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Abstract 

The nonlinear and nonstationary nature of structural damage brings a great challenge to structural health 
monitoring (SHM). Chaos theory and nonlinear time-series analysis domain suggests many effective 
candidates to capture system dynamic and measure the complexity of dynamical system. From different 
candidates, this paper focuses on multi-fractal spectrum analysis for online structural health monitoring. 
Results show that the quasi recessive correlation dimension (QRCD) is not only the best fractal dimension 
for detecting different defect levels, but also it has less computational complexity than the singularity 
spectrum used for extracting multi-fractal spectrum. On the other hand, the multi-fractal spectrum analysis 
is an effective damage quantifier for analyzing data which exhibit multi-fractal behavior and it has a better 
diagnosis capability for monitoring non-stationary process and those attractors which exhibit phase-
transition. 

Key words: Structural health monitoring; Multi-fractal Analysis; Singularity spectrum; Ergodic theorem. 

1. Introduction and motivation
Chaos theory and nonlinear time-series analysis domain suggests many effective candidates to capture system dynamic 
and measure the complexity of dynamical system (Moon et al., 1992). From different candidates, this paper focuses 
on the multi-fractal spectrum analysis for the purpose of structural health monitoring. The importance of the multi-
fractal analysis in connection to dynamical system comes from the fact that it is an efficient technique to determine 
the existence of strange attractors, thus it allows a statistical description of the underlying dynamics system’s attractor 
(Moon et al., 1992). A more convenient way to describe the global scaling properties of the attractor is by using a 
spectrum of singularities, which will be discussed in this paper. Scaling in Chaos analysis almost always reduce the 
object or pattern into smaller replicas of the original according to a fixed ratio (Garnett and Williams, 1997). The point 
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is to find out how certain results change as the length of the measuring device gets smaller and smaller, which probes 
the strange attractor to a much finer scale. 

The importance of the multi-fractal analysis in connection to dynamical system comes from the fact that it is an 
efficient technique to determine the existence of strange attractors, thus it allows a statistical description of the 
underlying dynamics system’s attractor (Grassberger, 1990). A more convenient way to describe the global scaling 
properties of the attractor is by using a spectrum of singularities, which also will be discussed in this paper. 

The multi-fractal analysis has the promising properties to characterize a system dynamics. To choose the best potential 
methods for structural health monitoring application in the chaotic nonlinear research domain, this paper investigates 
exponent dimensions as well as the multi-fractal spectrum methods for online damage detection of structures. 

2. Review of the related research
Multifractals could be seen as an extension of fractals and have common characteristics such as they have a statistical 
geometric regularity and a noninteger number that quantifies the scaling of their complexity over a range of scales 
(Garnett and Williams, 1997). The recurrence of the same pattern over a range of scales which is called self – 
similarity. So, any part of the line, surface, or pattern looks alike over a wide range of scales (Garnett and Williams, 
1997).  

There is a wide variety of system that exhibit multi-fractal properties. Examples include stock market data, branching 
of the lungs, web data, physiological data, frequency-intensity distribution of earthquakes (Schuster and Just, 2006), 
oil and gas field distribution (Fraedrich and Wang, 1993) and  earth gravity field (Thorarinsson and Magnusson, 1990). 

There are many types of variations of dimension as a scaling exponent. In no particular order of importance, some that 
are mentioned quite commonly in the literature are: similarity dimension, capacity dimension, Hausdorff dimension 
and correlation dimension. The different types of exponent dimensions are all related (Abraham et al., 2013). Thus, 
some of them have the same numerical value for certain conditions. 

Most fractal dimensions consist of two groups (Garnett and Williams, 1997); the first group includes similarity 
dimension capacity dimension and Hausdorff dimension. This category aims at measuring only the attractor’s 
geometry, in the sense that, it takes no account of how often the trajectory visits different points in the state space 
(Abraham et al., 2013). On the other hand, there is another group such as the correlation dimension and the information 
dimension. This group not only consider the attractor’s geometry, but also, the probabilistic aspects of the trajectories 
in terms of visiting some state space neighborhoods more often than others (Garnett and Williams, 1997).  

