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Abstract 

Probiotics are living microorganisms which have beneficial effects and which can promote good health. While 
bacterial population dynamics is one of the classical and oldest areas of mathematical biology, it appears that the 
cholesterol assimilation phenomena by probiotics and its implications for health effects were so far ignored in 
modeling studies. In this paper, a dynamic model based on a qualitative-phenomenological description of cholesterol 
assimilation by probiotics is presented. The model consists of three autonomous differential equations and is able to 
describe the reduction of cholesterol by 11 different strains of lactobacilli. The model was solved numerically and 
was validated against an existing set of experimental observations. An optimization scheme that can perform 
parameter estimation using a multi-start approach was prepared and used to find the set of parameters that gives a 
best fit between the experimental observations and the model predictions. An important feature of this 
implementation is that the dynamic microbial model was introduced as a constraint in the optimization problem and 
this allows for the use of efficient differential equations solvers. The model proved to offer robust predictions for 
cholesterol assimilation by strains of lactobacilli and was also able to capture a number of experimental observations 
including that microbial growth is enhanced by the presence of cholesterol. This work is a first effort in modeling 
such phenomena and the ability of the model to represent different strains will allow for future work on optimizing 
an ecological mix of strains that will be able to reduce cholesterol levels in an efficient manner.  
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1 Introduction 

Probiotics are microorganisms able to benefit health if administered in sufficient quantities (Frece et al., 2005). 
Probiotics have been consumed as functional foods and nutraceuticals for several decades, most notably together 
with dairy products. There has been recently a resurgence of interest in the potential of probiotics for medical and 
clinical purposes (Chen et al., 2012; Ooi and Liong, 2010; Sanders, 2000). Several factors prompted this 
development, but the most significant is the surging level of multi-drug resistance among pathogens in hospitals. 
This has been accompanied by an increasing emergence of scientific and clinical evidence for the efficacy and 
effectiveness of some probiotic strains (Reid et al., 2003). 

A number of review articles have appeared over the years summarizing the health benefits of probiotics and their 
clinical applications (Anila et al., 2016; Kumar et al., 2013; Sanders, 2000; Mattila et al., 2002; Reid et al., 2003; 
Santosa et al., 2006). Probably the most understood and powerful clinical application of probiotics is in the 
treatment of enteric infection and diarrhea. Among the bacterial pathogens that have been fought with probiotics like 
Bifidobacterium bifidum  and Lactobacillus GG are Escherichia coli, Salmonella spp, Shigella spp, and Clostridium 
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difficile} (Bezkorovainy, 2001). Inflammatory disease and bowel syndromes such as pouchitis and Crohn's disease 
are further promising areas in probiotic theory. Reid et al. (2003) report that for these diseases cases combinations of 
probiotic strains may be more effective. This poses the additional challenge of finding the right ecological mix, 
instead of identifying a single agent. Probiotics have also been found to reduce the risk of colon cancer (Liong, 
2008; Sanders, 2000; Santosa et al., 2006). Further potential health benefits of probiotics reported in the literature 
are: lowering blood pressure and cholesterol; increased immune response; alleviation of lactose intolerance; 
treatment of urogenital infections; re-establishment of the natural microflora subsequent to a conventional antibiotic 
therapy. 

Several studies have shown that high concentrations of cholesterol in the blood for long periods cause coronary heart 
disease (Akalin et al., 1997; Anderson and Gilliland, 1999). This disease is known to be a leading cause of death, 
similar to cancer (Aloglu and Oner, 2006). A number of studies stressed on the use of the chemical 𝛽𝛽 −cyclodextrin 
to reduce cholesterol (Lee et al., 1999), however because of the high cost of this chemical combined with a loss of 
aroma made the practice of its use not preferred  (Aloglu and  Oner, 2006). On the other hand, the use of probiotics 
for reducing cholesterol has been shown to be an effective alternative (Liong and Shah, 2005), for instance, studied 
the effect of eleven strains of lactobacillion on cholesterol removal and presented growth curves that showed that all 
strains were able to assimilate cholesterol at varying levels ranging from 12.03 to 32.25 𝜇𝜇𝜇𝜇/𝑚𝑚𝑚𝑚 .  Furthermore, most 
strains considered exhibited better growth in the presence of cholesterol indicating that cholesterol has stimulated 
their growth. 

