Abstract

This study deals with bottleneck detection with simulation techniques and time study. Modeling and simulation are potential tools for analyzing assembly lines such as clothing in a garment. Thus, the researchers attempted to experiment 160 numbers of replication in the arena tool. The experiment monitors the assembly process resources without altering the actual production scheme. In this study, the arena software and POM dedicated to modeling and measuring the performance of the existing Ronny t-shirt sewing line. The t-shirt is formed and has 12 main parts are assembled. For each activity, the researchers took 15 sampling observations using stopwatch. All the collected data are statistically analyzed using the input analyzer in arena for statistical significance and the expression resolution to be used for the simulation model. This simulation model has considered production resources like four threads over lock machines, single needle, two flat lock needles, machine operators, quality checkers, trimmer, batch arrival time Inter lot of pieces, sequence pieces, testing Different scenarios.

Keywords: - clothing, bottle neck, study time, t-shirt, simulation models
INTRODUCTION

Ethiopian clothing industries face many problems that have not become competitive globally. These problems include; the poor performance of products in the export market, poor quality and inadequate supply of raw materials, low productivity and poor resource utilization. Because of those, most of the country's textile companies are not lucrative and most are in great loss [1]. Bottlenecks in the production regime involve long queues, long waiting times, poor performance and overall inefficiency of the system. Such a system should work under capacity. To maximize resource capacity and the efficiency level of operations it is desirable to have appropriately programmed workstations and disposition in available space structures, with an optimal allocation of available resources. Work-time study, balancing the assembly line and simulation can be applied to the production line to find alternative solutions to increase sewing line efficiency. A good layout design could increase the productivity by correctly balancing the assembly line [2]. Some researchers said, the simulation model is used to identify bottlenecks in the production line and evaluate a number of suggested solutions using the arena software [3]. In addition to that the productivity of the company will be improved while the company diffuses the appropriate time study of the products to be mounted on the production line, the minimum queue length on the machines, the minimum production cost and high-quality products to establish an improved clothing industry. Increase the productivity of the specific model.

Work-time study, Assembly line balancing can be applied to apparel or clothing production line to find alternative solutions to increase the efficiency of the sewing line of the garment section. In this paper, they try to show how a good layout can be designed and productivity can be increased by appropriate assembly line balancing (Mominul, et al., 2014). Some of the optimization layout design studies from balancing lines using simulation models and different approaches will be studied in this type of problem discussed in the literature. The line balancing is the assignment process of tasks or workstations so that the workstations have roughly the same time requirements. This results in minimizing stop times along the line and high use of labor and equipment and minimizing the cycle time of the production line.

Cycle time is the maximum time allowed for each workstation in the production of clothing items, clothing components or parts are collected in a finished output which is the final product of the subassembly process. And the process has a different number of workstations, operators, and installation components. Therefore, a good balance line increases the efficiency of the sewing section production line [5]. In the production of clothing, responsible would have been able to check whether the assembly work will be completed in time for delivery, how machines and man or operators are used, if any station on the line assembly line is late it is global. To achieve this approach, the study of working time is the duration for each part to be mounted on production lines [5] and [2] activities. The assembly lines are generating production systems to meet the humanity needs that have been growing day by day. The goals of these systems produce products that have high production rates in the shortest time, in a more productive, economical and quality manner. The purpose of the case study was to design the assembly chain to achieve maximum line efficiency using the optimum machine working time for constant cycle time [6]. Line Balancing is commonly used to solve problems that have occurred in the assembly line. Line balancing is a technique to minimize the distance between workers and workload in order to achieve the desired flow rate [7]. This can be done by equating the amount of work at each station and assigning the least number of workers to the particular workstation. A line balancing can be classified into three categories according to the numbers Mounted on the line and in accordance with the rhythm of line [8] and [7] are models;

Single line Model: - can be described as a line that combines a single model. This line produces many units of an unchanged product. The tasks performed at each station are the same for all units. Products with strong demand are destined for this line [9].