Many damages of structures occur in localized areas and exhibit a nonlinear and nonstationary dynamic behavior 
(Wang et al., 2001). As a damage quantifier, the best candidate from the fractal dimensions should consider not only 
the geometry of the attractor (its apparent size and shape), but also accounts for the frequency at which a trajectory 
visits different regions on the attractor. Thus, the exponent dimensions in the first group are not good candidates to 
describe fully the attractor. In addition, the correlation dimension can examine thoroughly the scaling of the attracting 
set to a very small length scales r based on the pairwise distances (Garnett and Williams, 1997).  On the other hand, 
if the same small length r is used in a capacity dimension algorithm, then many of the small boxes would be empty. 

According to (Garnett and Williams, 1997), the Haudorff dimension is one of the least useful in analyzing real-world 
data. The reason is that it applies only at the theoretical limit of (𝑟𝑟 → 0). Also, in calculating the box-counting 
dimension 𝐷𝐷0, the covering open set is restricted to balls of uniform radius, then 𝐷𝐷0 is not a good option for those 
frequencies which are not uniform or even having singularities somewhere in the phase space (Zaslavsky, 1985). In 
addition, it has been reported that it is so hard and impractical for high dimensional systems (Garnett and Williams, 
1997). 

The correlation dimension has many advantages over many types of exponent dimension: the most common estimation 
of attractor dimension that is practical as its calculation is relatively simple and fast; it has a consistent estimation 
(Theiler, 1990); it is less sensitive to low noise (Trendafilova, 2002); it has a high sensitivity to the dynamical change; 
and, for a given dataset, it explores the attractor too much finer scale than other exponent dimension (Garnett and 
Williams, 1997). The true value of the correlation dimension has an important practical implication: the next highest 
integer value above the correlation dimension describes the level of complexity of the underlying dynamic system, by 
representing the minimum number of active degree of freedom needed to model the system (Garnett and Williams, 
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1997). Moreover, it has an operational and more rigorous mathematical definition which provides different estimation 
algorithms to deal with not only experimental time series data, but also simulation data (Grassberger and Procaccia, 
1983). 

In application of correlation dimension, Logan and Mathew (Grassberger, 1990) applied the correlation dimension in 
the fault diagnosis domain. Their studies demonstrated that the correlation dimension is an effective approach in 
classifying three major rolling element bearing faults. The applicability of correlation dimension using Grassberger-
Procaccia (GP) algorithm for diagnosis of large rotating machinery is reported in (Grassberger and Procaccia, 1983). 
This investigation indicates that the correlation dimension is useful in reflecting the different kinematic mechanisms.  

Brief introduction of multi-fractals spectrum analysis 
In this section, the generalized fractal dimension, 𝐷𝐷𝑞𝑞  is introduced first (Sec. 3.1), and then the singularity spectrum, 
𝑓𝑓(𝛼𝛼) using the Legendre transform is presented (Sec. 3.2).  
3.1 Generalized fractal dimension 
A spectrum of dimensions was introduced in (Grassberger and Procaccia, 1983) as 

 𝐷𝐷𝑞𝑞 = 1
𝑞𝑞−1

 lim
𝑟𝑟→0

log(∑ µ 𝑞𝑞(𝐶𝐶𝑖𝑖)𝑖𝑖 )
log 𝑟𝑟

  , −∞ < 𝑞𝑞 < ∞           (1) 

or 

 𝐷𝐷𝑞𝑞 =  lim
𝑟𝑟→0

l
log 𝑟𝑟

 log𝐶𝐶𝑞𝑞(𝑟𝑟) , −∞ < 𝑞𝑞 < ∞ 

where 

 𝐶𝐶𝑞𝑞(𝑟𝑟) = lim
𝑁𝑁𝑚𝑚→∞

� 1
𝑁𝑁𝑚𝑚

∑ � 1
𝑁𝑁𝑚𝑚−1

∑ 𝐼𝐼(𝑟𝑟 − ‖𝑥𝑥(𝑖𝑖,𝑚𝑚) − 𝑥𝑥(𝑗𝑗,𝑚𝑚)‖) 𝑁𝑁𝑚𝑚
𝑖𝑖,𝑗𝑗=1,𝑗𝑗>𝑖𝑖 �

𝑞𝑞−1𝑁𝑁𝑚𝑚
𝑖𝑖=1 �

1
(𝑞𝑞−1)

