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Abstract 
 
This article presents a novel direct search method of optimization, Game of Patterns (GoP) method, so-
called by the author, for solving unconstrained mixed integer nonlinear optimization problems. The GoP 
method is based on: a set of η random patterns search, which initially forms the set of η active players, 

namely, �ℋ�[�], …ℋ	�
; and a game rule framework. At each kth game round, each �th active player ℋ�[
] 
will explore inside his own pattern at the current kth round. The strategy of each �th player is given by a 
random quantity ��[
], which will allow each player to explore inside his own pattern by a set of ��[
]trial 
points. At the beginning of each kth game round, each active �th player bets ��[
] according to his budge 
Me for each round. At the end of each kth round, the player that has identified the best objective function 
value is considered the winner of the kth round, therefore the rest of active players must pay off to the 
winner their bets. This process is recurrently repeated until that has been disqualified � − 1 players from 
the game. It is worthwhile to point out that any player will be disqualified if his balance account ��[
] is 
less than his budget Me for the current kth round. 
 
Keywords 
Mixed integer nonlinear optimization, direct search optimization, randomized pattern search algorithm, 
game theory, frees derivative optimization method.  

 
1. Introduction
Nowadays, optimization problems in business, medicine, engineering sciences, and applied sciences nowadays are 
more and more complex, which can involve both continuous and integer variables are able to describe many real 
world problems. 
 
Furthermore, the problems of optimum designs are often studied in engineering science. Examples of this kind of 
problems are presented by Brea (2009, 2013), who describes a set of several engineering problems. Floudas (1995) 
also presents a wide set of optimum designs for chemistry process plants under a viewpoint of optimization. 
Moreover, Yang and coworker (2012) present the approach of game theory for using in multi-objective optimization 
problems, and Audet, et al., (2001) have proposed pattern search method for locally solving constrained mixed 
integer nonlinear problems. 
 
In our case, we shall use both an approach of game theory and a random pattern search algorithm, the Mixed Integer 
Randomized Pattern Search Algorithm (MIRPA) (Brea, 2015), for proposing the design of a novel direct search 
optimization method, Game of Patterns (GoP) method, so-called by the author, allows us to identify at less, a local 
optimum solution to unconstrained mixed integer nonlinear problems. Much has been written on optimization and 
the theory of game. Nevertheless, our focus has been on using the theory of game for including a theoretical 
framework, what will be defined as a new heuristics for identifying local solutions to unconstrained mixed integer 
nonlinear optimization problems. In this case, a zero-sum game framework was defined, therefore, each player 
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chooses his own strategy regardless of the opponent players, and at each round game, when one player wins, the rest 
of players must pay off their bets to the winner. 
 

This new approach takes into account the kth set �[
] of ��[
] (≥2) active players, defined at each kth round by the 
active patterns of search�ℋ�[
]
�∈�[�] , which are under a rule of game. Each eth player is represented by a 
randomized pattern of search, which allows it to explore through a set of ��[
]trial points in the eth randomized 
pattern of search. The strategy of each eth player at each kth game round is given by a random number ��[
] of trial 
points in the randomized pattern of search, wherein can be evaluated the objective function of the problem. This 
random number of trial points depends on the budget Me of each eth player at the kth game round and the available 

balance account ��[
] at the kth round. 
 

At the beginning of each kth round, each active eth player makes a bet ��[
] according to his budget Me for each 

round and balance account ��[
]. The player that has identified the best objective function value is considered the 
winner of the kth round, therefore the rest of active players must pay off their bets to the winner. We have assumed 
that each player e randomly choose his bet according to a uniform distribution between (n+m) and 2(n+m), 
However, this strategy scheme can be changed by another function distribution. 
 
This process is recurrently repeated until �[
] has become a singleton set at any kth round. It is worthwhile to point 
out that any player is disqualified at any round, if his balance account ��[
] is less than his budget Me. On the 
convergence of each player has previously been presented by Brea (2015), in his study of the Mixed Integer 
Randomized Pattern Search Algorithm (MIRPSA) for proving the convergence of the MIRPSA to a local minimum. 
 
The remainder of this article is organized as follows. In the next section 2, we briefly describe our unconstrained 
mixed integer nonlinear problems, which an explicit mathematical expression of the objective function is not 
necessarily available, what could require the evaluation of the objective function by simulation. In section 3, we give 
a short theoretical background of a generic framework of game. On the game rule and a mathematical formulation of 
our game of patterns is shown in section 4. In section 5, we offer an explanation of the GoP method, and we present 
the pseudo code of the method. In section 6 are presented a set of numerical examples in order to measure the 
performance of the GoP to some problems. Finally, in section 7, we give some concluding remarks and we shall 
propose future research.  
 