Mixed model line: - Mixed model line is producing more than one model. They are made simultaneously on the same line. Once a model is running at a station, other products are made in other seasons. Therefore, each station is equipped to perform various operations necessary to produce any model that moves through it. Many consumer products are assembled in Mixed Model [3].

Batch line: - This line produces every batch model. Typically, the workstations are set to produce the required quantity of the first model then stations are rebuilt to produce another model. The products are often assembled in batches required when the average. It is cheaper to use a mounting chain to produce various batch products to build a separate line for each model. The research will take place in the field applied a mixed model line. Simulation is one of the tools that have been widely used in various sectors and manufacturing organizations. Using a valid simulation model gives numerous benefits and benefits in creating better manufacturing in order to improve system performance simulation models and is used to identify bottlenecks in the production line and evaluate a few
proposed solutions [9]. Systems simulation modeling objectives are producing products that have high production rates in the shortest time in a more productive, economical and agreed manner. An assembly line garment was selected and simulated using Arena simulation and statistical methods to solve the balanced problem [6] have been used. Most Ethiopian textile factories could have been low in productivity and therefore less competitive in the world market due to delays in delivering products to customers. The major problems facing businesses are not optimal layout design; less resource utilization is used for different products, inappropriate line balancing. Therefore, because of those problems the company has failed to meet its daily plan. In this case, the actual production of the sewing section is about 550-680 t-shirt per day with an average of 650 t-shirt its lane is 900 t-shirts per day. Overall, there is a variation between its plan and target. The issues faced in the case of study are; improper assembly balance and insufficient time standard for each product of the company generally did not use an optimal resource to achieve its goal. This study demonstrates that enough time is needed to balance line patterns and model development to increase line efficiency. In the ronny t-shirt manufacturing model there is a high WIP in some operations such as shoulder attach, sleeve attach and back top stitch and zero waiting time provided in some operations such as quality checkers, trimming and sleeve hemming in those operations the resources that assigned have below 50% utilization.

MAA Garment and textile Factory (Kebire enterprise) is a private company formed and registered in April 2001 according to the Federal Commercial Democratic Law of Ethiopia. MAA Garment Factory started its business in June 2004 in the northern part of Ethiopia, Tigray, Mekelle wholly owned kebire Enterprises plc. It is the diamond tip in combination with expatriates in Turkey, Pakistan and the Philippines, with the production of fully-equipped set-ups with the most reputable machines and equipment from renowned manufacturers in the world such as Juki, Myers, and Cie, local dynamic locals. MAA Garments is emerging as one of the leading clothing manufacturers not only in Ethiopia but also in the rest of the world. The company's recognition has reached its peak since its inception and revealed energy-producing goods in the clothing industry. The incorporation of methods and solutions for the production system allowed faster mixing in the international market, and although the main objective was to export garments internationally, the company has been committed to meeting the needs of the market national. It intends to incorporate and improve infrastructures, while maintaining concern with environmental and social responsibilities, so that the company's ultimate goals are achieved in a short period of time.

METHODOLOGY

This study needs a lot of data like man power, machine capacity, sequence of jobs, inter arrival of parts for assembling, processing time at each machine, efficiency, quality product outputs (number of defects, rework, normal) such data are used for model the production line. Therefore; the researchers had used primary data and secondary data (documented data), and the researchers used stop watch for recording some necessary information like processing time for new products transfer time from one station to the next one. The researchers had tried to find the causes why the company did not achieve its goals is due to different material shortage like the inputs for different sections, cotton, yarn, fabric cloth or improper line balancing. So, this can be solved due to approaches like proper line balancing, time study and simulation approaches.

Simulation methodology has eight phases (onur, et al., 2002).

- **Step 1:** Define the Problem Which Study and Why Business Reason?
- **Step 2:** design the model that study (s) that will provide answers to who?
- **Step 3:** Designing the Conceptual Model Which strategy model (continuous, discrete, mixed) will be used and at what level of detail?

