
Proceedings of the International Conference on Industrial Engineering and Operations Management
Bogota, Colombia, October 25-26, 2017

Simple Poker Game Design, Simulation, and Probability
Nanxiang Wang

Foothill High School
Pleasanton, CA 94588

nanxiang.wang309@gmail.com

Mason Chen
Stanford Online High School
Stanford, CA, 94301, USA
mason05@ohs.stanford.edu

Abstract

This project simulates poker probability. The game selects three cards from four shared cards with the
two player cards to form the best hand to determine is the winner. In order to simplify the probability
scenario, partial deck (9, 10, J, Q, K, and A) is used to increase the probability of higher ranked hands
such as Four of a Kind and Full House. I used a JAVA program to run simulations so I could calculate
each player’s winning probability. The program is programmed to generate random cards for both
players. I compared the simulated results with the expected probability derived based on calculations and
confirmed that the JAVA simulated probability could match the expected probability. This project
successfully integrated JAVA computer science and statistics/probability with the poker application.

Keywords
Java, Statistics, Probability, Randomized

1. Introduction

Most poker players lose money in poker since they play without applying the probability and assessing their risk on
each play. The objective of this paper is to use JAVA to simulate poker probability and study Sample Size effect on
Statistics and decision making. The project scope is for learning purpose, not for gambling purpose. Authors used
partial deck (9, 10, J, Q, K, A) of 24 cards to simplify JAVA poker simulation. Figure 1 has listed the rankings of
different matched patterns for the full deck (52 cards) scenario. The full deck poker for 6 to 7 random cards is very
popular in most Poker tournament]. There is also an US Patent [3] that studied the partial deck on Royal Flush
probability. In this paper, the authors will study the Poker Probability on the 24-cards Partial Deck and use JAVA
programming to verify the winning probability between two players. The ranking of Partial Deck may be different
from the Full Deck.

2. Study Partial Deck Probability

I used partial deck (9, 10, J, Q, K, A) of 24 cards to simplify JAVA poker simulation. Partial Deck can increase the
matching probability on higher ranked patterns such as Four of a Kind, and Full House. Partial Deck Poker may
also simplify JAVA simulation process concentrated on higher ranked patterns which may be critical for real time
decision making on each betting move.

© IEOM Society International
1297

mailto:nanxiang.wang309@gmail.com

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bogota, Colombia, October 25-26, 2017

Figure 1. Ranking of Matched Patterns for Full Deck.

2.1 Poker Partial Deck Case Study

In order to demonstrate Poker probability and simulation simply, a special case study has been created in Figure 2.

Figure 2. Case Study

Four cards are shown in the shared dealer field; two players have one card shown and one card hidden as in Figure
4. Each player will calculate the winning probability by guessing the other unknown card of the opponent’s hand.
To keep in simple, the authors will consider “tie” if the matching pattern is the same and the card numbers are the
same even the card category is different (for example, Spade A will be treated the same as Heart A as tie).

3. JAVA Program
The JAVA program has seven different stages. First, it creates the deck, then it shuffles the deck. Next, it draws
cards for the board and then for the players. It then evaluates both players’ hands and compares the scores. Lastly, it
prints out who wins.

© IEOM Society International
1298

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bogota, Colombia, October 25-26, 2017

Figure 3. Java Flowchart

3.1 Shuffle

I used random sequence instead of random number generator to shuffle the deck. This makes sure that there will be
no repeating cards. To shuffle the deck, the program generates a random index. It then swaps the first card with the
card at that index. It then moves on to the second card, and repeats. This continues until all 24 cards have been
swapped.

Figure 4. Shuffle Function

3.2 Scoring

To score each player’s hand, I set specific values to the various hands. The program then goes through all
possible combinations of the cards on the table and in the player’s hand. As it runs, it stores the highest
value, which it uses at the end to find out who wins.

Figure 6. Scoring Hand Values

© IEOM Society International
1299

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bogota, Colombia, October 25-26, 2017

Figure 7. Scoring Example

3. 3 Evaluate the cards

To evaluate the cards, the Java program sets a variable i at 0. The program then swaps the card at i with the card at
5. It then scores the cards, stores the score, and increases the index by one. This continues for 5 more runs. If a score
is higher than the score stored by the function, the function then replaces the stored value with the new highest
score. At the end of the function, the program returns the stored value.

Figure 5. Evaluation for 6 Cards

4. Results

At the end of 20 tests, I found that the simulated percentage of Player One winning over Player Two was 75%. I also
found that the simulated percentage of any player getting a full house was 1.563%, and that the simulated
probability of both players getting a full house was 0.0244%. Compared with the expected probabilities, the
probabilities I simulated are very close to the expected.

 Player One Full House Player Two Full House Both Player Full House

Expected 1.3% 1.3% 0.03%

© IEOM Society International
1300

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bogota, Colombia, October 25-26, 2017

Simulated 1.563% 1.563% 0.0244%

Figure 6. Table of Probabilities

5. Conclusion

Based on my calculations and experiments, I conclude that the player with a higher starting hand is more likely to
win.

In the future, I will try to find the probability of winning with one player only fully randomized, find the probability
of winning with both players fully randomized, and find the probability of winning with board only randomized

References

Billings, D. , et al., The challenge of poker, Artif. Intell., vol. 134, pp. 201-240, 2002.

Li, W., and Shang, L., Estimating Winning Probability for Texas Hold'em Poker, International Journal of Machine
Learning and Computing, Vol. 3, No. 1, 2013

Ward, B., and Cabot A., Partial-deck poker game with guaranteed royal flush opportunity,
US Patent 20040212147 A1, 2004

D. Billigs, "Algorithms and Assessment in Computer Poker," Doctor PhD, Department of Computing Science,
University of Alberta, 2006.

D. Billings, et al., "The challenge of poker," Artif. Intell., vol. 134, pp. 201-240, 2002.

D. Felix, et al., "An Experimental Approach to Online Opponent Modeling in Texas Hold'em Poker," presented at
 the Proceedings of the 19th Brazilian Symposium on Artificial Intelligence: Advances in Artificial
Intelligence, Savador, Brazil, 2008.

© IEOM Society International
1301

http://www.google.tl/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bradley+Ward%22
http://www.google.tl/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Anthony+Cabot%22

	1. Introduction
	2. Study Partial Deck Probability
	3. JAVA Program
	References