𝐶𝐶𝑞𝑞(𝑟𝑟) is the generalized correlation integral,  µ (𝐴𝐴)  is the probability measure for elements of A in A (µ (𝐴𝐴)  ≥ 0 for 
any A and µ (𝐴𝐴) = 1) when A is the entire phase space and q is a continuous index, 𝐼𝐼 is the Heaviside step function, 
such that  𝐼𝐼(𝑥𝑥) = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼(𝑥𝑥) = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 > 0, ‖… ‖  indicates the Euclidean-norm. 

From the previous comprehensive definition, 𝐷𝐷𝑞𝑞  is nonincreasing as a function of q: 𝐷𝐷𝑖𝑖 ≥ 𝐷𝐷𝑗𝑗  if 𝑖𝑖 ≤ 𝑗𝑗 (Hentschel and 
Procaccia, 1990). There is infinitely many number of dimensions. For q=0, equation 1 gives (if the limit exists) 

 𝐷𝐷0(𝐴𝐴) = lim
𝑟𝑟→0

 log𝑁𝑁(𝑟𝑟,𝐴𝐴)

log�1𝑟𝑟�
 ,    

If not, then  𝐷𝐷0(𝐴𝐴) = lim sup
𝑟𝑟→0

 log𝑁𝑁(𝑟𝑟,𝐴𝐴)

log�1𝑟𝑟�
, where A is a compact metric space and 𝑁𝑁(𝑟𝑟, 𝐴𝐴)is the minimum number of 

open balls of uniform radius r needed to cover A. 

𝐷𝐷0(𝐴𝐴)  is called the capacity dimension or the Box-counting dimension (Zaslavsky, 1985), which is independent of 
the frequency with which a trajectory visits the different parts of the attractor. 

Let q=1 in equation 1 and applying L’Hopital’s rule (Zaslavsky, 1985), then we get 

 𝐷𝐷1 = lim
𝑟𝑟→0

∑ µ(𝐶𝐶𝑖𝑖)𝑖𝑖 log µ(𝐶𝐶𝑖𝑖)
log  𝑟𝑟

 ,    

which is called the information dimension. It is more accessible experimentally and theoretically than the capacity 
dimension (McEliece, 2002), because instead of counting each cube which contains part of attractor, the information 
dimension counts how much of the attractor is contained within each cube. Both are equal for the case with evenly 
distributed points. 

In the case of q=2, 
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                                                                    𝐷𝐷2 = lim
𝑟𝑟→0

log∑ µ2(𝐶𝐶𝑖𝑖)𝑖𝑖
log  𝑟𝑟

,                                               

This is the correlation dimension from Grassberger-Procaccia algorithm, by which we can examine thoroughly the 
scaling of the attracting set to a very small length scales r based on the pairwise distances. If the squared Euclidean 
distance between all pairs of data points in (m+1) embedding space obtained from the squared Euclidean distance in 
an (m) embedding space, then the resulting factual dimension is called quasi-recursive correlation dimension (QRCD) 
(Mistarihi et al., 2012). 

3.2 Singularity spectrum 
Another way to characterize the complexity of chaotic attractors is using singularity spectrum (Moon et al., 1992). 
Consider a covering of the attractor with m-box size r. Different regions of the attractor leads to different singularities 
in the measure. For some I, the measure associated with the box 
 

                                                                          𝑝𝑝𝑖𝑖(𝑟𝑟)  ∝ 𝑟𝑟𝛼𝛼𝑖𝑖     ,                                                                    (2) 

where 𝛼𝛼𝑖𝑖 is the exponent given the singularity. In other words, 𝛼𝛼𝑖𝑖 is the pointwise dimension at the point on the 
attractor on which the boxes are centered. The number of boxes with the measure 𝑟𝑟𝛼𝛼𝑖𝑖  varies according to 

 

                                                                                      𝑁𝑁(𝛼𝛼𝑖𝑖) ∝ 𝑟𝑟−𝑓𝑓(𝛼𝛼𝑖𝑖)                                                                 (3) 

where 𝑁𝑁(𝛼𝛼𝑖𝑖) represents the number of volume elements with scaling exponent. 

