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Abstract 

Inventory control in perishable products supply chain is one of the biggest challenges today, especially for 
medicines and blood products supply chain. Shortage can increase the mortality risk at hospitals, on the 
contrary, high levels of inventory could generate wastage of these resources. This paper studies the problem 
of inventory control and distribution of blood products. This study determines the number of blood units to 
be processed by the blood center and the number of units of blood products to be ordered by hospitals to 
minimize the total cost and the shortage and wastage levels in blood supply chain. Two optimization models 
are formulated: A Mixed Integer Linear Programming (MILP) Model for known demands and a Stochastic 
Programming (SP) Model for the case where demands are uncertain, considering multiple periods, types of 
blood and life time of products. Datasets are generated to evaluate the efficiency of proposed models for a 
multi-hospitals single-blood center system. An algorithm is developed to simulate the supply chain and 
evaluate the mathematical models. The results show that the SP Model obtains lower expected rates of 
shortage and wastage compared to the deterministic model. In this last, demands are approximated by their 
mean values. 
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1. Introduction
Perishable products differ from nonperishable products in that the former can lose their usefulness if they are not 
properly stored and transported or if they are not used within their shelf life. Inventory control in perishable products 
supply chain is one of the biggest challenges today; especially for products requiring a very high service level such as 
medicines and blood products. Shortage of blood can increase the mortality risks at hospitals, on the contrary, high 
levels of inventory could generate wastage of this scares resource. Patients may receive Whole Blood (WB) or 
components of blood. Up to four components can be derived from donated blood. The main transfusable blood 
components include: Red Blood Cells (RBC), Platelets (PLT), plasma and cryoprecipitated AHF condition [1]. 
Components can be mechanically separated from a unit of WB, called whole blood-derived (WBD), or can be obtained 
using apheresis, an automated procedure that filter the desired components from the blood while the remaining 
components flow back into the donor [1]. Table 1 presents principal uses of main transfusable blood components and 
their shelf life. PLTs are the blood component with the shortest shelf life. Shortage and outdated units of blood are 
undesirables through supply chain. Transfusion of WB, RBC and Plasma units decrease between 2008 and 2011. On 
the contrary, the transfusion of PLT units to US patients in 2011 increased by 7.3% from 2008, especially the apheresis 
PLT transfusion with an increase of 11.9% [2]. The National Blood Collection and Usage Report presents data on 
outdated components as a percentage of the total number of units of each type processed for transfusion in 2011. PLT 
were the blood component with the greatest percentage of outdated units with 17.1% for WBD PLT and 12.8% for 
Apheresis PLT compared to WB and RBC (2.4%), plasma (2.2%) and Cryoprecipitate (3.3%) [2]. 
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Table 1. Principal characteristics of blood type [1] 

Blood component Uses Shelf life 
Whole blood Trauma and surgery 21/35 days1

RBCs Trauma, surgery, anemia, any blood loss and blood disorders Up to 42 days1

PLTs Cancer treatments, organ transplants and surgery 5 days 
Plasma Burn patients, shock and bleeding disorders 1 year 

Cryoprecipitated AHF Hemophilia and hereditary coagulation abnormalities 1 year 
1Shelf life of whole blood and red cells varies based on the anticoagulant type used 

Because of highly perishability and medical importance of PLT, we address a PLT inventory control and distribution 
problem and present mathematical programming models to minimize the total cost while minimizing outdate and 
shortage. The study can be extended to others transfusable blood products.  
The rest of the document is structured as follows. Section 2 presents a review of the relevant literature on supply chain 
of perishable products with a focus on blood products. In section 3, the principal concepts of blood supply chain are 
explained and the problem studied is defined. The model formulation is shown in section 4. Numerical results of the 
models are given in section 5. Concluding remarks and opportunities for future work are presented in section 6. 

2. Literature review
2.1 Works related to perishable products supply chains

Supply chain optimization of perishable goods has attracted much attention in the literature due to its relevance in real 
life applications. Perishable products are goods which obtain lower utility when they approach to the end of their 
maximum lifetime. Demirag et al. 2016 [3] study inventory ordering policies where the demand for the product is 
positively related with the freshness level. They build a classical Economic Order Quantity (EOQ) model to determine 
the optimal order quantity Q to maximize the profit. They solve the problem considering two different cases: the first 
case deal with linear demand function and the second with a demand function that is concave decreasing with the age 
of product. Other authors introduce stochastic parameters: Kouki et al. 2015 [4] consider an inventory system 
employing a continuous review (r, Q) policy and present an algorithm to compute the best r and Q parameters that 
minimize the total cost. They assume that demand follows a Gamma distribution. The Inventory Routing Problem 
(IRP) address the coordination of two supply chain components: the inventory management and the vehicle routing. 
Shaabani et al. 2016 [5] presents a multi-period multi-product IRP. A mathematical model is formulated considering 
deterministic demand. The IRP is divided into two subproblems: the vehicle routing subproblem is solved using a 
heuristic and its solution is used as input in the inventory subproblem. A Population-Based Simulated Annealing 
algorithm is proposed to moderate computational time. Soysal et al. 2015 [6] present a multi-period IRP model that 
includes an evaluation of CO2 emission and fuel consumption. They formulate the IRP as a chance-constrained 
programming model to capture the risk associated with uncertain demand and present a deterministic approximation. 
After, a simulation model is proposed to evaluate the solutions of this deterministic approximation. Hybrid approaches 
proposed in the literature offer the advantages of simulation based methodologies together with the optimization 
capabilities of mathematical programming models, especially when models consider uncertain parameters. Keizer et 
al. 2015 [7] present a MILP model for multiple customers and multiple products in a cut flower supply chain, 
considering product quality decay. Results of the MILP are introduced in a discrete event simulation (DES) model 
which simulates fluctuations in supply quality, quantity, temperature, transportation duration and processing that 
follows a normal distribution function. A service level is obtained from the DES model which is used to iteratively 
update the products quality constraints in the MILP. Ahumada et al. 2012 [8] present a stochastic model for the 
production and distribution of fresh agricultural products, approached by a two-stage stochastic model, to minimize 
the expected revenue. The solution depends on the first stage decisions (planting), the random realizations of stochastic 
parameters, including the price and yield of products, and the second stage decisions (harvesting and distribution). 
The size of the model grows with the number of scenarios computed. For this reason, they consider the stochastic 
version of Bender’s decomposition (L-shaped method) and multi-cut for risk stochastic programs.  