In this paper, a mathematical model that is able to present the phenomena of cholesterol assimilation is attempted. 
The mathematical modeling of microbial populations has been a central issue for many groups that work in the 
general field of biology. The use of models describing the growth of microorganisms has been reported by many 
researchers (e.g. Rogers and Reardon, 2000; Arvin et al., 2000; Roberts and Baranyi, 1994; Swinnen et al.,  2004)  
presented, for instance a common growth model that consisted of an adjustment function which enables the 
transition from the lag phase to the experimental phase. Rogers and Reardon (2000) presented models that take into 
account the interactions between microbial species during biodegradation. Wang et al (2006) presented a model that 
describes the interactions and coexistence of three microorganisms (filamentous bacteria, floc-forming bacteria, and 
protozoa) within mixed activated sludge systems. Rijgersberg et al. (2013) proposed a model that determines the 
maximum population density of a pathogenic microorganism (Salmonella) on alfalfa as a function of initial 
contamination level, the total count of the indigenous microbial population, the pathogen growth rate, and the 
microbial population density.  

In the last few years, there has been a growing interest in preparing predictive microbiology models that can 
describe other phenomena. Poscet et al. (2004) proposed a model that is able to explain the transition from the 
exponential growth phase to the stationary phase due to substrate depletion. Dens et al. (1999) presented a model 
that can take into account the influence of a background of microflora in a food product and hence consider the 
growth difference of microorganism while in a pure culture and while in a mixed culture. McKellar (1997), and 
Dens and Van Impe (2001) presented models that take into account the variability of microbial growth with respect 
to space. The McKellar model (1997) is a two-compartmental model in which the cell population is distributed 
between a non-growing and a growing compartment. The Dens and Van Impe (2001) model introduces space as an 
extra dimension by assuming that the evolution of the microorganisms is location dependent. Recently Fgaier et al. 
(2008, 2009, 2010, 2011) presented mathematical models that can describe pseudomonas growth under conditions of 
iron limitation and discussed the potential for many medical applications. These included the design of drugs that 
can target iron overload and toxicity for the treatment of cancer and for the prevention of heart and other organ 
damage caused by iron overload. 

A comprehensive literature survey yielded no model that can incorporate the mechanism of cholesterol removal by 
probiotics. There is therefore clearly a need for a suitable prediction model for such a phenomena. This paper is our 
first attempt to prepare a model in terms of a set of ordinary differential equations that can offer good predictions of 
cholesterol removal by probiotics. The variables of the model as well as the model parameters and conditions will be 
explained in details. A number of simulations were carried out in order to study the behavior of the model and the 
effect of the different parameters and initial conditions. The model is validated by comparing its predictions against 
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existing experimental measurements of eleven different probiotic strains. It was found that the model is able not 
only to provide the right qualitative behavior but also to give good predictions of the phenomena under study.  

2 Mathematical Model 

We formulate a mathematical model that describes the mechanism of cholesterol removal by strains of lactobacilly. 
The removal of cholesterol is due to its assimilation during bacteria growth at varying levels. 

An extensive literature lead us to conclude that there is currently no mathematical model that describes this 
phenomema. In this model, we distinguish between two fractions of cholesterol: cholesterol dissolved in the medium 
C, and the assimilated cholesterol S attached to the cells.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑑𝑑(𝑘𝑘2𝑎𝑎 − 𝑆𝑆)                                                                             (1) 
 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎𝑑𝑑(𝑘𝑘2𝑎𝑎 − 𝑆𝑆)                                                                                 (2) 
 
Where the parameters (a, 𝑘𝑘2) are positive constants. Equation (1) correctly states that the amount of cholesterol C(t) 
decreases over time. It assumes that the rate of cholesterol in the system is proportional to the microbial probiotic 
population N(t), the amount of cholesterol in the system C(t), and the population of free/ not assimilated cells (i.e. 
𝑘𝑘2N - S). Similarly in equation (2) and based on the principle of mass conservation, the assimilated cholesterol rate 
dS/dt is assumed to be identical in magnitude to the rate of cholesterol available in the system. The probiotic bacteria 
population is characterized by its population size N which is assumed to grow according to a logistic growth law, 
where 𝜂𝜂 the growth rate is and 𝑘𝑘1is the carrying capacity i.e. 
 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑎𝑎(1 −
𝑎𝑎
𝑘𝑘1