Typical plot for the 𝑓𝑓(𝛼𝛼) singularity spectrum is shown in Figure 1. The 𝑓𝑓(𝛼𝛼) curve is always convex with a single 
maximum, which corresponds to the capacity dimension ( 𝐷𝐷0). Also, when |𝑞𝑞| approaches infinity, it picks out the 
regions where the measure is densest (𝑞𝑞 > 0) or least concentrated (𝑞𝑞 < 0) (Schuster and Just, 2006). The intersection 
of the 𝑓𝑓(𝛼𝛼) curve with the x-axis gives 𝐷𝐷±∞. 

 

 
Figure 1. Typical plot for the 𝑓𝑓(𝛼𝛼) singularity spectrum 

 
3. The proposed technique for capturing nonlinear system dynamic 
The proposed technique can be done with the help of Singularity spectrum analysis and Ergodic theorem. Covering 
the attractor of a multi-fractal chaotic system with volume elements of diameter r, can be used to evaluate the 
generalized fractal dimension  Dq  in equation 1. With the assistant of Legendre transformation, the Dq and the 𝑓𝑓(𝛼𝛼) 
are related by the following equation 

                                                       𝐷𝐷𝑞𝑞 = 1
𝑞𝑞−1

�𝑞𝑞𝑞𝑞(𝑞𝑞) − 𝑓𝑓�𝛼𝛼(𝑞𝑞)��                                                               (4) 
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The previous relationship can be inverted as 

                                                                        𝛼𝛼 = 𝑑𝑑
𝑑𝑑𝑑𝑑
�(𝑞𝑞 − 1)𝐷𝐷𝑞𝑞�                                                       

and then 

                                                                        𝑓𝑓(𝛼𝛼) = −(𝑞𝑞 − 1)𝐷𝐷𝑞𝑞 + 𝑞𝑞𝑞𝑞                                        

Some statistical quantities of the attracter of a dynamical system are robust and not affected by noisy data (Todd et 
al., 2001). According to (Trendafilova, 2003), the variance and the skewness demonstrated sensitivity and regular 
dependence on damage. Ergodic theorem is used to investigate the best sensitive feature for SHM between multi-
fractal dimensions based on the linkage between the identified dimension as nonlinear invariant in characterizing a 
dynamic system in its state space with the statistical analysis of  

the attractor distribution. Since the QRCD is an invariant measure such that QRCD �𝑓𝑓−𝑡𝑡(𝐴𝐴)� = QRCD (𝐴𝐴), 𝑡𝑡 > 0. 
Here 𝐴𝐴 is a subset of 𝑅𝑅𝑛𝑛 ,  f is evolution function and 𝑓𝑓−𝑡𝑡(𝐴𝐴) is the set obtained by evolving each point in A backwards 
for a time t. Then, the QRCD will be further compared with different multi-fractals spectrum analysis for SHM.  In 
practice this means that the correlation dimension is invariant for smooth changes of the coordinate system. 

Let 𝜇𝜇(𝑋𝑋) be an ergodic natural measure, we would like to show that the time averages are identical to space averages. 
That is to show that the phase space average over the measure 𝜇𝜇(𝑋𝑋) can be approximated by the time averages over a 
typical trajectory. In symbols, we need to show that 

                                                                                     〈𝜇𝜇(𝑥𝑥)〉 ≅ 1
𝑁𝑁
∑ 𝜇𝜇�𝑥𝑥𝑗𝑗�𝑁𝑁
𝑗𝑗=1 ,                                                     (5)        

where, 〈𝜇𝜇(𝑥𝑥)〉 is the phase space average over 𝑥𝑥 with  respect to the natural measure 𝜇𝜇, 𝑥𝑥𝑗𝑗 is a point on the time series 
and 𝑁𝑁 is a large number to represent a long term behavior of the underlying dynamic system. Since 𝜇𝜇(𝑋𝑋) is an ergodic 
natural measure, then 