©IEOM society international
Step 4: Formulate inputs, hypothesis, and process definition
which study hypothesis is based on what production factors and process definition will guide the model?
Step 5: Build, verify, and validate the model is the model properly built (check)? Is the correct model built (validation)?
Step 6: Experimenting with the Model
What Do Think of Modeling?
Step 7: Document and Present the Precious Experience
Results What is the Basis for Future Work?
Step 8: Define the Lifecycle Model
Can the model provide long-term benefits, throughout or throughout training, programming, system redesign, and system launch?

DATA COLLECTION AND ANALYSIS

The standard methodology used for this thesis is a generally accepted computer simulation model. A garment (sewing section) assembly plant producing a ronny t-shirt style with a total number of parts namely; shoulder attach, rib tacking, neck rib attaches, piping tack, piping attach, sleeve attach, back top stitch, bottom hemming, trimming, quality checking to be assembled in the production process line of sewing section was selected for the model.

Activity identification in the sewing section, process mapping how to understand how the product (entities) using built in area input analyzer, simulation model development and identification of replication numbers with the methodologies used.

A total number of 12 activities were identified for a ronny model t-shirt production assembly line. Since, the model input based on the literature review and the actual performance of the production lines the following variables which used in the measuring of efficiency and effectiveness of the garment process is collecting.

ROOT CAUSE OF THE VARIATION IN ACTUAL OUTPUT AND TARGET OR PLAN OUTPUT

The researchers have taken a discussion with the production managers of the garment section, quality assurance manager, planning and cost control manager, supervisors of the lines the production line and discussed about the causes and the effects of why the company did not meet its target output means high variation between actual output and target output. In this study, as the researcher has gotten from the discussion the main causes are as follows in the below root cause analysis diagram.

Figure 2: root cause analysis

FOR ESTABLISHING A STANDARD

The standard time of an operation can be determined using the following techniques;
1. Study time
2. Predetermined motion time system.
3. Standard Data System
4. Work Sampling

Method of calculation

The standard time is the product of three factors are;
Time taken: the time measured to complete the task or activity.
Performance Evaluation Performance: - This factor is calculated by an experienced worker who is trained to observe and determine the rating.
Staff compensation, fatigue and delay: - the compensation is the adjustment of the normal for the standard time in order to recover lost time due to personal needs, tiredness and inevitable delays, providing a small increase may still be able to cover the lost time and complete the work assigned to him or her [10]. The standard time can be calculated using the formula;

Standard time (TS) = normal time (TN) + allowance time (TA)

Normal time = observed time (TO) * rating factor (RF)
Standard time= (observed time) (rating factor) (1+allowance)
Standard time = normal time*(1+ allowance)

ALLOWANCE TECHNIQUE

There are two types of interruption;
1. Interruption related to work
2. Interruption not related to work

for example, machine break down, rest break to overcome fatigue and receiving instruction from manager are the interruption related to work, but personal needs, lunch break and personal calls are the interruption not related to work. However, the two types of interruption are essential for the worker because it seems to be impossible to work continually during a regular shift.
Figure 3: types of allowance

Personal needs allowance
The personal needs allowance is the time that is associated with workers daily personal needs which include restroom, phone call, going to wash room, fetching a drink etc. The common figure is about 5-7% of the basic time. And it is conditional to work environment in term of uncomfortably and temperature for example. Fatigue allowance
The fatigue allowance is intended to cover the time that the worker should give to overcome fatigue due to work related stress and conditions. There are three factors that cause fatigue: 1) physical factor like standing and use of force 2) mental and eye strain 3) environmental and work factor like poor lighting, noise and heat. Normally it is counted as 4% on basic time.

Unavoidable delays allowance
Unavoidable delays are categorized under unavoidable interruption that occurs at random times during the day in work place. They usually refer to work related events like cleaning up at the end of the shift and machine breakdowns or malfunction. Unavoidable delays occur because of many random events in work stations. Sometime garments, machines are off due to mechanical or technical problems these are applied to the total basic time for those elements which are concerned with the operation of machinery. Here are some common figures of garments sewing floor (sudar, 2015).

