.8674 (1,3,7,1) 37.90  72.6353 (1,3,3,1) 35.33 5.187423 

17 (14,2,13,11,14) 78.157 (1,2,3,1) 36.70  86.4889 (2,3,4,1) 36.30 9.633491 

18 (10,2,13,2,12) 56.99 (1,2,9,1) 37.09  73.4604 (3,2,3,2) 36.18 22.42079 

19 (20,14,6,4,3) 80.5711 (3,4,10,1) 34.88  88.5711 (4,4,4,2) 35.72 9.032292 

20 (5,12,4,10,13) 69.5019 (3,2,3,1) 38.30  69.6883 (3,1,4,1) 35.73 0.267477 

21 (7,19,14,11,1) 94.3215 (2,4,3,1) 36.90  94.6442 (2,5,3,1) 35.46 0.340961 

22 (13,19,13,12,3) 108.2062 (2,3,3,1) 37.32  113.2094 (4,3,4,1) 32.84 4.419421 

23 (4,12,11,2,15) 73.311 (2,2,9,1) 37.58  80.0305 (3,2,5,2) 36.39 8.396174 

24 (7,4,1,9,5) 39.317 (3,2,2,1) 38.95  41.231 (6,3,3,1) 36.71 4.642138 

25 (19,10,2,13,3) 77.1694 (4,3,4,1) 39.28  79.4728 (2,3,3,1) 36.47 2.89835 

26 (6,1,9,7,4) 36.657 (1,2,2,1) 37.40  37.4607 (1,3,2,1) 36.56 2.145448 

27 (17,20,4,6,7) 95.5097 (4,3,7,1) 38.82  103.4197 (4,2,5,2) 37.08 7.648446 

28 (17,4,15,11,3) 78.333 (1,3,3,1) 40.60  83.1584 (1,5,6,1) 36.88 5.802661 

29 (7,3,1,12,4) 37.2784 (3,2,1,1) 40.32  38.2096 (5,2,2,2) 36.70 2.437084 

30 (15,12,2,10,13) 86.8729 (4,2,4,1) 40.91  90.3022 (4,3,5,2) 39.26 3.797582 
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6. Sensitivity Analysis 
In this section, sensitivity of the model to shortage cost, holding costs, disposal cost and demand rate is analyzed. To 
do these analyses, we assume the following parameters to be fixed as follows: hm=2, hpa=4, hp=5, S=5, D=5, λm=2.5, 
λpa=2.5, λdis=1, λd=6, Mp=5, and Mpa=4. Parameters S and D are two other important parameters to analyze. The 
results of increasing in these two parameters are depicted in Fig. 2.  
 

 
Fig 2. Effect of changing parameters S and D on decision variables (α, β and γ) and total cost 

 

 
Fig 3. Effect of changing parameters λd on decision variables (α, β and γ) and total cost 

 
When S increases the remanufacturing system needs to hold more inventory at the product storage, so the optimum 
value of γ increases to overcome the high shortage cost. When disposal cost per item increases the optimum values of 
α, β, and γ increase. Obviously, when D increases the remanufacturing system tends to decrease the number of disposed 
items. To aim this goal, the system tries to decreases the probability of fullness in the martial storage and part storage 
by increasing the capacities of these storages. Consequently, the optimum values of all three storages increase. The 
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increase in γ is also decreases the probability of fullness in the martial storage and part storage. It is because when γ 
increases the portion of time that the part storage is full due to the fullness of product storage decrees. 
 
Fig. 3 depict the effect of changing in λd. When demand intensity increases, the remanufacturing system tends to hold 
more inventory in the product storage, similar to the case that S increases. So, it mostly affects γ. It is worth mentioning 
that the increase in λd has no effect on α, because lead time is assumed to be negligible. 
 
 
7. Conclusion 
In this paper, we investigated a remanufacturing inventory system with stochastic decomposition process. The 
understudy remanufacturing system is a queuing network system that its close-form steady-state probabilities are 
unknown in the literature. The main contributions of this paper to the literature are developing the closed-form steady-
state probabilities and as a result the closed-form cost function of this remanufacturing system. In stochastic inventory 
models it is always a challenge to derive the closed-form cost function (Sajadifar and Pourghannad, 2012). Having 
the closed-form cost function on-hand not only overcomes the round-off errors of numerical examples, but also it 
facilitates the analysis of cost function and it also increases the efficiency of possible algorithms to optimize the cost 
function by reducing the run time. To formulate the closed-form cost function of this system, we partitioned the system 
into four blocks. The cost function of each block is formulated by using conditional probability and queuing network 
analyses. Finally, the cost function of the system is derived by adding up the cost function of four blocks. 
 
Furthermore, an SA algorithm is developed to generate the near optimum values of inventory control policy. Through 
the comparison between our proposed SA and an existing real GA developed by Roy et al. (2008), we proved that the 
answers provided by SA are reliable. Future studies may focus on more advanced solution procedures such as Neural 
network (Avsar and Aliabadi, 2015), agent-based algorithms (Aliabadi et al., 2017). Besides, in section 6 some 
numerical investigations are presented to provide some managerial insight to the problem. The results indicate that 
when shortage cost or the demand rate rises, increase of the capacity of product storage is recommended to keep total 
operation cost as low as possible. Also, to overcome the effect of increase of disposal cost, one needs to increase the 
capacities of all storages. 
 