)                                                                                        (3) 

 
It was observed by Shah and co-workers (Liong and Shah, 2005) that adding probiotics to a solution containing 
cholesterol decreases gradually the amount of cholesterol in the medium. This growth was noticeable in the first 
hours in the experiments. This can be interpreted that bacteria take time to adapt and respond to new environmental 
conditions and factors. Therefore a mathematical factor which describes this adaptation phenomena must be 
introduced. 

Following the lag model of Roberts and Baranyi (1994) and Fgaier et al. (2008) we introduce the following 
physiological state: 

𝛼𝛼(𝑑𝑑) =
𝜑𝜑0𝑒𝑒−𝜇𝜇𝜇𝜇

1 + 𝜑𝜑0𝑒𝑒−𝜇𝜇𝜇𝜇
                                                                                   (4) 

 
The above adaptation function 𝛼𝛼(𝑑𝑑) satisfies 0 ≤ 𝛼𝛼(𝑑𝑑) ≤ 1 and 𝑑𝑑𝑑𝑑

𝑑𝑑𝜇𝜇
≥ 0 

We get a system of three autonomous nonlinear ordinary differential equations which is summarized by equations 
(1) and (2) above and a modified version of equation (3) that takes into account the lag phase as shown below: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑎𝑎𝛼𝛼(1 −
𝑎𝑎
𝑘𝑘1

)                                                                                          (5)      

Adding equations (1) and (2) gives 

   𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

= 0                                                                                                 (6)                                    

Integrating equation (6) from 0 to t gives: 

𝑑𝑑(𝑑𝑑) + 𝑆𝑆(𝑑𝑑) = 𝑑𝑑(0) + 𝑆𝑆(0) =  𝛾𝛾                                                    (7) 
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Where 𝛾𝛾 is the initial amount of cholesterol in the system. 
Based on equation (7), the amount of cholesterol C(t) is given by: 

𝑑𝑑(𝑑𝑑) =  𝛾𝛾 − 𝑆𝑆(𝑑𝑑)                                                                                         (8) 

Substituting equation (8) into equation (2) gives: 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎(𝛾𝛾 − 𝑆𝑆)(𝑘𝑘2𝑎𝑎 − 𝑆𝑆)                                                                     (9) 
Our system therefore reduces to a system of two equations (equations (5) and (9)) in the two unknowns S(t) and N(t). 
Once S and N are analyzed and solved for, C(t) can be obtained from equation (8). 

3 Qualitative Analysis 
The solution to the system consisting of equations (5) and (9) is positive. We also note that  
𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

> 0 , 𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

> 0  , and 𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

< 0 (since the amount of cholesterol C is decreasing). 
 
Theorem: Let 𝑎𝑎0 ≤ 𝑘𝑘1   and  𝑆𝑆 ≤ 𝑑𝑑(0) and 𝑆𝑆(0) < 𝛾𝛾𝑎𝑎(0). The system {(5), (9)} associated with the initial 
conditions (S(0), N(0)) has a unique non negative bounded solution. Furthermore, the solution N(t) is monotonically 
increasing and    𝑎𝑎(𝑑𝑑) → 𝑎𝑎∞ =  𝑘𝑘1 > 0    as 𝑑𝑑 → ∞, S(t) is monotonically increasing 𝑆𝑆(𝑑𝑑) → 𝑘𝑘2 𝑎𝑎∞ =  𝑘𝑘1𝑘𝑘2 > 0 as 
𝑑𝑑 → ∞. 
 