Single needle lock stitch machine=9%
Twin needle lock stitch machine=14%
Three thread over lock machine=7%
Four thread over lock machine=9%
Five thread over lock machine=11%

Contingency allowance
A Small amount of allowance which is given to meet the legitimate delay of work is counted less than 5%.

Standard allowances for determining standard time of operations are;
Table 1: observation time

Table 2: allowance

Personal and fatigue allowance	11% for sitting position work
Machine	13% for standing position
Contingency allowance	5%
Single needle lockstitch machine	9%
2 thread lock stitch machine	14%
3 thread over lock machine	7%
4 thread over lock machine	9%
5 thread over lock machine	11%

DATA INPUT ANALYZER
Quality checking

©IEOM society international
Distribution Summary
- Distribution: Beta
- Expression: $20 + 7 \times BETA(1.54, 2.1)$
- Square Error: 0.013113

Kolmogorov-Smirnov Test
- Test Statistic = 0.12
- Corresponding p-value > 0.15

Data Summary
- Number of Data Points = 15
- Min Data Value = 20.3
- Max Data Value = 26.4
- Sample Mean = 23
- Sample Std Dev = 1.61

Histogram Summary
- Histogram Range = 20 to 27
- Number of Intervals = 5

Table 4: Data Distribution Function

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Operation type (activity)</th>
<th>Number of workers</th>
<th>expression</th>
<th>Number of machines</th>
<th>Type of machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shoulder attach</td>
<td>1</td>
<td>UNIF(40, 42.8)</td>
<td>1</td>
<td>4TOL</td>
</tr>
<tr>
<td>2</td>
<td>Rib tacking</td>
<td>1</td>
<td>NORM(27.3, 0.206)</td>
<td>1</td>
<td>SNLS</td>
</tr>
<tr>
<td>3</td>
<td>Neck Rib attach</td>
<td>2</td>
<td>TRIA(36.2, 36.8, 37.3)</td>
<td>2</td>
<td>4TOL</td>
</tr>
<tr>
<td>4</td>
<td>Sleeve attach</td>
<td>2</td>
<td>TRIA(30, 37.7, 81)</td>
<td>2</td>
<td>4TOL</td>
</tr>
<tr>
<td>5</td>
<td>Piping attach</td>
<td>1</td>
<td>TRIA(26.5, 0.879, 0.5)</td>
<td>1</td>
<td>SNLS</td>
</tr>
<tr>
<td>6</td>
<td>Piping tuck</td>
<td>1</td>
<td>TRIA(32, 33.1, 33.8)</td>
<td>1</td>
<td>SNLS</td>
</tr>
<tr>
<td>7</td>
<td>Hack top stitch</td>
<td>2</td>
<td>33 + 6.66 * BETA(0.668, 0.717)</td>
<td>2</td>
<td>SNLS</td>
</tr>
<tr>
<td>8</td>
<td>Side seam</td>
<td>2</td>
<td>77 + 4 * BETA(0.614, 0.776)</td>
<td>2</td>
<td>4TOL</td>
</tr>
<tr>
<td>9</td>
<td>Sleeve hemming</td>
<td>2</td>
<td>34 + 3.76 * BETA(0.494, 0.54)</td>
<td>2</td>
<td>2NFL</td>
</tr>
<tr>
<td>10</td>
<td>Bottom hemming</td>
<td>1</td>
<td>41.3 + 3.12 * BETA(1.37, 1.3)</td>
<td>1</td>
<td>2NFL</td>
</tr>
<tr>
<td>11</td>
<td>trimming</td>
<td>2</td>
<td>26 + 12 * BETA(0.665, 0.932)</td>
<td>2</td>
<td>4TOL</td>
</tr>
<tr>
<td>12</td>
<td>Quality inspection</td>
<td>2</td>
<td>28 + 7 * BETA(1.54, 2.11)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Inter Arrival of parts</td>
<td>1</td>
<td>Cons(1000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE OF OPERATIONS FOR RONNY T-SHIRT

DEVELOPMENT OF STANDARD SIMULATION MODEL
This research is developing computer simulation model for the purpose of experimentation of the system “as is” or existing scheme.

