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1 Introduction

Scheduling has received a significant attention by scholars in the field of operations research and design
of algorithms, resulting in a large number of publications in the literature. There are two main reasons
for such significant efforts on developing novel algorithms for scheduling problems. First, scheduling has
extensive applications in several domains. Scheduling problems have extensively been applied in different
problems in manufacturing systems, healthcare systems, distributed systems, etc. Second, most of the
scheduling problems are known to be computationally complex, that is, commercial solvers are not able to
solve real size problem instances in reasonable amount of time. More specifically, most of the scheduling
problems are NP-hard, that is, there is no algorithm to solve these problems in polynomial time, unless
P=NP. This feature has motivated scholars to design efficient algorithms which are capable of solving
scheduling problems, efficiently. Heuristic methods have been among the most widely used methods for
solving scheduling problems. Heuristic methods are usually efficient in terms of the execution time, while
the main drawback of these methods is the lack of any guarantees for the quality of solutions. Given
this fact, a significant amount of efforts in the area of scheduling has been devoted to the development
of approximation algorithms. An α-approximation algorithm is a polynomial time algorithm that, for
all instances of the problem, finds a solution whose distance from the optimal solution is within a factor
of α (so-called the approximation ratio or performance guarantee of the algorithm). In addition to the
significant work on developing algorithms for scheduling problems, some scholars devoted their efforts on
leveraging the huge amount of computing power of the current multicore computing systems and develop
efficient parallel algorithms. Though, considerable attention has not been devoted to the development
of parallel approximation algorithms and the majority of works have been focused on parallel heuristic
algorithms.

In this thesis, we address the single machine scheduling which is a very fundamental scheduling prob-
lem with extensive applications in various areas ranging from computer science to manufacturing. Also,
this problem is the building block of different decomposition-based algorithms for shop scheduling prob-
lems. We design a parallel randomized approximation algorithm for the non-preemptive single machine
scheduling problem with release dates and delivery times, where the objective is to minimize the comple-
tion time of all jobs (i.e., makespan). This problem is denoted by 1|rj , qj |Cmax, where rj is the release date
and qj is the delivery time of job j, and Cmax is the completion time of all jobs. We employ the proposed
approximation algorithm to design efficient parallel algorithms for flow shop scheduling problem denoted
by F || Cmax, where F specifies that the environment is a flow shop, and Cmax specifies the objective,
that is, the minimization of the makespan. The flow shop scheduling problem is one of the most complex
scheduling problems, and finding an optimal solution for real size instances in a reasonable amount of
time is practically infeasible. In this thesis, our aim is to leverage the huge amount of computing power
of the current multicore computing systems and develop efficient parallel algorithms to solve large size
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flow shop scheduling problems in reasonable amount of time. We design two parallel algorithms based on
the Shifting Bottleneck (SB) heuristic. The first one is a coarse-grained parallel algorithm that is suitable
for execution on multi-core systems with a small number of cores, while the second one is a fine-grained
parallel algorithm suitable for multi-core systems with a large number of cores. We perform extensive
experimental analyses to evaluate the performance of the proposed algorithms for instances of various
sizes.

1.1 Contributions of this research

Most variants of the single machine scheduling problems are known to be NP-hard, and therefore, many
efforts have been devoted to the development of approximation algorithms for solving them. In this thesis,
we design a parallel randomized approximation algorithm for the non-preemptive single machine schedul-
ing problem with release dates and delivery times (1|rj , qj |Cmax), where the objective is to minimize the
completion time of all jobs (i.e., makespan). The majority of research in approximation algorithms has
been focused on designing sequential approximation algorithms with various approximation guarantees
for a large variety of NP-hard combinatorial optimization problems [14]. Very few efforts were directed
at designing parallel approximation algorithms for such problems. To the best of our knowledge, we
are not aware of any research addressing the design of parallel approximation algorithms for the prob-
lem of non-preemptive single machine scheduling with release dates and delivery times to minimize the
makespan.

In this thesis, we also address the flow shop scheduling problem as an application of the proposed
algorithm for single machine scheduling problem. We design two Shifting Bottleneck-based parallel al-
gorithms for the flow shop scheduling problem. The first one is a coarse-grained parallel algorithm that
is suitable for execution on multi-core systems with a small number of cores, while the second one is a
fine-grained parallel algorithm suitable for multi-core systems with a large number of cores. The results
of our experimental analysis on the proposed parallel algorithms for the flow shop scheduling problem
show that the proposed algorithms can solve large-size instances of the problem in a reasonable amount
of time and obtain solutions that are within acceptable distance from the lower bounds. The proposed
parallel algorithms achieve good speedup with respect to the serial variants of the algorithms.

The research presented in this dissertation has been submitted to top journals in operations research
including Computers & Operations Research [2] and IEEE Transactions on Systems, Man and Cybernet-
ics: Systems [3].