Proof: Let's first denote the RHS of (5 and (9) by F(N, S) and let   𝐾𝐾 = {𝑎𝑎 ≥ 0, 𝑆𝑆 ≥ 0} be the positive cone. Then 
the vector function F is continuously differentiable and thus satisfies a Lipschitz condition. We also note that for the 
outer normal vectors n (N, S) to the boundary of K the tangent condition   𝑛𝑛(𝑎𝑎, 𝑆𝑆)𝑇𝑇𝐹𝐹(𝑎𝑎, 𝑆𝑆) ≤ 0 is satisfied. 
Therefore, the Invariance Theorem (Walter) is therefore satisfied and the solution to the model (5) and (9) is unique 
and remain in K.  
Since S is positive, it is also bounded by a constant 𝛾𝛾 which depends on the initial data. 
 
The solution to the system (5) and (9) is bounded in positive time. Assuming 𝛼𝛼 is nearly  equal to 1 and solving for 
N we get 
 

𝑎𝑎(𝑑𝑑) =  𝑑𝑑0𝑘𝑘1
𝑑𝑑0+(𝑘𝑘1−𝑑𝑑0) 𝑒𝑒−𝜂𝜂𝜂𝜂

                                                                       (10)  
 
We also note that equation (5) contains the equilibrium solutions N= 0 and N = 𝑘𝑘1 corresponding to the initial 
condition 𝑎𝑎0 = 0 and 𝑎𝑎0 = 𝑘𝑘1 respectively. Thus if 𝑎𝑎0 > 0 and if we let 𝑑𝑑 → ∞ in equation (10) 
then 𝑎𝑎(𝑑𝑑) =  𝑑𝑑0𝑘𝑘1

𝑑𝑑0𝜇𝜇→∞
𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑘𝑘1. We can then conclude that for each N>0 the solution approaches the solution N = 𝑘𝑘1 

asymtotically as 𝑑𝑑 → ∞. We can conclude that N is bounded by 𝑘𝑘1 even when we include α in the model since α as 
given by equation (4) is always positive and less than one. 
 

4 Quantitative Analysis 

    4.1   Description of dada: 

The presented model will be evaluated using the existing experimental data of Liong and Shah (2005) who studied 
cholesterol removal by eleven different strains of lactobacilli. They investigated cholesterol assimilation by 
determining the difference of cholesterol content in the medium before and after incubation of the eleven strains, 
seven strains were of the Lactobacillus Casei type and four of the Lactobacillus acidophilus type. Growth curves of 
all eleven Lactobacilli were presented along with the cholesterol assimilated. Two replicates were performed with 
two measurements per replicates. The mean of the repeated measurement reported by the authors along with 
standard errors of means (error bars) ranging from 0.13−

 +   to 0.40−
+ . 
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In the next section, we will conduct a parameter estimation approach based on these experiments. The model we 
presented in section 4.2 will be validated against this available experimental data sets. We will also compare the 
qualitative prediction of the model to the observations of Liong and Shah (2005). Liong and Shah(2005)  observed 
that: (i) Cholesterol removal is due to its assimilation during growth, incorporation into the membrane of the cells, 
and binding into the membrane cells, (ii)  Cholesterol removal is associated with growth of cultures, (iii) cholesterol 
removal also by dead and resting cells, (iv) Most strains exhibit higher growth in the presence of cholesterol, and (v) 
Most strains show gradual growth for the first 12 to 18 h followed by rapid growth followed by rapid growth 
thereafter. 

4.2 Parameter  Estimation: 

We will use here an optimization technique called sequential quadratic programming (SQP) in order to estimate the 
parameters of the model described by equations (5) and (9). We will use the experimental data discussed in the 
previous section in the implementation of SQP. Since equation (5) is decoupled from equation (9), the parameters 
𝜂𝜂,𝜑𝜑0 and 𝑘𝑘1  in equation (5) will be first estimated independently and the remaining parameters appearing in 
equation (9) will then be estimated. 

The estimation of unknown parameters in our model will be based on the measurement of Liong and Shah (2005) 
about the dynamic system. Numerous parameter estimation techniques in dynamic models are available in the 
literature. These are based on nonlinear regression algorithms such as Marquardt Newton and Gauss- Newton (Bard 
1974). The parameter estimation problem can be regarded as the inverse of simulation (Wiesbaden/ Braunschweig 
Vieweg 1993). In simulation, the set of parameters in the model is assumed to be known and the model is used to 
offer predictions about the biological phenomena as a function of time. In parameter estimation, some observation 
about the phenomena are known at different times while the parameters themselves are unknown. The estimation of 
the model outputs and the measured data are minimized. The most used objective function in such minimization is 
based on the sum of squared differences between the measurements and the model predictions. 