2. The problem
Consider the following unconstrained mixed integer nonlinear problem: 
 min(�,�)∈ℝ�×ℤ" #($, %), (1) 
where #($, %): ℝ' × ℤ( → ℝ is a mixed integer nonlinear objective function, which is not necessarily available an 
explicit mathematical expression, and $ ∈ ℝ' and % ∈ ℤ( are the decision variables of our problem. 
 
Nevertheless, constrained mixed integer nonlinear problems often arise out from practical applications, which are 
frequently studied in the engineering design field, wherein there exist both real and integer constrained variables. 
Hence, penalty function method approach is considered for solving such problems, when direct search optimization 
methods for solving unconstrained problems are used for solving constrained optimization problems. A practical 
example of penalty function method is presented by Brea (2013). 
 
3. A Short Theoretical Background 
Let Γ be a game in general terms defined by the structure {ℋ�; 	��; 	-�}�/�	 , where ℋ�  is each eth player, �� is the 
strategy of each eth player, and -�  is the pay off function of each eth player, for all � ∈ {1,2, … �}. The pay off 
function is given by -� :×�/�	 �� → ℝ (Mazalov, 2014). 
 
In our case, the players {ℋ�}�/�	  are mixed integer randomized pattern searches defined in (Brea, 2015), which each 
one of them accounts with two basic operations for exploring the Euclidean field	ℝ' × ℤ(, and so identifies a local 
minimum at least. This fact has been studied by Brea (2016), who has reported his study on the performance of the 
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MIRPSA. An explanation of these operations and a detailed analysis of the MIRPSA is presented by Brea (2015). 
Nevertheless, the idea of using a set of mixed integer randomized pattern searches in a framework of game allows us 
to identify at least a local minimum of our problem is introduced in this article. However, even though it has not 
been theoretically proved, the GoP could be used to identify the global minimum of mixed integer problems, what 
has been verified through some numerical examples. 
 
The payment of each eth player is defined as a function, which depends on the number of objective function 

evaluation, what will be the strategy ��[
]of each eth player at each kth game round. In our case, a game will be a 
countable set of rounds, which will finish when only one of the players ℋ�[∙] survives, because each player can be 
eliminated due to that lose all his account points. 
 
4. On the Game of Pattern Searches

Assume η initial active randomized pattern searches ℋ�[�] for all e=1,…,η, which represents all players of the game 
Γ and each one respectively has an initial positive balance account ��[�]. The bet of each eth player at each kth round 
is ��[
], what here represents the strategies of the active player � ∈ �[2]at each round k. Also, let ℋ�[
]denote for 
each � ∈ �[
]333333	the eth disqualified player at each kth round.  
 

According to the game rule, any eth active player ℋ�[
] will become disqualified player ℋ�[2]333333
 at any kth round, if his 

account balance ��[
4�], after the kth round, becomes less than the level of bet 5� = 7 +9. 
 
We then define the strategy of each eth player as 

 ��[
] = :;3(5�, 25�), ∀� ∈ �[2];
0, ∀� ∈ �[2]33333 > (2) 

where, ;3(. , . )	a discrete uniform distribution, what allows the method to determinate the quantity of trial points that 
belongs to the eth active random pattern of search ℋ�[
]; or the strategy of each disqualified eth player is naught.  
However, this strategy is enough flexible, because this random integer number can be defined by another discrete 

distribution. We must point out that each eth player is active at each kth round, if his current balance ��[
] is more or 
equal than his level of bet  5� this is, for each � ∈ �[2], ��[
] ≥ 5�. 
Let A� denote the unit cost of evaluating the objective function for each eth player, which will here be constant at 
each kth round. In our case, the unit cost will be considered equal to 1 per function evaluation for each eth player. 

Hence, the pay off  -�[
] of each eth player at each kth round takes the form 
 -�[
] = ��[
], ∀	1 ≤ � ≤ �	  (3) 
 

Then, a game structure for all kth game round is defined by Γ[D] = {ℋ�[
]; ��[
]; -�[
]}�∈��[2], what allows us to define 
the game structure Γ = {Γ{
}}
/�
/
E , where 2	F is the last game round. 
 
We say that the winner of each kth round, denoted as �̂[
] is the random choice eth active player from the set of 
active players has tied in the identification of the best objective function value, at the kth round, this is,  

 �̂[
] = HI9 Jargmin�∈��[2] #N�[
]($, %)	O,	  (4) 

where #N�[
]($, %) is the best objective function value yielded by the eth players ℋ�[
]	at the kth round. 
 