2.2 Works related to blood products supply chains 
Problems related to inventory control and distribution of blood products have been analyzed and solved using wide 
range of methods. Some studies use simulation methodologies and introduce hybrid metaheuristic. Duan et al. 2013 
[9] propose a replenishment policy based on old inventory ratio which use only partial age information to measure the
freshness of the blood inventory. They develop both centralized and decentralized models and propose a simulation
optimization approach based on a hybrid metaheuristic algorithm to find near-optimal policies. In decentralized
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control, each entity in the supply chain is treated as an individual company aiming to minimize its own outdate rate. 
However, the centralized control directly minimizes the system-wide outdate rate. Duan et al. 2014 [10] propose a 
new simulation optimization framework. Instead of treating RBC units as one unified product, the study considers all 
eight ABO/Rh(D) types and their compatibility for substitution. They develop a simulation optimization approach 
based on a new hybrid metaheuristic algorithm constituted of two cooperative metaheuristics algorithms, Threshold 
Accepting and Tabu Search to find near-optimal replenishment policies in acceptable computational time. Markov 
Processes are also used to handle stochastic parameters in some studies. For instance, Civelek et al. 2015 [11] study a 
discrete-time inventory where demand exists for product of different ages. Their model includes substitution costs 
incurred when a demand for a certain-aged item is satisfied by a different-aged item. They model the problem as a 
Markov Decision Process and propose a simple inventory replenishment and allocation heuristic to minimize the 
expected total cost.  
The following authors suggest mathematical programming to model the problem which is then solved by mean of 
solvers. Some of them combine this tool with simulation or develop metaheuristics to obtain solutions in reasonable 
computational times: Hemmelmayr et al. 2010 [12] establish a two-stage stochastic program. First, they introduce an 
integer programming approach to handle stochastic demand considering demand realizations. Second, due to the size 
of the integer program which increase quickly with the number of realizations, the authors adapt a metaheuristic, a 
Variable Neighborhood Search approach, to solve the problem in shortest computational times. The study of Gunpinar 
et al. 2015 [13] presents integer programming models. The first model is a stochastic integer programming model that 
handles demand uncertainty. The second one is a stochastic integer programming model with two patient types: type 
1, requires fresh/young blood and type 2 which could use blood of any age. The last model is a deterministic integer 
programming model with Crossmatch-to-Transfusion ratio (C/T ratio) (description in section 3).  
One of the challenges of the blood supply chain that some authors consider is the issue of disasters. Zhou et al. 2011 
[14] analyzes a periodic review inventory system under two replenishment modes: regular orders, placed at the 
beginning of a cycle, and expedited orders within the cycle. They first formulate the problem as a one-period model 
and then as a multicycle model and derive the necessary and sufficient conditions for the optimal policy. Second, an 
algorithm is designed based on the optimality conditions. Roni et al. 2015 [15] and Roni et al. 2016 [16] propose a 
stochastic inventory system facing regular demand and surge demand that has a lower arrival rate but higher demand 
volume per arrival. A MILP model is developed to obtain an optimal policy. Roni et al. 2016 [16] allow split deliveries 
which consider the scenario where there is a single supplier who replenishes all orders using multiple shipments and 
they develop a Tabu Search-Based algorithm to find high quality solutions in a reasonable amount of time. 
Hosseinifard et al. 2016 [17] propose the structure where some of the hospitals near of each other maintain centralized 
inventories to serve their demands and demands of other neighbor hospitals. They model the blood supply chain, 
where the items arrive to the blood center stochastically and stochastic demand is realized at hospitals.  
 

3. Blood supply chain and description of the model 
The blood supply chain, studied here, consists of two echelons. The first echelon corresponds to the blood center and 
the second to hospitals. The process starts with collections, which are done by blood centers or hospitals. Blood units 
collected by the blood center are obtained from donors either directly at a blood center or through mobile units. The 
supply of donor blood is irregular and there are several factors that affect the blood products availability such as 
number of the volunteering donors in a region and donation campaigns. Collected whole blood units or blood products 
through apheresis are tested to make sure that diseases cannot be transmitted through blood transfusion. After testing 
process, the whole blood units are sent to an initial storage in blood center and then, they are either stored for 
transfusion directly or mechanically separated into components. Tested components obtained through apheresis, WBD 
products and whole blood for transfusion remain in storage in the blood center until a hospital order arrives and then 
they are sent to supply the requirements of hospitals. Units in the inventory of a blood center can supply other blood 
centers. When requested blood products arrive at the hospital, they enter in an unassigned inventory. The hospital 
blood bank receives a doctor's order for a patient and then the required blood products enter in a process known as 
cross matching, in which the blood compatibility between the donor and the patient is determined. The cross-matched 
blood is moved from unassigned inventory to assigned inventory. Any untransfused cross-matched blood product 
return to the hospital blood bank. The relation between the total number of cross-matched units and transfused units 
is called crossmatch-to-transfusion ratio (C/T ratio). A patient should be transfused with his/her same blood group. If 
patient’s blood group is unavailable, a compatible group must be provided. For clinical reasons, some compatible 
blood types are preferable to others. First and second echelon in blood supply chain can present outdate and shortage 
units. These situations are more undesirables in the second echelon. Outdated units in hospitals are more expensive 
due to transportation costs and shortage at hospitals which put the live of patients directly at risk.  
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We consider a two-echelon supply chain consisting of one blood center and several hospitals. The study considers all 
eight ABO/Rh(D) type of blood. We assume that the blood center is the only one in charge of making the collections 
and the supply of blood units is sufficient to meet the production orders of the blood center. At the beginning of each 
period, the blood center observes the total number of on-hand inventory of blood products and their age distribution 
and decides the number of units to produce for each blood type before the hospital orders arrive. The process of testing 
and producing blood units will take 1 day to complete so they will not be available for distribution until the next day. 
At the end of each day, hospitals observe their on-hand inventory and decide the number of units for each type of 
blood to order for satisfying the demand of the following day. The blood center receives orders from hospitals and 
satisfies each hospital order from its available stock following a FIFO policy at the beginning of the next day 
considering zero lead time for supply. If orders cannot be fulfilled from the available stock, a shortage for the blood 
center is registered. Hospitals face the demand in each period. First, we assume the demand as a deterministic 
parameter. Second, the demand is assumed as a stochastic parameter that follows a known distribution. To satisfy the 
demand, hospitals use their on-hand inventory following a FIFO policy. If demand is not satisfied, a shortage cost is 
incurred. Both in the blood center and in hospitals, if a unit of blood expires, a wastage cost is generated. 
The objective is to minimize the total cost while minimizing the shortage and outdated units in blood supply chain. 
We consider a cost of replenishment per unit, a holding cost for every item carried from one period to the next, an 
expiration cost for units that outdate and a shortage cost for any demand that is no satisfied in any period.  
 

4. Model formulation 
Table 8, Table 9 and Table 10 summarize the indices, parameters and decision variables used in the models.  