                                                               𝜇𝜇�𝑥𝑥𝑗𝑗� = 1
𝑁𝑁
∑ 𝐼𝐼�𝑟𝑟 − �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑁𝑁
𝑖𝑖≠𝑗𝑗 ,                                                      

Hence 

                                                  1
𝑁𝑁
∑ 𝜇𝜇�𝑥𝑥𝑗𝑗�𝑁𝑁
𝑗𝑗 = 1

𝑁𝑁2
∑ ∑ 𝐼𝐼�𝑟𝑟 − �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑁𝑁

𝑖𝑖≠𝑗𝑗
𝑁𝑁
𝑗𝑗=1 ,                                                      

As 𝑁𝑁 approaches infinity, the previous formula is a proximately identical to the definition of correlation integral.  

4. Case Study: Two – Scale Cantor Set 
The comparison between multi-fractal spectrum analysis and QRCD analysis for structure damage detection includes 
the computational complexity, accuracy and suitability based on the characteristics of data will be demonstrated by 
the following case study and a discussion. 

To evaluate the effectiveness of the QRCD algorithm and the generalized dimension 𝐷𝐷𝑞𝑞 computational time and 
accuracy, it has been used well-known deterministic fractal, namely two-scale Cantor set. The values of fractal 
dimension and the singularity spectrum can be theoretically determined for the two-scale Cantor set. It has been found 
that in cases which the correlation integral must be calculated over all the distinct pairs of points, the quasi-recursive 
correlation dimension algorithm has achieved a high reduction in CPU time over the generalized multi-fractal 
spectrum as shown in Figure 2. On the other hand, a comparison between the analytical and obtained fractal dimension 
using QRCD algorithm and the generalized dimension 𝐷𝐷𝑞𝑞 for the two-scale Cantor set is summarized in Table 1. 

The percentage decrease in computational time depends on data length and maximum embedding dimension. The 
larger the embedding dimension along with a longer data size gives more advantages for the QRCD over the 𝑓𝑓(𝛼𝛼) 
algorithm. Per previous calculations, using the QRCD algorithm significantly reduces the computational complexity 
in terms of computation time by 40% over the multi-fractal spectrum technique. That is due to the fact that the QRCD 
uses consecutive overlapping segmentation technique, while the 𝑓𝑓(𝛼𝛼) requires heavy mathematical calculations via 
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Legendre transform and digital signal processing. Moreover, the sorting procedure of the data takes some time while 
evaluating the multi-fractals spectrum. 

 
Figure 2. Comparison of CPU time between the QRCD and 𝐷𝐷𝑞𝑞 for two-scale Cantor set 

 
Table 1.  Computational results of QRCD and the generalized dimension 𝐷𝐷𝑞𝑞  algorithms for the two-scale Cantor set 

example 

Signal model 𝐷𝐷𝑞𝑞  𝐷𝐷𝑞𝑞�  
𝑓𝑓(𝛼𝛼) 

 
𝐷𝐷𝑞𝑞�  

QRCD 
 

 
CPU time (s) 

𝑓𝑓(𝛼𝛼) 
 
 

 
CPU time (s) 

QRCD 
 
 

 
Signal length 

mmax=30 mmax=30 

Two-scale Cantor set 1.2618 1.257 0.98 1620 114 220 

 

The exact computational complexity for the quasi-recursive correlation dimension algorithm is of 
𝑂𝑂(𝑁𝑁2 − (𝑁𝑁 −𝑀𝑀)2. 𝑟𝑟𝑖𝑖), which belongs to 𝑂𝑂(𝑀𝑀𝑀𝑀 −𝑀𝑀2), taking (𝑀𝑀 ≪ 𝑁𝑁) then the overall computational complexity 
belongs to (N). Here M is the overlapping segment such that (𝑀𝑀 ≪ 𝑁𝑁).  