MODEL VERIFICATION AND VALIDATION
Model validation for this study is made using statistical validity by comparing the daily output of the real system as well as the simulation modeling outputs for the ronny model t-shirt of the existing system. If there is no statistical significance difference between the data sets, therefore, the model considered as valid model. If not the model needs additional works before analyzing the model reports. In this case the average outputs of ronny model t-shirt per day or working hour of eight hours is ranges from 550-680 t-shirts per day with an average of 650. And the simulation model output is 647 t-shirts per eight hour of a day. Therefore, the simulation model outputs is approaches to the real system outputs. In this case the simulation system representing the real system so this model is valid. In addition to this in the simulation model result some workstations have high work in progress and low work in progress in the real system as well as the simulation model.

CALCULATION OF REPLICATION NUMBER
In order to determine the number of replication for the model first the researcher has to calculate the mean, standard deviation and half width of the first ten replication. In other words half width is a sampling error...
that introduce in taking sample. Therefore, the value of half width can be determined by considering a 95% confidence level where as the value of \(t \) can be read from students \(t \) probablity distribution table (yemane, 2013), (gorema , et al., 2014), (herell, et al., 2004) and for initial number of replication determination it is recommended 10 number of replication for 95% confidence level and arena have 95% confidence level by default (w.david kelton, et al., 2000).

\[
y(\text{mean}) \pm t - 1, 1 - \frac{\alpha}{2} \cdot \frac{s}{\sqrt{n}} \quad (\text{confidence interval})
\]

\(n \) = no of replication

\(y \) = sample mean

\(s \) = sample standard deviation

half width = \(t_{n-1}, 1 - \frac{\alpha}{2} \cdot \frac{s}{\sqrt{n}} \)

set half width = \(h \), solve for \(n = t_{n-1} \frac{h^2}{\alpha} \)

replace \(t \) by \(z \), corresponding normal critical value

\[
n \approx z^2 \frac{\alpha}{2} \cdot \frac{s^2}{h^2}
\]

\[
h_0 = \text{half width from initial number of replication} = \text{half width from initial number of replication} = 2.262.
\]

Table 5: number of replication

<table>
<thead>
<tr>
<th>number of replication</th>
<th>sewing output</th>
<th>output-mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>648</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>644</td>
<td>-3.4</td>
</tr>
<tr>
<td>3</td>
<td>648</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>649</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>653</td>
<td>5.6</td>
</tr>
<tr>
<td>6</td>
<td>651</td>
<td>3.6</td>
</tr>
<tr>
<td>7</td>
<td>641</td>
<td>-6.4</td>
</tr>
<tr>
<td>8</td>
<td>640</td>
<td>-7.4</td>
</tr>
<tr>
<td>9</td>
<td>649</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>651</td>
<td>3.6</td>
</tr>
<tr>
<td>Mean</td>
<td>647.4</td>
<td>18.9333</td>
</tr>
</tbody>
</table>

\[
\text{standard deviation} = 4.351245 \quad 4.351245
\]

\[
h_0 = t_{10-1} \{1-0.05/2\} \{4.351245/\sqrt{10}\} = 3.112477
\]

Therefore, the percentage error for the sewing section line of the the garment section is equal to \((647.4+3.112477)/647.4=1.0048076568=0.48076568\%\)

Therefore, by using the replication number calculations \(n = n_{h_0^2/h^2} \) and \(n = n_{0.782} \) and \(n = 10*3.112477^2/0.782 \)

\[
\text{Mean} = 159.229 \approx 160
\]

\[
n = 1.96^2* 4.351245^2/0.782
\]

\[
n = 119.55 \approx 120
\]

therefore, from the two alternatives the researcher has selected the maximum number of replication that is 160.