Table 2. Indices for models 

𝑎𝑎 Age of blood, 𝑎𝑎 = 1,2, … ,𝐴𝐴 (days) 𝑗𝑗 Hospitals, 𝑗𝑗 = 1,2, … , 𝐽𝐽 
𝑔𝑔 Blood type, 𝑔𝑔 = 1,2, … ,𝐺𝐺 𝑘𝑘 Scenarios, 𝑘𝑘 = 1,2, … ,𝐾𝐾 
𝑡𝑡 Period in the planning horizon, 𝑡𝑡 = 1,2, … ,𝑇𝑇 

Table 3. Parameters for models  

𝐴𝐴 Lifetime of blood product 𝐽𝐽 Number of hospitals 
𝐺𝐺 Blood type 𝑇𝑇 Length of planning horizon 
𝐾𝐾 Number of scenarios 𝑝𝑝𝑝𝑝 Production cost per unit of product 
𝑐𝑐 Purchase cost per unit of product 𝑤𝑤𝑤𝑤 Wastage cost per unit of product 
𝑠𝑠𝑠𝑠 Shortage cost per unit of product 𝑀𝑀 Big number 
ℎ Holding cost per unit of product held in stock per unit of time 
𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  Units of 𝑎𝑎 days old in initial inventory for blood type 𝑔𝑔 in hospital 𝑗𝑗 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎 Units of 𝑎𝑎 days old in initial inventory for blood type 𝑔𝑔 in the blood center 
𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔

(𝑘𝑘)  Demanded units of blood type 𝑔𝑔 by the hospital 𝑗𝑗 in period 𝑡𝑡 (for scenario 𝑘𝑘) 
𝑝𝑝𝑘𝑘 Probability associated to scenario 𝑘𝑘 

Table 4. Decision variables for deterministic and stochastic models1 

𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎  Units of 𝑎𝑎 days old of blood type 𝑔𝑔 ordered by the hospital 𝑗𝑗 at the end of the first period  

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Units of 𝑎𝑎 days old of blood type 𝑔𝑔 ordered by the hospital 𝑗𝑗 at the end of period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for 

scenario 𝑘𝑘) 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Units of 𝑎𝑎 days old of blood type 𝑔𝑔 used to satisfy the demand of hospital 𝑗𝑗 in period 𝑡𝑡, 𝑡𝑡 = 2, … ,𝑇𝑇, 

for scenario 𝑘𝑘 
𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎  Inventory level of 𝑎𝑎 days old of blood type 𝑔𝑔 in hospital 𝑗𝑗 at the end of fist period 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Inventory level of 𝑎𝑎 days old of blood type 𝑔𝑔 in hospital 𝑗𝑗 at the end of period 𝑡𝑡, 𝑡𝑡 = 2, … ,𝑇𝑇, for 

scenario 𝑘𝑘 
𝑂𝑂𝑂𝑂𝑆𝑆𝑔𝑔𝑔𝑔 Outdated units of blood type 𝑔𝑔 in hospital 𝑗𝑗 at the end of fist period 
𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔

(𝑘𝑘) Outdated units of blood type 𝑔𝑔 in hospital 𝑗𝑗 at the end of period 𝑡𝑡, 𝑡𝑡 = 2, … ,𝑇𝑇, for scenario 𝑘𝑘 

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Shortage number of 𝑎𝑎 days old of blood type 𝑔𝑔 in hospital 𝑗𝑗 in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for scenario 𝑘𝑘) 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  1 if 𝑎𝑎 days old blood of type 𝑔𝑔 is used to satisfy the demand of hospital 𝑗𝑗 in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for 

scenario 𝑘𝑘), 0 otherwise 
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𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  1 if all 𝑎𝑎 days old blood of type 𝑔𝑔 is used to satisfy the demand of hospital 𝑗𝑗 in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, 

for scenario 𝑘𝑘), 0 otherwise 
𝑋𝑋𝑋𝑋𝑆𝑆𝑔𝑔 Units of blood type 𝑔𝑔 to produce by the blood center in first period 
𝑋𝑋𝑔𝑔𝑔𝑔

(𝑘𝑘) Units of blood type 𝑔𝑔 to produce by the blood center in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for scenario 𝑘𝑘) 
𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎 Inventory level of 𝑎𝑎 days old of blood type 𝑔𝑔 in blood center at the end of first period 

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Inventory level of 𝑎𝑎 days old of blood type 𝑔𝑔 in blood center at the end of period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for 

scenario 𝑘𝑘) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑔𝑔 Outdated units of blood type 𝑔𝑔 in blood center at the end of first period 
𝑂𝑂𝑂𝑂𝑔𝑔𝑔𝑔

(𝑘𝑘) Outdated units of blood type 𝑔𝑔 in blood center at the end of period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for scenario 𝑘𝑘) 

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  Shortage number of 𝑎𝑎 days old of blood type 𝑔𝑔 for the hospital 𝑗𝑗 in period 𝑡𝑡 in blood center, (𝑡𝑡 =

2, … ,𝑇𝑇, for scenario 𝑘𝑘) 

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  1 if the blood center uses 𝑎𝑎 days old blood of type 𝑔𝑔 to satisfy the demand in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, for 

scenario 𝑘𝑘), 0 otherwise 

𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎
(𝑘𝑘)  1 if the blood center uses all 𝑎𝑎 days old blood of type 𝑔𝑔 to satisfy the demand in period 𝑡𝑡, (𝑡𝑡 = 2, … ,𝑇𝑇, 

for scenario 𝑘𝑘), 0 otherwise 
1Notations in parenthesis are added to the notation for the stochastic model 

4.1 Deterministic programming model 
In this section, the MILP formulation is presented for the inventory control and distribution problem described in 
section 3. The deterministic programming model is stated as follows:  
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𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1) + 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑎𝑎 = 1,2, … ,𝐴𝐴 − 1, 𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗 ( 3) 
𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 1,∀𝑔𝑔, 𝑗𝑗 ( 4) 

𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1) + 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗 ( 5) 

𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 = � 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐴𝐴

𝑎𝑎=1
,     𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗 ( 6) 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑀𝑀 ∙ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 7) 
𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 8) 

𝑉𝑉(𝑎𝑎−1)𝑔𝑔𝑔𝑔𝑔𝑔 ≤ 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑎𝑎 = 2,3, … ,𝐴𝐴, 𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗 ( 9) 
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1) − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ �1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� ∙ 𝑀𝑀,     𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 10) 
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1) − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 11) 

𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑡𝑡 = 𝑋𝑋𝑔𝑔𝑔𝑔,     𝑎𝑎 = 1,∀𝑔𝑔, 𝑡𝑡 ( 12) 
𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴 − 1, 𝑡𝑡 = 1,∀𝑔𝑔  ( 13) 

𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1) −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

𝑗𝑗=1
,     𝑎𝑎 = 2,3, … ,𝐴𝐴 − 1, 𝑡𝑡 = 2,3, … ,𝑇𝑇,∀𝑔𝑔 ( 14) 

 𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 1,∀ 𝑔𝑔  ( 15) 

𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 = 𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1) −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

𝑗𝑗=1
,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔  ( 16) 

� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

𝑗𝑗=1
≤ 𝑀𝑀 ⋅ 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 17) 

� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

𝑗𝑗=1
≥ 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 18) 

𝑉𝑉𝑉𝑉(𝑎𝑎−1)𝑔𝑔𝑔𝑔 ≤ 𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴, 𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔  ( 19) 

𝐼𝐼𝐼𝐼(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1) −  � 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
𝐽𝐽