For future work in this area, researches can focus on deriving the cost function with considering setup costs for part 
and product manufacturing processes. Also, considering the non-zero lead time for material purchase process is 
another interesting issue. Furthermore, the current works usually focus only on inventory models. One interesting 
direction is integrating the inventory model with finding the optimal location for warehouses (for example by a similar 
model as in Shahraki et al., 2015). Given that return of product induces more transportation, dose the manufacturing 
really reduce the emissions and lead to sustainability?  To do this, one needs to model the supply chain transportation 
network and its emissions (see Shahraki and Turkay, 2014).  
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Appendix 
In this appendix, values of 𝜋𝜋𝑝𝑝(𝛾𝛾), 𝜋𝜋𝑝𝑝𝑝𝑝(0), 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽), and 1 − 𝜋𝜋𝑝𝑝(0) that are used to formulate the closed-form total 
cost function of understudy remanufacturing system are calculated. Also, the approach used to derive these steady-
state probabilities is explained.  
The steady-state probabilities of πp(γ), πpa(0), πpa(β), and 1 − πp(0) are calculated as follows: 

πp(γ) =  
𝐴𝐴 × 𝐶𝐶

1 − 𝐴𝐴 × 𝐵𝐵 + 𝐴𝐴 × 𝐶𝐶
 

(A.1) 

© IEOM Society International 
670

http://scholar.google.com/scholar?oi=bibs&cluster=9317259471292119447&btnI=1&hl=en
http://scholar.google.com/scholar?oi=bibs&cluster=9317259471292119447&btnI=1&hl=en


Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bogota, Colombia, October 25-26, 2017 

πpa(0) = 1 −  
πp(γ)

A

(A.2) 

πpa(β) = �1 − πp(γ)� × E (A.3) 

1 − πp(0) = πpa(0) × F + �1 − πpa(0)� × G (A.4) 

where A = πp �γ�λ = 1
MP

, µ = λd�  =  
�1− 1

λdMp
�� 1
λdMp

�
γ

1−� 1
λdMp

�
γ+2 , B = 1 − πpa �0�λ = λpa + 1

Mpa
, µ = 0� =  1 , 

C = 1 − πpa �0�λ = λpa + 1
Mpa

,µ = 1
Mp
�  = 1 −  

�1−
λpa+

1
MPa
1
MP

 
�

1−�
λpa+

1
MPa

1
MP

 
�

β+2  , D = πpa �β�λ = λpa + 1
Mpa

, µ = 0�  = 0 , 

E = πpa �β�λ = λpa + 1
Mpa

, µ = 1
Mp
�  =  

�1−
λpa+

1
MPa
1
MP

 
��

λpa+
1

MPa
1
MP

 
�

β

1−�
λpa+

1
MPa
1
MP

 
�

β+2  , F = 1 − πp(0|λ = 0, µ = λd)  = 1 , 

G = 1 − πp �0�λ = 1
MP

, µ = λd�  = 1 −
�1 − 1

λdMp
�

1 − � 1
λdMp

�
γ+2 . 

Proof: In the understudy remanufacturing system, as one can infer form Fig 1, input and output rates of each block 
depends on the fullness or emptiness of other blocks. Considering this fact, steady-state probabilities can be formulated 
by conditioning on the fullness or emptiness of the  beforehand or afterward storage. In this appendix, by using 
conditional probability, we compute 𝜋𝜋𝑝𝑝(𝛾𝛾), 𝜋𝜋𝑝𝑝𝑝𝑝(0), 𝜋𝜋𝑝𝑝𝑝𝑝(𝛽𝛽), and 1 − 𝜋𝜋𝑝𝑝(0) as shown by Eqs. (A.5) to (A.8). Other 
steady-state probabilities can be obtained directly using classical queuing theory, e.g. 
𝜋𝜋𝑝𝑝(𝛾𝛾|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is calculated from the existing closed-form relations for steady-state probabilities 
of a clasic M/M/1/ γ queuing system. 

πp(γ) =  �1 − πpa(0)�  × πp �γ�
part storage
is not empty� + πpa(0) ×   πp �γ�

part storage
is empty � (A.5) 

1 − πpa(0) =  πp(γ) × πpa �
part storage 
is not empty�

product storage 
is full

� + 

�1 − πp(γ)� ×   πpa �
part storage 
is not empty�

product storage 
is not full

� 

(A.6) 

πpa(β) = πp(γ) × πpa �β�product storage
is full

� + �1 − πp(γ)� × πpa �β�product storage
is not full

� (A.7)

1 − πp(0) = πpa(0) × πp �product storage 
is not empty �

part storage 
is empty � +

�1 − πpa(0)� × πp �product storage 
is not empty �

part storage 
is not empty�.

(A.8) 

   where, 

πp �γ�
part storage 
is not empty� → πp �γ�λ = 1

MP
, µ = λd�; Let’s call this value A. 

πp �γ�
part storage 

is empty � → πp(γ|λ = 0, µ = λd); This value is equal to 1.
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πpa �
part storage 
is not empty�

product storage
is full

� → 1 − πpa �0�λ = λpa + 1
Mpa

, µ = 0�; Let’s call this value B. 

πpa �
part storage 
is not empty�

product storage
is not full

� → 1 − πpa �0�λ = λpa + 1
Mpa

, µ = 1
Mp
�; Let’s call this value C. 

πpa �β�product storage
is full

� →  πpa �β�λ = λpa + 1
Mpa

, µ = 0�; Let’s call this value D. 

πpa �β�product storage
is not full

� → πpa �β�λ = λpa + 1
Mpa

, µ = 1
Mp
�; Let’s call this value E. 

πp �product storage 
is not empty �

part storage 
is empty � → 1 − πp(0|λ = 0, µ = λd); Let’s call this value F.

πp �product storage 
is not empty �

part storage 
is not empty� → 1 − πp �0�λ = 1

MP
, µ = λd�; Let’s call this value G. 

By solving simultaneous equations (A.5) to (A.8), we get the steady-state probabilities as in equations (A.1) to (A.4). 
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