There are two general approaches that can be employed to address the parameter estimation problem of dynamic 
systems. The first approach is based on converting the dynamic system into a set of algebraic equations which are 
then included in the optimization model for minimizing the errors between the model outputs and the experimental 
measurements. This approach is often referred to as simultaneous approach. The conversion can be done through the 
use of finite difference approximations, polynomial approximations, or collocation techniques Villadsen and 
Michelsen (1978) presented different polynomial approximations that can be used to solve differential equations. 
Van Den Brosch and Hellinckx (1974) used linearization techniques combined with collocation in order to solve 
problems where the differential equations are either first or second systems. Tjoa and Biegler (1991) used 
orthogonal collocation on finite elements. 

The simultaneous approach for solving the parameter estimation problem of dynamic systems leads to large-scale 
nonlinear optimization problems which require special solution strategies (Betts and Frank 1994; Cervantes and 
Biegler 2000). Stability questions often accompany the transformed problems along with questions about the 
placement of the description points in order to maintain accuracy (Logsdon and Bieler 1989). Furthermore, the 
solutions of the resulting optimization problems are not always feasible. 

The second approach for solving the parameter estimation problem of dynamic systems involves the use of 
numerical techniques for solving the differential equations using initial guesses of the parameters. The predictions of 
the model are then compared with the experimental measurements, and an optimization algorithm is used to 
determine a new set of parameter estimates. This approach is referred to as the sequential approach because the 
solution of differential equations and the optimization over the parameters are performed in a sequential manner, 
(Bellman et al. 1967; Luus 1998). The sequential approach results in smaller nonlinear optimization problems 
compared to the simultaneous approach. The solutions of the optimization problems are always feasible but the 
overall procedure is slower than the simultaneous approach because of the repeated numerical solutions of the 
differential equations. 
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In order to estimate the unknown parameters, an optimization criteria must be constructed. In this study, a least -
square like objective function is used. Since we have experimental measurements of the 11 different strains at 
different times, the overall objective function is written as: 

min
𝜃𝜃
𝐽𝐽 = �((𝑎𝑎𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑎𝑎𝑙𝑙,𝑙𝑙𝑚𝑚𝑑𝑑)

2
                                                                   (11) 

The constraints of the optimization problem are represented by the differential equation (5) for the problem 𝑃𝑃1  of 
estimating  the parameters 𝜂𝜂,𝜑𝜑0 and 𝑘𝑘1 and by the set of equations (5) and (9) for problem 𝑃𝑃2   (below) for estimating 
the parameters a and 𝑘𝑘2 The parameter 𝛾𝛾 (initial cholesterol content) was fixed mainly because it can be easily 
measured in an experimental settings. Furthermore, we observed that 𝛾𝛾, a, and 𝑘𝑘2 are correlated and multiple sets 
can leads to an efficient solution methodology. Fixing 𝛾𝛾 reduces the search space for the parameters a and 𝑘𝑘2 
tremendously. 
The parameter estimation problems can be written as: 
 
 (P1) : min

𝜃𝜃=(𝜂𝜂,𝜑𝜑0,𝑘𝑘1)
𝐽𝐽 = ∑(𝑎𝑎𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑎𝑎𝑙𝑙,𝑙𝑙𝑚𝑚𝑑𝑑)2                                                                                        (12) 

 
            s.t. 
 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑎𝑎𝛼𝛼(1 −
𝑎𝑎
𝑘𝑘1

)                                                                                           (5) 

 
and: 
 
(P2) min

𝜃𝜃=(𝑎𝑎,𝑘𝑘2)
𝐽𝐽 = ∑(𝑎𝑎𝑙𝑙,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑎𝑎𝑙𝑙,𝑙𝑙𝑚𝑚𝑑𝑑)2    (13) 

 
            s.t. 
 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑎𝑎𝛼𝛼(1 −
𝑎𝑎
𝑘𝑘1

)                                                                                         (5) 

 
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑎𝑎(𝛾𝛾 − 𝑆𝑆)(𝑘𝑘2𝑎𝑎 − 𝑆𝑆)                                                                           (9) 
 
The above problems are solved through a sequential approach by coupling the solutions of the differential equations 
with the optimization problem. The differential equations are solved by a stiff solver as we did in our previous work 
(Fgaier et al. 2008)} and the optimization problem is solved through a SQP technique. 