𝑗𝑗=1
≤ �1 −𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎� ∙ 𝑀𝑀,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 20) 
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𝐼𝐼𝐼𝐼(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1) −  � 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1) − 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
𝐽𝐽

𝑗𝑗=1
≥ 1 −𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 21) 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ+ ∀𝑎𝑎,𝑔𝑔, 𝑗𝑗, 𝑡𝑡  ( 22) 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 ∈ ℝ+ ∀𝑔𝑔, 𝑗𝑗, 𝑡𝑡  ( 23) 
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ+ ∀𝑎𝑎,𝑔𝑔, 𝑡𝑡  ( 24) 𝑋𝑋𝑔𝑔𝑔𝑔 ,𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 ∈ ℝ+ ∀𝑔𝑔, 𝑡𝑡  ( 25) 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ {0,1} ∀𝑎𝑎,𝑔𝑔, 𝑗𝑗, 𝑡𝑡 ( 26) 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 ∈ {0,1} ∀𝑎𝑎,𝑔𝑔, 𝑡𝑡 ( 27) 
 
The objective function (1) seeks to minimize the production, purchase, holding, wastage and shortage costs. Constraint 
(2) states the inventory level of each hospital in the first period. Constraint (3) updates the inventory level in each 
hospital at the end of each period including the inventory level of the previous period, the units received from the 
blood center and units used to satisfy the demand. Constraints (4) and (5) identify the wastage levels of hospitals at 
the end of each period. Constraint (6) states the demand satisfaction introducing a shortage level. Constraints (7) - 
(11) guarantee the FIFO policy at hospitals. The production quantity in blood center at the beginning of each period 
is defined by constraint (12). The inventory level in blood center in the first period is ensured by constraint (13) and 
in the remaining periods is stablished by constraint (14) as a balance between the inventory level of the previous period 
and units sent to hospitals to satisfy the demand. Constraints (15) and (16) identify the wastage levels in the blood 
center at the end of each period. Constraints (17) - (21) guarantee the FIFO policy in the blood center. Constraints 
(22) - (25) show non-negative variables. Constraints (26) and (27) states binary variables. 
 

4.2 Stochastic programming model 
We follow conventions proposed in Shapiro et al. 2014 [18]. In the multistage setting, we have the stage index 𝑡𝑡, 𝑡𝑡 =
1, . . . ,𝑇𝑇. The uncertain data 𝜉𝜉𝑡𝑡 is reveled gradually over time and decisions should be adapted to this random process. 
𝜉𝜉𝑡𝑡 = (𝜉𝜉1, … , 𝜉𝜉𝑇𝑇), represent demands at time 𝑡𝑡, with a specified probability distribution. 𝜉𝜉[𝑡𝑡] ≔ (𝜉𝜉1, … , 𝜉𝜉𝑡𝑡) denotes the 
history of the random process available at stage 𝑡𝑡. 𝑥𝑥𝑡𝑡 represents the decision variables summarized in Table 10, 𝑓𝑓𝑡𝑡 are 
the cost functions and depend on 𝑥𝑥𝑡𝑡  and 𝜉𝜉𝑡𝑡 . 𝔛𝔛𝑡𝑡 , 𝑡𝑡 = 2, … ,𝑇𝑇 are measurable closed valued multifunctions state as 
constraints (2) - (27) and 𝑥𝑥𝑡𝑡 must be valued in 𝔛𝔛𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡). It is assumed that the first-stage data, i.e., 𝜉𝜉1, 𝑓𝑓1 and the 
set 𝔛𝔛1 are deterministic. The values of the decision variables 𝑥𝑥𝑡𝑡, chosen at stage 𝑡𝑡, may depend on the information 𝜉𝜉[𝑡𝑡] 
available at the time of decision and do not depend on future observations. This is the requirement of nonanticipativity. 
A T-stage stochastic programming problem can be written in the general nested formulation as follows,  

Min
𝑥𝑥1 ∈ 𝔛𝔛1

𝑓𝑓1(𝑥𝑥1) + 𝔼𝔼|𝜉𝜉1 � inf 
𝑥𝑥2 ∈ 𝔛𝔛2(𝑥𝑥1, 𝜉𝜉2)

𝑓𝑓2(𝑥𝑥2, 𝜉𝜉2) + 𝔼𝔼|𝜉𝜉[2] �
… + 𝔼𝔼|𝜉𝜉[𝑇𝑇−1] � inf

𝑥𝑥𝑇𝑇 ∈ 𝔛𝔛𝑇𝑇(𝑥𝑥𝑇𝑇−1, 𝜉𝜉𝑇𝑇)
𝑓𝑓𝑇𝑇(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑇𝑇)��� ( 28) 

Nested formulation (28) allows to write the following dynamic programming equations. At the stage 𝑡𝑡 = 𝑇𝑇, 
𝑄𝑄𝑇𝑇�𝑥𝑥𝑇𝑇−1, 𝜉𝜉[𝑇𝑇]� = inf

𝑥𝑥𝑇𝑇 ∈ 𝔛𝔛𝑇𝑇(𝑥𝑥𝑇𝑇−1, 𝜉𝜉𝑇𝑇)
𝑓𝑓𝑇𝑇(𝑥𝑥𝑇𝑇, 𝜉𝜉𝑇𝑇) ( 29) 

At stages 𝑡𝑡 = 2, … ,𝑇𝑇 − 1, 

𝑄𝑄𝑡𝑡�𝑥𝑥𝑡𝑡−1, 𝜉𝜉[𝑡𝑡]� = inf
𝑥𝑥𝑡𝑡 ∈ 𝔛𝔛𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)

𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) + 𝒬𝒬𝑡𝑡+1�𝑥𝑥𝑡𝑡 , 𝜉𝜉[𝑡𝑡]�, with 𝒬𝒬𝑡𝑡+1�𝑥𝑥𝑡𝑡, 𝜉𝜉[𝑡𝑡]� ≔ 𝔼𝔼|𝜉𝜉[𝑡𝑡]�𝑄𝑄𝑡𝑡+1�𝑥𝑥𝑡𝑡 , 𝜉𝜉[𝑡𝑡+1]�� ( 30) 

The optimal values are denoted by 𝑄𝑄𝑡𝑡�𝑥𝑥𝑡𝑡−1, 𝜉𝜉[𝑡𝑡]� and are called the cost-to-go functions. 𝒬𝒬𝑡𝑡+1�𝑥𝑥𝑡𝑡 , 𝜉𝜉[𝑡𝑡]� denote the 
recourse functions. The idea is to calculate the cost-to-go functions recursively, going back in time. At stage 𝑡𝑡 = 1, 

inf
𝑥𝑥1 ∈ 𝔛𝔛1

𝑓𝑓1(𝑥𝑥1) + 𝔼𝔼[𝑄𝑄2(𝑥𝑥1, 𝜉𝜉2)] ( 31) 

The optimal value of (31) gives the optimal value of the problem (28). We assume that the process 𝜉𝜉1, … , 𝜉𝜉𝑇𝑇  is 
stagewise independent. Then 𝜉𝜉𝑇𝑇 is independent of 𝜉𝜉[𝑇𝑇−1]. The dynamic programming equation (30) can be written as 