It is worthwhile pointing out that each eth active player has his own account balance ��[
], which is updated at each 
kth round, and is given by 

 ��[
4�] = P��
[
] + ∑ ��[
]�∈�[2]\�S[2] , ∀� = �̂, � ∈ �[2];

��[
] − ��[
], ∀� ≠ �̂, � ∈ �[2],> (5) 

 

where ��[�] is the initial budget of each eth player, and �̂[
] given by (4) at each kth round. 
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At each kth round and each eth player targets to improve a same objective function #($, %), with an associate cost 
given by the bet of each player at each kth round. 
 
5. The Game of Patterns Method
 
Here we shall show the GoP method, displayed in Figs. 1 and 2 , which are based on a set of players given by a set 

of active random patterns {ℋ�[
]}�/�	  for all � ∈ �[2] at each kth game round.  

 
Figure 1. Preamble of the Game of Patterns method. 

In Fig. 1 we show the preamble of the GoP method, which defines parameters, variables and initial value of the GoP 

method. It is worthwhile pointing out that in our case, each component of each initial eth pattern search center A�[
] 
was randomly fixed according to: 

 A�[
](U) = :$�(V) + ;(−W, W), ∀V = 1,… , 7;
%�(V) + ;3(−Φ, Φ), ∀V = 7 + 1, … ,9, > (6) 

where ;(	, ) is a real uniform distribution, and ;3(	, ) is a discrete uniform distribution, and W ∈ ℝ(> 0) and Φ ∈ℕ(≥ 1) are chosen by the user. On the other hand, Fig. 2 depicts the pseudocode of the iterative block GoP method, 
which will be presented in the remainder of this section. 
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Figure 2. Pseudocode of the Game of Patterns loop block 
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At each kth iteration (game round) of the GoP method and for all active eth player, the GoP method then calculates 

how many trial points ��[
] using (2), and performs the procedure [\]^_`[`(�, 2, a, b, A�[
], c�[
], Δ�[
], ��[
]), which 
is shown in Fig. 3.  
 

 
Figure 3. Procedure EXPLORER 
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Otherwise, the GoP method does not allow pattern of search to perform the procedure EXPLORER(), and obviously, 

for these cases the strategies ��[
]are fixed at 0. It is worth noting that procedure EXPLORER() is just one iteration 
of the MIRPSA (Brea, 2015). 
After this last stage, the GoP method identifies the winner player of the kth round �̂[
] among the active players at 
the kth current game round by recognizing of the best objective function using (4), therefore the rest of active 
players must pay off to the winner their bets. 
 

After pay off stage, the GoP method updates: the set of active players �[
]; the number of active player 7�[
]; the 
index �̂[
] of the winner of the current active set �[
] at the kth current game round; and the round counter number 
k, in order to perform a new iteration, if there exits more than one active random pattern players ℋ�[
]. The GoP 
method is iteratively carried out until the set of active random pattern players becomes a singleton set. After this 
stage, the GoP method runs an additional iterative while process by calling the procedure EXPLORER(), until the 

pattern measure I�̂[
] of the winner player ℋ�̂[
] is less than the stopping test tolerance e.  
Finally, the GoP method reports A�̂[
f�] as the local solution of our problem. 
 
6. Numerical Examples
A set of numerical examples are here reported. The notation of each minimization problem is shown in the appendix 
of this article. The tables denote the number of function evaluation (NE), the distance to true point (DTP) and the 
reported solution of each minimization problem. 
The parameters of the GoP methods were fixed at: a = b = 0.9, c = Δ = 5, e = 10fi, W = Φ = 10, the number of 
sampling equal to 1000, number of players η=5, and the same start point, which was fixed at 10 for all components 
of  j�,�. 
 
6.1 Goldstein-Price problem 
 
Table 1 shows a statistical summary of the performance of the GoP for 1000 replications for Goldstein-Price 
problem. From the table we note the GoP method identifies the global minimum for all replications. 
 

Table 1. Statistical summary report of Goldstein-Price problem 
 Optimum value NE DTP 

Average 3.00000000000015 13569.7 9.20E-09 
Minimum 2.99999999999992 6506 8.87E-11 
Maximum 3.00000000002377 25288 3.03E-07 
Range 2.3848922837E-11 18782 3.02E-07 

 
6.2 Audet & Dennis problem 
 
Table 2 displays a statistical summary of the performance of the GoP for 1000 replications for Audet & Dennis 
problem. Here, the GoP method identifies the global minimum for all replications. 
 