The overall running time of the algorithm can be expressed as a linear function 𝑂𝑂(𝑁𝑁), which describes an algorithm 
whose performance grows linearly and indirect proportion to the sample size of the input data set.  
Under the best case scenario (Grassberger, 1983), the computation of the generalized dimension 𝐷𝐷𝑞𝑞  is on the order 
of  𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) for each 𝑞𝑞 ∈ (−∞,∞). But only integer values for 𝑞𝑞 ≥ 0 have physical meaning, that is 
∆𝑞𝑞 =integer. Suppose 𝑞𝑞 ∈ {0, 1, 2}, then 

           𝐷𝐷0 ∈ 𝑂𝑂(𝑁𝑁 log𝑁𝑁), 𝐷𝐷1 ∈ 𝑂𝑂(𝑁𝑁 log𝑁𝑁) and  𝐷𝐷2 ∈ 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 
This implies that  

𝐷𝐷𝑞𝑞=0,1,2
∈ 𝑂𝑂[(𝑁𝑁 log𝑁𝑁)3] 

 
In summary, using big O notation and synthetical example, the QRCD has less computational complexity than the 
singularity spectrum used for extracting multi-fractal spectrum and the QRCD algorithm is much faster than the multi-
fractal spectrum. 

5. Discussion of the suitability of multi-fractals spectrum versus the QRCD as a damage 
quantifier 

The characteristics of the data play a main role in choosing the best damage detection technique. The date, whether 
comes from physical measurements or numerical modeling, almost have some problems such as limited size of the 
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total data, the data are non-stationary and/or the data represent nonlinear processes. The suitability of the multi-fractals 
spectrum as a damage quantifier is discussed in the following subsections. 
 
Size of the dataset 
 The correlation dimension requires a large sample size. An appropriate sample size (in practice, often very large) is 
needed especially at small radii. Otherwise, very fewer points will be used in computation of the correlation integral. 
Thus, the data will not adequately represent the attractor when embedded in several dimensions. As a result of that, 
the correlation dimension will be less than the true correlation dimension. In fact, the required sample size is 
application dependent (Garnett and Williams, 1997). In general, applying the standard G-P algorithm to calculate the 

correlation dimension, the sample size should be at least 10�
𝐷𝐷2
2 �  (Jiang, 1995), while applying the QRCD algorithm 

using the consecutive overlapping segmentation technique will highly reduce the desirable sample size for the purpose 
of online monitoring to as minimum as the size of the sliding window. 
 
Regarding the generalized fractal dimensions, in the linear scaling reign, the true fractal nature of the underlying 
attractor is revealed under the condition that the local slopes are constant for increasing embedding dimension. The 
scaling reign structure will be lost due to limited dataset. Moreover, the multi-fractal spectrum is very sensitive to lack 
of points, especially the right part of the singularity spectrum 𝑓𝑓(𝛼𝛼)curve as shown in Figure 3, where a theoretical  
𝑓𝑓(𝛼𝛼) curve (solid line) was plotted for comparison. 
 

 
Figure 3. Multi-Multifractal spectrum for a two-scale Cantor set with 1014 points fitted using different ranges 

(De Souza and Rostirolla, 2011) 

From Figure 3, we notice that, even 𝑓𝑓(𝛼𝛼) spectrum is relatively robust to change in values of cutoff for positive 
moments (𝛼𝛼 < 𝛼𝛼(𝑚𝑚𝑚𝑚𝑚𝑚[𝑓𝑓(𝛼𝛼)])), curve is very sensitive for negative moments. For certain applications, with small 
datasets (𝑁𝑁 < 5000) (Fowler and Roach, 1993) , the monotonic rule of the generalized fractal dimensions  𝐷𝐷𝑞𝑞  is 
violated (𝐷𝐷𝑖𝑖 ≥ 𝐷𝐷𝑗𝑗  if 𝑖𝑖 ≤ 𝑗𝑗) (Hentschel and Procaccia, 1990) as shown in Figure 4.  