𝑄𝑄𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) = inf
𝑥𝑥𝑡𝑡 ∈ 𝔛𝔛𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)

𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) + 𝒬𝒬𝑡𝑡+1(𝑥𝑥𝑡𝑡),     with  𝒬𝒬𝑡𝑡+1(𝑥𝑥𝑡𝑡) = 𝔼𝔼[𝑄𝑄𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1)]  ( 32) 
Where, 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) ≔ 𝑐𝑐𝑡𝑡T𝑥𝑥𝑡𝑡 ,     𝔛𝔛1 ≔ {𝑥𝑥1 ∶ 𝐴𝐴1𝑥𝑥1 = 𝑏𝑏1, 𝑥𝑥1 ≥ 0} 

𝔛𝔛𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) ≔ {𝑥𝑥𝑡𝑡 ∶ 𝐵𝐵𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 = 𝑏𝑏𝑡𝑡, 𝑥𝑥𝑡𝑡 ≥ 0},     𝑡𝑡 = 2, … ,𝑇𝑇 ( 33) 

Below we present the dynamic formulation in the blood supply chain model. At stage 𝑇𝑇,  

𝑄𝑄𝑇𝑇(𝑥𝑥𝑇𝑇−1, 𝜉𝜉𝑇𝑇) = Min     𝑝𝑝𝑝𝑝 ��𝑋𝑋𝑔𝑔𝑔𝑔

𝐺𝐺

𝑔𝑔=1

� + 𝑐𝑐 ����𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + ℎ ����𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

+ 

��𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + 𝑤𝑤𝑤𝑤 ���𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔

𝐽𝐽

𝑗𝑗=1

+ �𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔

𝐺𝐺

𝑔𝑔=1

𝐺𝐺

𝑔𝑔=1

� + 𝑠𝑠𝑠𝑠 ����𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� 

( 34) 
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Subject to constraints (3), (5) – (12), (14), (16) – (27) evaluated in 𝑡𝑡 = 𝑇𝑇. The optimal value of  𝑄𝑄𝑇𝑇(𝑥𝑥𝑇𝑇−1, 𝜉𝜉𝑇𝑇) depends 
on the decision variables 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑇𝑇−1), 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇−1), 𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑇𝑇−1) and data 𝜉𝜉𝑇𝑇. At stage 𝑡𝑡 = 2, … ,𝑇𝑇 − 1, 

𝑄𝑄𝑡𝑡�𝑥𝑥𝑡𝑡−1, 𝜉𝜉[𝑡𝑡]� = Min 𝑝𝑝𝑝𝑝 ���𝑋𝑋𝑔𝑔𝑔𝑔

𝑇𝑇−1

𝑡𝑡=2

𝐺𝐺

𝑔𝑔=1

� + 𝑐𝑐 �����𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇−1

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + ℎ�����𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇−1

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

 

+���𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇−1

𝑡𝑡=2

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + 𝑤𝑤𝑤𝑤 ����𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔

𝑇𝑇−1

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

+ ��𝑂𝑂𝑂𝑂𝑔𝑔𝑡𝑡

𝑇𝑇−1

𝑡𝑡=2

𝐺𝐺

𝑔𝑔=1

� + 𝑠𝑠𝑠𝑠 �����𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇−1

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

�

+ 𝔼𝔼�𝑄𝑄𝑡𝑡+1�𝑥𝑥𝑡𝑡 , 𝜉𝜉[𝑡𝑡+1]�� 

( 35) 

Subject to constraints (3), (5) – (12), (14), (16) – (27). All of them evaluated in 𝑡𝑡 = 2, … ,𝑇𝑇 − 1. At first stage we have, 

Min 𝑝𝑝𝑝𝑝 ��𝑋𝑋𝑔𝑔1

𝐺𝐺

𝑔𝑔=1

� + 𝑐𝑐 ����𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎1

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + ℎ����𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎1

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

+ ��𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

�

+ 𝑤𝑤𝑤𝑤 ���𝑂𝑂𝑔𝑔𝑔𝑔1

𝐽𝐽

𝑗𝑗=1

+ �𝑂𝑂𝐵𝐵𝑔𝑔1

𝐺𝐺

𝑔𝑔=1

𝐺𝐺

𝑔𝑔=1

� + 𝔼𝔼�𝑄𝑄2�𝑥𝑥1, 𝜉𝜉[2]�� 

( 36) 

Subject to constraints (2), (4), (12), (13), (15), and (22) – (27) evaluated in 𝑡𝑡 = 1.  
We consider that the random process 𝜉𝜉1, … , 𝜉𝜉𝑇𝑇  has a finite number of realizations. A scenario tree is used to create a 
representation of all the possible 𝐾𝐾  sequences of data. The scenario tree has nodes organized in levels which 
correspond to stages 1, … ,𝑇𝑇. At stage 1 we have one root node associated with the value of 𝜉𝜉1. At stage 𝑡𝑡 = 2, we 
have as many nodes as realizations of 𝜉𝜉2. For each node 𝜄𝜄 of stage 𝑡𝑡 = 2 we create at least as many nodes at stage 3 as 
different values of 𝜉𝜉3 and so on. The set of all nodes at stage 𝑡𝑡 is denoted by Ω𝑡𝑡. The ancestor of a node 𝜄𝜄 ∈ Ω𝑡𝑡  is 
𝑎𝑎(𝜄𝜄) ∈ Ω𝑡𝑡−1, 𝑡𝑡 = 2, … ,𝑇𝑇. The set of children nodes of a node 𝜄𝜄 ∈ Ω𝑡𝑡  is denote by 𝐶𝐶𝜄𝜄 ∈ Ω𝑡𝑡+1, 𝑡𝑡 = 1, … ,𝑇𝑇. Scenario is 
a path between the root node and a node in the last stage 𝑇𝑇 and can be defined by its nodes 𝜄𝜄1, … , 𝜄𝜄𝑇𝑇. We denote the 
probability of moving from 𝜄𝜄 ∈ Ω𝑡𝑡  to a node 𝜂𝜂 ∈ 𝐶𝐶1 by 𝜌𝜌𝜄𝜄𝜄𝜄, where 𝜌𝜌𝜄𝜄𝜄𝜄 ≥ 0 and ∑ 𝜌𝜌𝜄𝜄𝜄𝜄 𝜂𝜂∈𝐶𝐶𝜄𝜄 = 1. The probability of a 
scenario is given by the product 𝜌𝜌𝜄𝜄1𝜄𝜄2𝜌𝜌𝜄𝜄2𝜄𝜄3 …𝜌𝜌𝜄𝜄𝜄𝜄−1𝜄𝜄𝜄𝜄 . We suppose a finitely number of scenarios 𝐾𝐾. Each scenario 𝑘𝑘 
has a probability 𝑝𝑝𝑘𝑘 and a sequence of decisions. We present the stochastic programming model stated as a MILP 
model, using the indices, parameters and decision variables in Tables 8-10, 