SIMULATION MODEL RUN RESULTS AND INTERPRETATION

The objective of this thesis is to model the sewing line layout and balancing the activities that assebled, analyze its performance and the finally propose an improved model to that. problems identified in this section are low throughput, high work in progress, high waiting time, which are due to low capacity utilization of resources that are machine utilization and operators utilization, unorganized flow process etc. in this case, the performance selected to analize are entity, process, queue and resource of the sewing section.

entity performance

the following points are identified from the entity performance;
the wip is higher for rib parts, back and front parts, lower for piping parts.
Almost all of the entities that come into the department are out due to the small number of processing stations in the department.
The time required for qantities to wait is higher due to the large number of of queues there and additional resource can be assigned in those stations.

Processperformance

from the model run results of process performance, the following points are identified.
the accumulated waiting time for process like back top stitch, piping attach, piping tack, rib tacking, sleeve attach is higher their value added time. It also higher than waiting time of any other process. this means that entities at this station spend more time waiting than being processed.
The accumulated waiting time in quality checking,trimming , sleeve hemming are zero, therefore some resources from this station can be shared.
All of quality checking,sleeve hemming, trimming stations that come to those stations are always processed fully. The least number of entities are processed in sleeve hemming station compaired to others.

©IEOM society international
Figure 6: process accumulative time

Queue performance

From the model run results of the queue performance, the waiting time and number waiting in back top stitch, shoulder attach and sleeve attach is highest and the number waiting in quality checking, sleeve hemming and trimming is zero. This result shows that, there is an unbalanced allocation of resources to each station.

Resource performance

The model can give us, a usage of resources this includes instantaneous utilization, number busy, number scheduled, scheduled utilization, and total number seized. Therefore the following are the instantaneous and scheduled utilization:

- Number busy for 4tol 1, operator 1, 4tol 3a, 4tol 3b, operator 4a, operator 4b are more than one, therefore, more than one resource are required in those stations.

Figure 7: process time per entity

Cycle time of existing line

Line cycle time is the maximum time allowed for work at each station.

Desired cycle time \(CT = \frac{1}{r} \), where \(r \) is production output rate.

Desired cycle time \(CT = \frac{8 \times 3600}{647t-shirts} = 44.4444 \text{ sec/t-shirt} \)

Table 6: Efficiency of existing model

<table>
<thead>
<tr>
<th>Performance indicator</th>
<th>Model result of sewing line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Input</td>
<td>900</td>
</tr>
<tr>
<td>2 Manning level</td>
<td>19</td>
</tr>
<tr>
<td>3 Output (p) per 8 hour</td>
<td>647 t-shirts</td>
</tr>
<tr>
<td>4 Production rate (Rp) = p/480 min = 648/480</td>
<td>1.35 t-shirts per min</td>
</tr>
<tr>
<td>5 Make span work content time (Tw) = cycle time * number of workstation</td>
<td>488.8884 sec</td>
</tr>
<tr>
<td>6 Wip</td>
<td>253</td>
</tr>
</tbody>
</table>

Table 7: Existing system performance measurement
Production efficiency (Ep) = output/input = 647/900 = 71.89%

Line balance efficiency = Twc/n*ct = 488.8

884/11*44.44 = 72.556%

CONCLUSION

In this paper, the simulation modeling of the sewing line is done by using arena software. During the analysis, the bottlenecks were identified. The bottlenecks have identified based on resource utilization, number waiting in queue. The main bottlenecks are that resources with low utilization that is below 50% utilizations like 2nfl1a, 2nfl1b, operator11a, operator11b, operator 11a, operator11b, quality checker 1 and quality checker2 and some of stations have also high waiting queue like shoulder attach, sleeve attach.

The bottleneck identified are eliminated or minimized using reassigning of the existing resources the operators and machines, to optimize the resources as much as possible.

References

[2] i. Mominul, h. s. mehidi and m. h.m, "an optimal layout design in an apparel industry by appropriate line balancing;," 2014.

Biography of the authors

©IEOM society international
My name is Aregawi yemane meresa. I received my BSC degree in industrial engineering from Mekelle University, Ethiopian institute of technology- Mekelle in 2013, MSC degree production engineering and management from Bahir Dar University in 2017. I am a lecturer in Bahir dar University since 2013 till now in the department of industrial engineering. My research interests are simulation, productivity, and operation research.