The SQP method is due to the original work of Schittowowski (1985) and has been shown to outperform other 
nonlinear optimization methods in terms of efficiency and accuracy over a wide range of test problems.  

However it is often very likely that the solution obtained will be a local one (Tawarmalani and Sahinidis 2002). In 
order to overcome this limitation, we decided to employ a multi-start strategy where we used the SQP algorithm for 
estimating the parameters repeatedly from different initial estimates. The approach proved to be robust as will be 
discussed in the results section (section 4.3) and different starting points lead to different optimal parameter values. 
More than 1000 starting points were obtained from a random generation scheme combined with an order of 
magnitude analysis that provided good starting bounding intervals. 

Furthermore, we employed an interval analysis scheme in order to enhance our search for better estimates. In this 
scheme, the boundary intervals for the parameters were divided into 1000 subintervals each, and simulations were 
conducted with the parameters taking values the endpoints of each subintervals. A total of 109 simulations were 
conducted for estimating the parameters 𝜂𝜂,𝜑𝜑0 and 𝑘𝑘2 and 106 simulations for estimating the parameters a and 𝑘𝑘2 
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.Contour plots were analyzed in order to identify regions of optimality and the reduced subintervals for the different 
parameters. The multi-start SQP strategy was then employed on the subintervals. 

4.3 Results 

In order to check the model validity, the parameter estimation procedure discussed in the previous section was 
employed. As we indicated earlier, we considered first the parameters 𝜂𝜂,𝜑𝜑0 and 𝑘𝑘1 , that appear in equation (5) 
which gives the growth of a certain strain. Following the bounding step of the parameters and the interval estimation 
step, a multi-start SQP strategy was employed as discussed in the previous section. Different random initial starting 
points for the parameters 𝜂𝜂,𝜑𝜑0 and 𝑘𝑘1 were generated based on routine that randomly generates numbers (rand) in 
the interval [0, 1]. These random numbers are then converted to the desired ranges through the equation: 

                                         (𝑃𝑃𝑈𝑈 −  𝑃𝑃𝐿𝐿). 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑 +  𝑃𝑃𝐿𝐿                                                                                      (14)     
Where 𝑃𝑃𝐿𝐿  and 𝑃𝑃𝑈𝑈 represent lower and upper bounds for the parameters, respectively. These upper and lower values 
were obtained from the 109 simulations aimed at identifying regions of optimality (section 4.2). The estimation 
results for the eleven different strains are given in Table1. 

A comparison of the model predictions and the experimental data is given in Figure 1. It can be seen from the figure 
that the model provides acceptable predictions. Table 1 gives also non-graphical statistics of the goodness of the fit. 
The sum of squares error (SSE) in the table is a measure of the overall deviation of the predicted values from the 
experimental observations (Freud, 1992): 

                                     𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑙𝑙 −  𝑦𝑦�𝑙𝑙)2
𝑛𝑛

𝑙𝑙=1

                                                          (15) 

The statistic R2 shown in the table measures how successful is the fit in explaining the variation of the data. It is the 
square of the correlation between the observed experimental values and the predicted values from the model. It was 
calculated based on the equation: 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 −  
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                              (16) 
 
Where SSR is the regression sum of squares and is given by: 

𝑆𝑆𝑆𝑆𝑅𝑅 =  �( 𝑦𝑦�𝑙𝑙 − 𝑦𝑦�𝑙𝑙  )2
𝑛𝑛

𝑙𝑙=1

                                                                                                 (17)    

 
and SST is the total corrected sum of squares. i.e. 
 

            𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑙𝑙 −  𝑦𝑦�𝑙𝑙)2
𝑛𝑛

𝑙𝑙=1

                                                                                        (18)     

𝑦𝑦�𝑙𝑙 in the above equations represents the predictions of the model, while 𝑦𝑦𝑙𝑙  represents the experimental obsevations. 
𝑦𝑦�  is the mean of all 𝑦𝑦𝑙𝑙values. As can be seen from Table 1, the  𝑅𝑅2is more than 90% for most strains and therefore 
the model with the estimated parameters 𝜂𝜂,𝜑𝜑0 and 𝑘𝑘1  explains more than 90% of the total variations in the 
experimental data of the growth of the strains. Figure 2 provides cross plots for the eleven different strains. As can 
be seen, the plots fall on the 45o pareto lines and this indicates again the goodness of the model predictions. 

Having estimated the parameters associated with equation (5), we moved then to estimating the parameters a and 𝑘𝑘2 
that appear in equation (9). We proceeded in the same fashion as we did previously. The first step is an order of 
magnitude consideration. In order to have a robust starting interval for the parameters a and 𝑘𝑘2 equation (9) is 
rewritten as: 

𝑑𝑑𝑑𝑑
 𝑑𝑑𝜇𝜇

= 𝑏𝑏1𝑛𝑛(𝑑𝑑)(1 − 𝑏𝑏2𝑆𝑆)(𝑛𝑛(𝑑𝑑) − 𝑏𝑏3𝑆𝑆)    (19)                                            
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Where 𝑛𝑛(𝑑𝑑) =  𝑑𝑑(𝜇𝜇)
𝑘𝑘1

 is a sort of normalized population size,𝑏𝑏1 =  𝑎𝑎
𝛾𝛾𝑘𝑘1 𝑘𝑘2   

2 , 𝑏𝑏2 = 1
𝛾𝛾
 and 𝑏𝑏3 =  1

𝑘𝑘1𝑘𝑘2
 

and we make use of the following observations: 
 

(i) parameters a in equation (9) is much smaller than 1(, ii) parameter 𝑏𝑏1 in equation (19) is expected to be 
between 0.1 and 10 and  (iii) parameter 𝑏𝑏1 in equation (19) is expected to be between 0.1 and 10. 

(ii) Our understanding of the dynamics of the model leads us to conclude that in all 11 cases S must 
converge to 𝑘𝑘1𝑘𝑘2 as t becomes large (note: in some cases this convergence is observed in the data, in 
other cases, the experiments stop long before convergence is reached). 
 

Following the above bounding phase, we performed a large number of simulations in order to pinpoint subintervals 
within which we look for optimal parameter values. The original intervals  

 
0 ≤ 𝑘𝑘2 ≤

𝑑𝑑∞
𝑘𝑘1

    and      0.1
𝛾𝛾𝑑𝑑∞𝑘𝑘1𝑘𝑘2

2 ≤ 10
𝛾𝛾𝑑𝑑∞𝑘𝑘1𝑘𝑘2

2   obtained from the above order of magnitude analysis were divided into 

1000 subintervals each and 106  simulations were performed. Afterwards the multi-stat search was commenced. The 
parameter estimation results for the eleven strains are given in Table 2. A comparison of the model predictions of 
assimilated cholesterol and the experimental measurements is provided in Figure 3. As can be seen from the figure, 
the model predictions are good in this case too.  
Given the variations in the experimental measurements, it can be concluded that the model output is within the error 
bars already present in the experimental data. The statistics measuring the goodness of fit are given in Table 2. The 
definitions of SSE and R2 are the same as for the comparisons of growth data. Cross plots are shown in Figure 4 and 
the model predictions for cholesterol reduction in the system is given in Figure 5. The cross plots show again that 
the model offers good predictions within the measurement errors. No cholesterol measurement in the media are 
available, but Figure 5 shows the expected trend that cholesterol is reduced over time in an "exponential “fashion. 
 