Table 2. Statistical summary report of Audet & Dennis problem 
 Optimum value NE DTP 

Average -13.9951707839905   8387,5    8.05E-04 
Minimum -14.0000000000000   5653 0.00E+0 
Maximum -13.1780431847197   14617 1.37E-01 
Range 0.8219568152803   8964 1.367E-01   
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6.3 Modified Griewank problem 
 
Table 3 reports a statistical summary of the performance of the GoP for 1000 replications for Modified Griewank 
problem of dimension ℝ' × ℤ(. As we can see, the GoP method identifies the global minimum in most cases. 
 
 Table 3. Statistical summary report of Modified Griewank problem 

  Opt. value NE DTP 
 Average 0.10106215 7796.547 0.5146393 

n=2, m=2 Minimum 0 5884 5.9723E-10 
 Maximum 0.74549191 16525 3.3209256 
 Range 0.74549191 10641 3.3209255 
 Average 0.62162712 10972.955 1.7146742 

n=5, m=5 Minimum 0.00256293 7258 0.05527682 
 Maximum 2.00422415 19190 4.8112703 
 Range 2.00166122 11932 4.75599348 
 Average 0.87451727 13411.2 1.41896373 

n=5, m=10 Minimum 0.01509559 8266 0.13430363 
 Maximum 2.26325818 26940 5.87207788 
 Range 2.24816259 18674 5.73777425 
 Average 1.44654033 12967.381 2.90170741 

n=10, m=5 Minimum 0.05302396 8221 0.25380868 
 Maximum 2.64750672 21311 5.11997786 
 Range 2.59448275 13090 4.86616919 
 Average 1.25370734 14769.069 1.81073155 

n=10, m=10 Minimum 0.05478916 9321 0.25808091 
 Maximum 2.87108489 28959 6.01925066 
 Range 2.81629573 19638 5.76116975 

 
6.4 W problem 
 
For this problem of n=m=2, the parameters of the GoP methods were fixed at: a = b = 0.9, c = Δ = 5, e =10fi, W = Φ = 100, the number of sampling equal to 1000, number of players η=5, and the same start point, which 
was fixed at 0 for all components of  j�,� . From the table, we can say the GoP method identifies the global 
minimum. 
 

Table 4. Statistical summary report of W problem 
 Optimum value NE DTP 

Average -185,215991017 8669,35 13,6867026 
Minimum -186,000000000 5885 1,1435E-09 
Maximum -184,000000000 15956 32 
Range 2,000000000 10071 32 
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6.5 Mixed integer Tang problem 
 
In this case, n=m=2, the parameters of the GoP methods were fixed at: a = b = 0.9, c = Δ = 5, e = 10fi , W = Φ = 100, the number of sampling equal to 1000, number of players η=5, and the same start point, which was 
fixed at 0 for all components of  j�,�. From the table, we can say the GoP method identifies the global minimum. 
 
 Table 5. Statistical summary report of mixed integer Tang problem 

 Optimum value NE DTP 
 Average  -4,61027593 8438,069 0,62757089 
 Minimum  -4,73094883 5865 0,00542486 
 Maximum  -3,73830331 16810 5,08207131 
 Range  0,99264552 10945 5,07664645 

 
From the report, 876 replications yielded a DTP less than 0.013, what allow us to indicate the GoP method 
satisfactorily identifies in this case the global minimum. 
 
7. Conclusions
The GoP method has shown us to be a good enough heuristic method for identifying at least a local optimal 
solutions to mixed integer nonlinear optimization problems. Preliminary results have allowed us to figure out the 
GoP method can be used for solving mixed integer nonlinear global optimization problems. However, we need to 
study some converge properties of the GoP method first. An experimental scheme will be proposed for tuning the 
parameters of the GoP method for improving its performance.  
In order to keep developing the method, we shall also research others discrete distribution for choosing the strategy 
of each player for improving the competition among the players.  
 
A. Appendix
A set of mixed integer optimization problems are here shown for testing the GoP. A notation is defined for each 
problem, which allows us to define the dimension of the problems in ℝ' × ℤ(. 
 
A.1 Goldstein-Price problem 
Although the Goldstein-Price function is defined in the two-dimension real numeric field, we have used it for testing 
the GoP method, due to the fact this function has been frequently used to test global optimization algorithms (Shi 
and Ólafsson, 2000). 
 