Min     𝑝𝑝𝑝𝑝 ��𝑋𝑋𝑋𝑋𝑋𝑋𝑔𝑔

𝐺𝐺

𝑔𝑔=1

� + 𝑐𝑐 ����𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + ℎ ����𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽

𝑗𝑗=1

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

+ ��𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎

𝐺𝐺

𝑔𝑔=1

𝐴𝐴

𝑎𝑎=1

� + 

𝑤𝑤𝑤𝑤 ���𝑂𝑂𝑂𝑂𝑂𝑂𝑔𝑔𝑔𝑔

𝐽𝐽

𝑗𝑗=1

+ �𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔

𝐺𝐺

𝑔𝑔=1

𝐺𝐺

𝑔𝑔=1

� + ��𝑝𝑝𝑔𝑔𝑔𝑔 �𝑝𝑝𝑝𝑝 ��𝑋𝑋𝑔𝑔𝑔𝑔𝑘𝑘
𝑇𝑇

𝑡𝑡=2

� + 𝑐𝑐 ����𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝑇𝑇

𝑡𝑡=2

− 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘

𝐽𝐽

𝑗𝑗=1

𝐴𝐴

𝑎𝑎=1

� +
𝐺𝐺

𝑔𝑔=1

𝐾𝐾

𝑘𝑘=1

 

ℎ����𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝑇𝑇

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

𝐴𝐴

𝑎𝑎=1

+ ��𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝑇𝑇

𝑡𝑡=2

𝐴𝐴

𝑎𝑎=1

� + 𝑤𝑤𝑤𝑤 ���𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘
𝑇𝑇

𝑡𝑡=2

+ �𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔𝑘𝑘
𝑇𝑇

𝑡𝑡=2

𝐽𝐽

𝑗𝑗=1

� + 𝑠𝑠𝑠𝑠 ����𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝑇𝑇−1

𝑡𝑡=1

𝐽𝐽

𝑗𝑗=1

𝐴𝐴

𝑎𝑎=1

�� 

( 37) 

Subject to, 
 𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 ,     𝑎𝑎 = 1,2, . . . ,𝐴𝐴 − 1,∀𝑔𝑔, 𝑗𝑗  ( 38) 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎−1𝑔𝑔𝑔𝑔 + 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘  −  𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑎𝑎 = 1,2, . . . ,𝐴𝐴 − 1, 𝑡𝑡 = 2,∀𝑔𝑔, 𝑗𝑗,𝑘𝑘 ( 39) 
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1)

𝑘𝑘 + 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑎𝑎 = 1,2, . . . ,𝐴𝐴 − 1, 𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗,𝑘𝑘  ( 40) 

𝑂𝑂𝑂𝑂𝑆𝑆𝑔𝑔𝑔𝑔 = 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎,     𝑎𝑎 = 𝐴𝐴,∀𝑔𝑔, 𝑗𝑗 ( 41) 
𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 = 𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔𝑔𝑔 + 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 2,∀𝑔𝑔, 𝑗𝑗, 𝑘𝑘 ( 42) 

𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 = 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1)
𝑘𝑘 +  𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)

𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗, 𝑘𝑘 ( 43) 

𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 = � 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐴𝐴

𝑎𝑎=1
,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗, 𝑘𝑘  ( 44) 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘  ≤  𝑀𝑀 ⋅  𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘  ,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗, 𝑘𝑘  ( 45) 𝐹𝐹𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑘𝑘 ≥ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗,𝑘𝑘  ( 46) 
𝑉𝑉(𝑎𝑎−1)𝑔𝑔𝑔𝑔𝑔𝑔
𝑘𝑘 ≤ 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘 ,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴, 𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗, ( 47) 
𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔𝑔𝑔 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ≤ �1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘 � ∙ 𝑀𝑀,    𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗, 𝑘𝑘 ( 48) 
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1)

𝑘𝑘 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ≤ �1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 � ∙ 𝑀𝑀,     𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗,𝑘𝑘  ( 49) 

𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔𝑔𝑔 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ≥ 1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 ,     𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗,𝑘𝑘  ( 50) 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 + 𝐼𝐼(𝑎𝑎−1)𝑔𝑔𝑔𝑔(𝑡𝑡−1)

𝑘𝑘 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ≥ 1 −𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 ,     𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗,𝑘𝑘 ( 51) 
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𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎 = 𝑋𝑋𝑋𝑋𝑆𝑆𝑔𝑔,     𝑎𝑎 = 1,∀𝑔𝑔  ( 52) 
𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑋𝑋𝑔𝑔𝑔𝑔𝑘𝑘 ,     𝑎𝑎 = 1, 𝑡𝑡 = 2,3, . . . ,𝑇𝑇 − 1,∀𝑔𝑔, 𝑘𝑘  ( 53) 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴 − 1,∀𝑔𝑔  ( 54) 

𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔 −� 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘
𝐽𝐽

𝑗𝑗=1
,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴 − 1, 𝑡𝑡 = 2,∀𝑔𝑔,𝑘𝑘  ( 55) 

𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1)
𝑘𝑘 −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)

𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
,     𝑎𝑎 = 2,3, . . . ,𝐴𝐴 − 1, 𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑔𝑔,𝑘𝑘  ( 56) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑔𝑔 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎 ,    𝑎𝑎 = 𝐴𝐴,∀𝑔𝑔 ( 57) 

𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔𝑘𝑘 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔 −�𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘  
𝐽𝐽

𝑗𝑗=1

,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 2,∀𝑔𝑔, 𝑘𝑘 ( 58) 

𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔𝑘𝑘 = 𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1)
𝑘𝑘 −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)

𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
,     𝑎𝑎 = 𝐴𝐴, 𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑘𝑘  ( 59) 

� 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
≤ 𝑀𝑀 ⋅ 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔, 𝑘𝑘  ( 60) 

� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘

𝐽𝐽

𝑗𝑗=1
≤ 𝑀𝑀 ⋅ 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔,𝑘𝑘 ( 61) 

� 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
≥ 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔, 𝑘𝑘 ( 62) 

� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘

𝐽𝐽

𝑗𝑗=1
≥ 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔,𝑘𝑘 ( 63) 

𝑉𝑉𝐵𝐵(𝑎𝑎−1)𝑔𝑔𝑔𝑔
𝑘𝑘 ≤ 𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 , 𝑎𝑎 = 2,3, . . . ,𝐴𝐴, 𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑘𝑘  ( 64) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔 −� 𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
≤ �1 −𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 � ∙ 𝑀𝑀,    𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔, 𝑘𝑘  ( 65) 

𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1)
𝑘𝑘 −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)

𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
≤ �1 −𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 � ∙ 𝑀𝑀,    𝑡𝑡 = 3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 66) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆(𝑎𝑎−1)𝑔𝑔 −� 𝑌𝑌𝑌𝑌𝑌𝑌_𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘
𝐽𝐽

𝑗𝑗=1
≥ 1 −𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,     𝑡𝑡 = 2,∀𝑎𝑎,𝑔𝑔,𝑘𝑘  ( 67) 