 

 
Figure 4. Invalid 𝐷𝐷𝑞𝑞  curve where the monotonic decreasing has been violated around 𝑞𝑞 < −3 
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Noisy dataset 
The standard G-P correlation dimension algorithm does not perform well with noisy signals (Yu et al., 2000). That is 
because the linear scaling reign does not fully hold. In other words, the existent of noise will disturb in the slope of 
the empirical best–fit regression line of log C(r) and  𝑙𝑙og(r). The disturbance occurs significantly when the value of 
radius equals the magnitude of the noise (𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). In other cases, the linear scaling reign exists with too much 
systematic error at the upper end and too much statistical error at the lower end (Theiler, 1987). Moreover, choosing 
the radii (𝑟𝑟𝑖𝑖) to be greater than the magnitude of the noise will be meaningless while embedding in higher dimensions 
with a high level of noise. 
If the noise level is high, then there is no guarantee that the choice of (𝑟𝑟𝑖𝑖) will satisfies (𝑟𝑟𝑖𝑖)  >  (𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Thus, then all 
points will be covered from the first choice of the radius in embedding dimension 2. That makes the correlation integral 
be constant with different radii. Consequently, the correlation dimension will be meaningless under the very high level 
of noise.The existence of the noise may hide the presence of the low dimension attractors, so it is so crucial to choose 
the radii (𝑟𝑟𝑖𝑖) to be greater than the magnitude of the noise.  
 
Regarding the influence of noise on the theoretical fractals and experimentally gained fractal, the absolute value of 
the fractal dimension would be altered as illustrated in Figure 5, where “N” depicts the horizontal region caused by 
noise, “T” the transition range between the horizontal noise influenced region and the unaltered range for the larger 𝜀𝜀, 
and “L” the range limited by the side length of the image. 

 
Figure 5. Plots of the general correlation integral 𝐶𝐶𝜀𝜀(𝑞𝑞) versus the distance r for −20 ≤ 𝑞𝑞 ≤ 20.(a) Image without 
noise; (b) the same image with noise of variance 𝜎𝜎2 = 1; (c) 𝜎𝜎2 = 5; (d) 
𝜎𝜎2 = 10; (e) 𝜎𝜎2 = 50; (f) 𝜎𝜎2 = 100  (Ahammer and DeVaney, 2005) 
Non-stationary dataset 
The basic G-P correlation dimension algorithm measures static or stationary states (i.e. in transition from one quasi-
steady state to another) of the system of interest. As the system migrates or transition to another steady state with a 
new geometric representation, the correlation dimension may or may not change (Zaslavsky, 1985).The quasi-
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recursive correlation dimension partially overcomes the non-stationary problem using consecutive overlapping 
segmentation technique, especially, when the data is not highly non-stationary. 
 
The multi-fractal spectrum analysis works well with even highly non-stationary data (Adeyemi, 1997). It works 
efficiently for attractors that exhibit multi-fractal behavior as well as phase transitions if the generalized fractal 
dimension 𝐷𝐷𝑞𝑞  satisfies the monotonic rule of the generalized fractal dimensions  𝐷𝐷𝑞𝑞 is violated (𝐷𝐷𝑖𝑖 ≥ 𝐷𝐷𝑗𝑗  if 𝑖𝑖 ≤ 𝑗𝑗). 
The Logistic Map, a notable chaotic attractor which exhibits phase-transitions was taken to test the suitability of multi-
fractal spectrum for analyzing non-stationary data. The generalized fractal dimensions 𝐷𝐷𝑞𝑞  curve as a function of q for 
the logistic Map is shown in Figure 6. The discontinuity in the derivative of the Dq  curve occurs at q=2. 
 

 
Figure 6. Schematic plot of the 𝐷𝐷𝑞𝑞  vs q showing for the Logistic Map 

6. Conclusion 
In this paper, a multi-fractal spectrum analysis is used for online SHM. Results indicate that the generalized fractal 
dimension has fairly high computational complexity of  𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) for each 𝑞𝑞 ∈ (−∞,∞) compared with the QRCD, 
whose computational complexity of O(N). On the other hand, the multi-fractal spectrum has a better diagnosis 
capability for monitoring non-stationary process and those attractors which exhibit phase-transition. 
It should also be pointed out that, for a noisy data, the capabilities of both the QRCD and the multi-fractal spectrum 
are affected as damage detection features. Based on the characteristics of date, each of the correlation dimension and 
the multi-fractal spectrum has its own application and practical considerations. In future work, making no assumptions 
about the data and looking at the dynamical changes within an adaptive sliding window will be further investigated 
via Recurrence Quantification analysis or/and Hilbert Huang Transform.  
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