Let k($) denote  
 

k($) = [1 + l$(�) + $(m) + 1nm(19 − 14$(�) + 3$(�)m)m − 14$(m) + 6$(�)$(m) + 3$(m)m]
∙ [30 + l2$(�) − 3$(m)nm 	J18 − 32$(�) + 12$(�)mOm + 48$(m) − 36$(�)$(m) + 27$(m)m],	  (7) 

which is our objective function of the constrained optimization problem, subject to: −2.5 ≤ $(t) ≤ 2, ∀	V ∈ {1,2}. 
 
Using penalty functions, the problem can be expressed as follows: 
 min�∈ℝu #($) = k($) + ∑ 2	vt($(t))mt/� ,	  (8) 
where k was fixed at 10i,	and  
 vtl$(t)n = maxl−2.5 − $(t), 0n + maxl$(t) − 2,0n , ∀	V ∈ {1,2}		  (9) 
 
Solution. The global minimum is located at $S = (0, −1)x, and a value of #($S) = 3. 
 
A.2 Audet & Dennis problem 
The original problem of Audet and Dennis Jr. (2001) is 
 
 min�∈ℝu,�∈ℤ #($, %),	  (10) 
subject to 
 −2 ≤ $(�) ≤ 2;	−2 ≤ $(m) ≤ 2; 	%(�) ∈ {1,2},	  (11) 
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where  
 #($, %) = k($)l1 − 	%(�)n + ℎ($)	%(�), ∀	$ ∈ ℝm, % ∈ ℤ , (12) 
and the function k($) and ℎ($) for all $ ∈ ℝm are given by 
 

k($) = $(�)m + $(m)m;
ℎ($) = $(�)m$(m) + $(�)l1 − $(m)n.	  (13) 

 
Using penalty function, the problem can be expressed as follows: 
 min�∈ℝu k($)l1 − 	%(�)n + ℎ($) + ∑ 2	vtl$(t)n + 2	vz(	%(�))mt/� ,	  (14) 
where k was fixed at 10z,	and 
 

vtl$(t)n = maxl−2 − $(t), 0n + maxl$(t) − 2,0n , ∀	V ∈ {1,2};vzl%(�)n = maxl1 − %(�), 0n + maxl%(�) − 2,0n . 	  (15) 

 
Solution. The global minimum is located at $S = (−2,−2)x, and %S = 0, and a value of #($S, %S) = −14. 
 
A.3 Modified Griewank problem 
We have formulated a modified version in the mixed integer numerical field of the Griewank function, which is 
shown by Fu and coworker (Fu, et al, 2006). 
 
   min�∈ℝ�,�∈ℤ" #($, %),	  (16) 
where 

 #($, %) = 2 + �
m�∑ $(t)m +'t/� �

m�∑ %(t)m −∏ cos(u�� $(t))'t/�(t/� −∏ cos(u�� %(t))'t/� ∀	$ ∈ ℝ', % ∈ ℤ( , (17) 
 
Solution. The global minimum is located at $S = (0,0, … ,0)x, and %S = (0,0, … ,0)x, and a value of #($S, %S) = 0. 
 
A.4 W problem 
We propose a multimodal asymmetric function defined by 
   min�∈ℝ�,�∈ℤ" #($) + k(%),	  (18) 
where  

 #($) = ∑ Jl$(t) �⁄ n� + 2 − $(t)mO't/� −∏ �f��
(U)��� �u't/� , ∀	$(t) ∈ ℝ , (19) 

 k(%) = ∑ Jl%(t) �⁄ n� + 2 − %(t)mO(t/� −∏ �f��
(U)��� �u(t/� , ∀	% ∈ ℤ , (20) 

 � = 4	√2 , � = −8, A = 1 2⁄ . (21) 
 
 
Solution. The global minimum is located at $S = (−8,−8,… ,−8)x, and %S = (−8,−8,… ,−8)x, and a value of #($S, %S) = −46(7 + 9) − 2. 
 
A.3 Mixed integer Tang problem 
We show a modified version in the mixed integer numerical field of the Tang function, which is formulated in the 
real field by Shi and Ólafsson (2000). 
 
   min�∈ℝ�,�∈ℤ" #($, %),	  (22) 
subject to 
 3 ≤ $(t) ≤ 13, ∀V ∈ {1, …7},	  (23) 
 3 ≤ %(�) ≤ 13, ∀� ∈ {1, …9},  (24) 
where  
 
 #($, %) = ∑ sinl$(t)n + sin(u�$(t)) + ∑ sinl%(�)n + sin(u�%(�))(�/�'t/� ∀	$ ∈ ℝ', % ∈ ℤ( , (25) 
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Solution. The global minimum is located at $S = (5.3714, 5.3714, … , 5.3714)x, and %S = (5,5, … ,5)x, and a value of #($S, %S) = −1.21597 − 1.14959. 
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