𝐼𝐼𝐵𝐵(𝑎𝑎−1)𝑔𝑔(𝑡𝑡−1)𝑘𝑘 −� 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−1)
𝑘𝑘 − 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘

𝐽𝐽

𝑗𝑗=1
≥ 1 −𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 ,    𝑡𝑡 = 3, . . . ,𝑇𝑇,∀ 𝑎𝑎,𝑔𝑔 ( 68) 

𝑌𝑌𝑌𝑌𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ+     ∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 69) 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ+ 
𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 70) 

𝑂𝑂𝐹𝐹𝑆𝑆𝑔𝑔𝑔𝑔 ∈ ℝ+     ∀𝑔𝑔, 𝑗𝑗 ( 71) 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 ∈ ℝ+     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔, 𝑗𝑗 ( 72) 
𝐼𝐼𝐼𝐼𝑆𝑆𝑎𝑎𝑎𝑎 ∈ ℝ+     ∀𝑎𝑎,𝑔𝑔 ( 73) 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ+     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 74) 

𝑋𝑋𝑋𝑋𝑆𝑆𝑔𝑔,𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑔𝑔 ∈ ℝ+    ∀𝑔𝑔 ( 75) 𝑋𝑋𝑔𝑔𝑔𝑔,𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 ∈ ℝ+     𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑔𝑔 ( 76) 
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ {0,1} 
𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗 ( 77) 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ∈ {0,1}    𝑡𝑡 = 2,3, . . . ,𝑇𝑇,∀𝑎𝑎,𝑔𝑔 ( 78) 

The scenarios that have the same history 𝜉𝜉[𝑡𝑡] cannot be distinguished, so we enforce the nonanticipativity constraints: 
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ , 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ , 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘′ ,  

𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,     𝑡𝑡 = 2, . . . ,𝑇𝑇 − 1,∀𝑎𝑎,𝑔𝑔, 𝑗𝑗,      ∀𝑘𝑘,𝑘𝑘′ for which 𝜉𝜉[𝑡𝑡]
𝑘𝑘 = 𝜉𝜉[𝑡𝑡]

𝑘𝑘′ 
( 79) 

𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 = 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘′ ,    𝑡𝑡 = 2, . . . ,𝑇𝑇 − 1,∀𝑔𝑔, 𝑗𝑗,     ∀𝑘𝑘,𝑘𝑘′ for which 𝜉𝜉[𝑡𝑡]
𝑘𝑘 = 𝜉𝜉[𝑡𝑡]

𝑘𝑘′ ( 80) 
𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑉𝑉𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ ,𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑊𝑊𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′ , 
𝑡𝑡 = 2, . . . ,𝑇𝑇 − 1,∀𝑎𝑎,𝑔𝑔,     ∀𝑘𝑘,𝑘𝑘′ for which 𝜉𝜉[𝑡𝑡]

𝑘𝑘 = 𝜉𝜉[𝑡𝑡]
𝑘𝑘′ 

( 81) 

𝑋𝑋𝑔𝑔𝑔𝑔𝑘𝑘 = 𝑋𝑋𝑔𝑔𝑔𝑔𝑘𝑘
′ ,𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔𝑘𝑘 = 𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔𝑘𝑘

′ ,     𝑡𝑡 = 2, . . . ,𝑇𝑇 − 1,∀𝑔𝑔,      ∀ 𝑘𝑘,𝑘𝑘′ for which 𝜉𝜉[𝑡𝑡]
𝑘𝑘 = 𝜉𝜉[𝑡𝑡]

𝑘𝑘′ ( 82) 
Equations (37) – (82) form the stochastic programming model for blood supply chain. 
 

5. Computational study 
PLTs have been the product chosen due to their high perishability with a shelf life of 5 days and we include the 8 
ABO/Rh(D) types of blood. The planning horizon defined is 8 periods to face the demand of a week because in the 
first period, the model decides how much to produce in the blood center and the order quantity of each hospital to 
supply the demand of the next day. The demands for a week of each blood type are assumed to follow a Poisson 
distribution with varying daily means 𝜆𝜆 and independent of each other. We use the weekly demand data used by 
Haijema et al. 2009 [19] as the demand of one hospital. We consider that the second hospital has a 20% higher demand 
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than the first one. The demand distribution by blood type is proportional to the percentage of each blood type in the 
population [10]. The computational experiments are based on the daily Poisson mean demand data exposed in Table 
12. Table 13 summarize the values of cost parameters for PLTs that are used in the models. For this study, we do not
consider the initial inventory neither for the blood center nor for hospitals.

Table 5. Demand data 

Blood type US (%) [10] Mean Demand Data Hospital 11 Mean Demand Data Hospital 21

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 
O+ 37,40% 49 38 60 38 49 14 25 59 45 72 45 59 16 30 
O- 6,60% 9 7 11 7 9 3 5 11 8 13 8 11 3 6 
A+ 35,70% 47 36 58 36 47 13 24 56 43 69 43 56 15 28 
A- 6,30% 9 7 11 7 9 3 5 10 8 13 8 10 3 5 
B+ 8,50% 12 9 14 9 12 3 6 14 11 17 11 14 4 7 
B- 1,50% 2 2 3 2 2 1 1 3 2 3 2 3 1 2 

AB+ 3,40% 5 4 6 4 5 2 3 6 5 7 5 6 2 3 
AB- 0,60% 1 1 1 1 1 1 1 1 1 2 1 1 1 1 

1Mo=Monday, Tu=Tuesday, We=Wednesday, Th=Thursday, Fr=Friday, Sa=Saturday and Su=Sunday 

Table 6. Cost parameters 

Parameter Value Parameter Value Parameter Value 
Production cost [2] 538 $/unit Wastage cost [19] 150 $/unit Holding cost [13] 1.25 $/unit∙day 
Purchase cost [13] 100 $/unit Shortage cost [14] 1500 $/unit 

MATLAB R2010b was used to generate a total of 54 datasets to test the SP model. 18 datasets considering two 
realizations of the demand, 18 considering three realizations and the remaining 18 considering five realizations. These 
are generated from a Poisson distribution using the mean values in Table 12. In each group of the 18 datasets, we 
generate 3 datasets for 6 different planning horizons: 3, 4, 5, 6, 7 and 8 days to evaluate the performance of the 
mathematical model in terms of computational time. 
The deterministic programming model described by equations (1) - (27) and the stochastic programming model 
described by (37) - (82) are solved using IBM ILOG CPLEX with GAMS version 23.5.2 on a computer with a 
processor Intel(R) Core(TM) i5, 2.67 GHz and 4 GB memory. Table 15 contains the computational times required to 
solve the mathematical models. For the stochastic case, only 15 instances are solved due to the problem complexity. 
Indeed, this last grows with the time horizon length and the number of scenarios. Table 16 shows the results obtained 
from the objective function in each of the mathematical models. This total cost increases in the stochastic model with 
respect to the deterministic model, since the second one considers the costs that can be incurred when the demand is 
not met. 