5 Conclusion  

In this paper, a model that can describe the mechanism of cholesterol assimilation by different strains of lactobacilli 
was presented. Prior experimental observations on eleven different strains of lactobacilli showed that these strains 
are able to assimilate cholesterol and their growth gets actually enhenced by its presence. The presented model 
proved effective in representing experimental observations. The model consisted of a set of three autonomous 
differential equations. The qualitative properties of the model were studied using the theory of differential equations 
and were found to conform to the experimental observations. The parameters in the model were estimated using a 
robust multi-start sequential quadratic optimization approach. Eleven sets of parameters all in the same range were 
obtained for the different strains. The model was found to not only give the right qualitative behavior of the different 
experimental measurements but also give good quantitative predictions. These models will be used in the future to 
conduct a study on combining different strains with the objective of reducing the time it takes for cholesterol 
assimilation in an efficient manner. 
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Table 1. Parameters estimated and statistical analysis for growth of the eleven strains 

Strain η  
0φ  1k  SSE 2R  Max 

error 
Min error Average 

error 
1A 0.4753 0.0865 1.0883     0.0130     0.9918     0.0789 0 0.0276 
1B 0.3808 0.1500 1.1535     0.0766     0.0766     0.1800 0 0.0689 
1C 0.5728 0.1500 1.4004     0.0337     0.9870     0.1560 0 0.0410 
1D 0.4036 0.1500 0.8049     0.0484     0.8385     0.1501 0 0.0512 
2A 0.3798 0.1008 0.7137     0.0163     0.9701     0.0911 0 0.0329 
2B 0.5010 0.0753 1.1184     0.0150     0.9912     0.0620 0  0.0327 
2C 0.4533 0.1499 1.0601     0.0299     0.9800     0.1052 0 0.0388 
2D 0.4551 0.1500 1.7877     0.0214     0.9949     0.0947 0 0.0332 
2E 0.3649 0.1500 1.9186     0.0053     0.9988     0.0414 0 0.0192 
2F 0.3758 0.1500     1.3407     0.0361     0.9833     0.1198 0 0.0447 
2G 0.4428 0.0756     1.2727     0.0114     0.9946     0.0669 0 0.0254 
 

 

 

 

Table 2. Parameters estimated and statistical analysis for cholesterol assimilated by the eleven strains. 

Strain a  
2k  SSE 2R  Max error Min error Average 

error 
1A 0.0210 12.4892 106.5129 0.7372 7.1297 0 2.5470 
1B 0.0651 21.5529 93.0326 0.8880 7.2651 0 2.2292 
1C 0.0209 13.3599 35.6473 0.9222 3.6657 0 1.4956 
1D 0.0891 30.2181 124.0970 0.8503 8.8352 0 2.5389 
2A 0.0232 42.5215 57.1318 0.9521 5.8646 0 1.7898 
2B 0.0234 15.2044 128.9372 0.7330 8.0394 0 2.8910 
2C 0.0423    10.4906     9.3141     0.9501     1.8178          0 0.8272 
2D 0.0224 6.2116 35.1487 0.8131 3.4050 0 1.5897 
2E 0.0309 14.4672 35.8475 0.9642 4.2894 0 1.3512 
2F 0.0508 19.5227 118.7624 0.8724 8.5471 0 2.4817 
2G 0.0684 15.0775 25.0938 0.9522 3.8730 0 1.1553 
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Figure 1. Comparison of model predictions for the growth of the eleven different strains with experimental data used in the 
parameter estimation. The continuous line represents the model predictions and the circles (o) represent the experimental 
measurements.  
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Figure 1. Continued - Comparison of model predictions for the growth of the eleven different strains with experimental data used 
in the parameter estimation. The continuous line represents the model predictions and the circles (o) represent the experimental 
measurements.  
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Figure 2. Cross plots for the growth of the eleven different strains.  
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Figure 2. Continued - Cross plots for the growth of the eleven different strains.  
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Figure 3. Comparison of model predictions for cholesterol assimilated by the eleven different strains with experimental data used 
in the parameter estimation. The continuous line represents the model predictions and the circles (o) represent the experimental 
measurements.  
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Figure 3. continued- Comparison of model predictions for cholesterol assimilated by the eleven different strains with experimental 
data used in the parameter estimation. The continuous line represents the model predictions and the circles (o) represent the 
experimental measurements  
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Figure 4. Cross plots for cholesterol assimilated by the eleven different strains.  
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Figure 4. continued- Cross plots for cholesterol assimilated by the eleven different strains. 
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