Table 7. Computational times of solutions 

Periods MILP Model 
(s) 

Realizations of demand1
Periods MILP Model 

(s) 

Realizations of 
demand1

2 3 5 2 3 5 
3 0.103 0.5495 45.343 2002.331 6 0.149 OOM OOM OOM 
4 0.038 39.564 OOM OOM 7 0.073 OOM OOM OOM 
5 0.043 5132.913 OOM OOM 8 0.158 OOM OOM OOM 

1Average time of solutions (s), OOM=Out of memory 

Table 8. Total cost 

Periods MILP Model Realizations of demand1

2 3 5 
3 $333,049 $351,032 $352,914 $359,840 
4 $587,821 $588,736 - - 
5 $708,289 $725,830 - - 

1Average of the expected total cost 
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For the planning horizon with 3 periods of time we obtained solution. Figure 3 shows a behavioral pattern of associated 
costs. We can observe that when the expected cost of production increases, i.e., the number of blood units available 
in the supply chain is higher, the expected cost of shortage decreases. 
 

 
Figure 1. Costs for the 3 periods case  

5.1 Simulation and results 
In order to evaluate the production quantities of blood center and order quantities of hospitals in different periods of 
the planning horizon obtained as results of mathematical models, we develop the Algorithm 1 using the indices, 
parameters and variables from Table 8 to Table 10.  
 

Algorithm 1. Simulation of blood supply chain 
Input: Number of simulations 𝑁𝑁, parameters 𝐴𝐴,𝐺𝐺, 𝐽𝐽,𝑇𝑇, cost parameters 𝑝𝑝𝑝𝑝, 𝑐𝑐,ℎ,𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠, initial inventory 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎, demand 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 and 
solutions from mathematical models 𝑋𝑋𝑔𝑔𝑔𝑔 ,𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Output: Average costs and average shortage rates in hospitals. 
1 for 𝑡𝑡 = 1 
2  Calculate 𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝑋𝑋𝑔𝑔𝑔𝑔 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎  
3  Calculate 𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 
4  Calculate 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  
5  Calculate 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 
6 end 
7 for 𝑛𝑛 = 1:𝑁𝑁 
8  for 𝑡𝑡 = 2:𝑇𝑇 
9   Define the available units in blood center at the beginning of period 𝑡𝑡, 𝐶𝐶𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 , to satisfy the hospital orders 
10   if ∑ 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽
𝑗𝑗=1 ≤ 𝐶𝐶𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 

11    Calculate units, 𝐹𝐹𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎, to satisfy the order quantities from hospitals considering ∑ 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽
𝑗𝑗=1  

12   else 
13    Calculate 𝐹𝐹𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝐶𝐶𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 
14    Define 𝑆𝑆𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
15   end 
16   Define the available units in hospitals at the beginning of period 𝑡𝑡, 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, to satisfy the demand 
17   Generate a random number 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔~𝑃𝑃(𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔) 
18   if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 ≤ ∑ 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴

𝑎𝑎=1  
19    Calculate ∑ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴

𝑎𝑎=1  considering 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 
20   else 
21    Calculate 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
22    Define 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
23   end 
24   At the end of period 𝑡𝑡: 
25   Calculate 𝐼𝐼𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝑋𝑋𝑔𝑔𝑔𝑔 and 𝐶𝐶𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐹𝐹𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 
26   Calculate 𝑂𝑂𝐵𝐵𝑔𝑔𝑔𝑔 
27   Calculate 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 considering 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
28   Calculate 𝑂𝑂𝑔𝑔𝑔𝑔𝑔𝑔 
29  end 
30  Calculate the production, purchase, inventory, wastage, shortage and total costs for each simulation 𝑛𝑛 

31  Calculate the shortage rate in hospitals as 𝑠𝑠𝑠𝑠 =
∑ ∑ ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔

𝑇𝑇
𝑡𝑡=1

𝐽𝐽
𝑗𝑗=1

𝐺𝐺
𝑔𝑔=1

∑ ∑ ∑ ∑ 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
𝑡𝑡=1

𝐽𝐽
𝑗𝑗=1

𝐺𝐺
𝑔𝑔=1

𝐴𝐴
𝑎𝑎=1

 for each simulation 𝑛𝑛 

32 end 
33 Calculate the average costs and the average shortage rates in hospitals 
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Table 23 shows the outputs: expected costs and the new evaluation parameter defined in the Algorithm 1, the shortage 
rate in hospitals. The number of simulations defined is 𝑁𝑁 = 100. The simulation of results of the deterministic model 
registers levels of inventory and shortage of blood units in hospitals. If the blood supply chain does not consider 
demand as a stochastic parameter and the blood center produces the units established by the deterministic model just 
as the hospitals order the units established for each period, it is expected that the supply chain present the higher 
shortage rate compared with the expected shortage rate considering the results of the stochastic programming models. 
The expected total costs increase if the expected cost of shortage and the shortage rate decreases. 

Table 9. Solutions by mathematical programming models and simulation  

Results 
Expected cost1  

Production Purchase Inventory in 
hospitals 

Inventory 
BC 

Shortage 
hospitals 

Total 
costs 

Expected 
shortage rate 

Deterministic 
Model $280,298 $52,100 $0 $651 $0 $333,049 0% 

Simulation $280,298 $52,100 $77 $651 $55,980 $389,106 7.08% 
Stochastic2 

2 RM $273,253 $50,790 $96 $635 $26,257 $351,032 - 
2 RS $305,763 $56,833 $176 $710 $24,025 $387,508 3.03% 
3 RM $288,114 $53,553 $164 $670 $10,762 $353,262 - 
3 RS $327,821 $60,700 $263 $762 $17,895 $407,441 2.26% 
5 RM $284,134 $52,813 $188 $661 $22.046 $359.842 - 
5 RS $348,624 $64,767 $327 $810 $8,580 $423,108 1.08% 

1Considering the defined number of simulations 𝑁𝑁, 2Average of expected cost, RM=Realizations model, 
RS=Realizations simulation. 

 
6. Conclusions  

This document presented a study to optimize the blood supply chain for a single-blood center multiple-hospitals 
system considering products of 8 different blood types. The challenge of inventory control and distribution of 
perishable products, especially blood products, inspired us to start this research. A deterministic and stochastic 
programming models are developed to minimize the total cost and the shortage and wastage levels in blood supply 
chain within a planning horizon. Datasets are generated to evaluate the efficiency of the proposed models and an 
algorithm is used to simulate and evaluate the results from mathematical models. One of the challenges of stochastic 
programming is the size of the problems and the resolution of these in reasonable computational times. For future 
research related to the blood supply chain modeled as a multi-stage problem, it is proposed to evaluate scenarios 
reduction methods. In addition to this, approximation methods can be used such as the L-Shape Method or Cutting 
Plane Approximation in the case of multi-stage problems. Heuristics, Markov processes or other solution methods can 
be developed to optimize the blood supply chain proposed. The mathematical model developed has possibilities of 
expansion: to include ABO compatibility or include other stochastic parameters such as blood supply or C/T ratio. 
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