2 A Parallel Randomized Approximation Algorithm for Non-Preemptive
Single Machine Scheduling

Single machine scheduling problems have received a significant attention from researchers in the field of
operations research and algorithms, resulting in a large number of publications. The majority of research
in approximation algorithms has been focused on designing sequential approximation algorithms with
various approximation guarantees for a large variety of NP-hard combinatorial optimization problems.
Very few efforts were directed at designing parallel approximation algorithms for such problems. To the
best of our knowledge, we are not aware of any research addressing the design of parallel approximation
algorithms for the problem of non-preemptive single machine scheduling with release dates and delivery
times to minimize the makespan. This problem is denoted by 1|rj , qj |Cmax and is defined as follows:

1|rj , qj |Cmax Problem: We are given a set of n jobs that need to be scheduled on a single
machine. Each job, j, j = 1 . . . , n, is characterized by its processing time pj > 0, release
date rj ≥ 0, and delivery time qj ≥ 0. At most one job can be processed at a time, a job
cannot be processed before the release date, and a job’s delivery begins immediately after its
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Table 1: Sequential approximation algorithms for 1|rj , qj |Cmax

Algorithm Approximation ratio Complexity
Schrage (EJR) [13] 2 O(n log n)
Potts [12] 3/2 O(n2 log n)
Hall and Shmoys (HS1) [6] 4/3 O(n2 log n)
Nowicki and Smutnicki [11] 3/2 O(n log n)
Hall and Shmoys (HS2) [6] 1 + ε O(161/ε(n/ε)3+4/ε)

Hall and Shmoys (HS3) [6] 1 + ε O(n log n+ n(4/ε)8/ε2+8/ε+2

processing is completed. Once a job is assigned for execution it cannot be preempted. The
objective is to minimize the makespan (i.e., the time by which all jobs are delivered).

This problem is equivalent to the single machine scheduling problem with release dates and due dates,
where the objective is to minimize the maximum lateness (1|rj |Lmax). Algorithms for solving this problem
have been widely employed as building blocks in the design of algorithms for shop scheduling problems.
This problem is strongly NP-hard [10], and therefore, a polynomial time approximation scheme (PTAS)
is the best algorithm one can hope to design for it, unless P = NP . A PTAS is a family of (1 + ε)-
approximation algorithms whose time complexity can depend arbitrarily on 1/ε. Our goal in this research
is to design a practical parallel randomized approximation algorithm for 1|rj , qj |Cmax, that exploits the
huge processing power of modern multi-core parallel systems. The traditional design of approximation
algorithms only focused on sequential approximation algorithms for 1|rj , qj |Cmax. Table 1 gives a review
of existing sequential approximation algorithms for 1|rj , qj |Cmax, their approximation ratios, and their
complexity. Other types of algorithms have been designed for solving the problem such as those based
on enumeration techniques.

Here, we address an issue that was not considered in the design of approximation algorithms for this
problem, that is, taking into account the huge computing power of the current multi-core systems and
exploiting the potential parallelism when designing parallel approximation algorithms for 1|rj , qj |Cmax.
Therefore, we design a parallel randomized approximation algorithm for 1|rj , qj |Cmax based on the HS2
algorithm (a PTAS), proposed by Hall and Shmoys [6]. To the best of our knowledge, this is the first
practical parallel approximation algorithm for 1|rj , qj |Cmax that maintains the approximation guarantees
of the sequential PTAS and is specifically designed for execution on current multi-core machines. We
perform an extensive experimental analysis on a large multi-core system to evaluate the performance
of the proposed algorithm using four different classes of benchmarks. The results show that for large
instances of the problem, our parallel randomized algorithm achieves reasonable speedup with respect to
both its sequential counterpart and the sequential EJR algorithm.

2.1 A parallel randomized approximation algorithm for 1|rj , qj |Cmax

We propose a parallel randomized approximation algorithm for 1|rj , qj |Cmax that is suitable for execution
on current multi-core systems and exploits their full potential for parallel execution. The proposed parallel
randomized algorithm is based on the sequential PTAS (HS2) proposed by Hall and Shmoys [6]. The
HS2 algorithm converts the problem into a restricted version with a fixed number of release dates by
rounding the release dates. Then, it uses dynamic programming to determine the best schedule for each
of the plausible choices of ∆i’s, where ∆i is such that ρi + ∆i is the time at which a job j with rj ≥ ρi
can be scheduled in the interval [ρi + ∆i, ρi+1 + ∆i+1). Because of the large number of choices that need
to be considered, the HS2 algorithm is not suitable for practical implementation. To provide a more
practical algorithm and reduce the number of choices that need to be considered, our parallel randomized
algorithm selects a sample out of all the possible choices and determines the best schedule by dynamic
programming, in parallel. Table 2 gives the notation that will be used in the rest of the chapter.
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Table 2: Notations

Notation Definition
pj processing time of job j
rj release date of job j
qj delivery time of job j

P̂ sum of rounded processing times
κ number of distinct release dates (equivalent to number of intervals)
ρi release date of interval i
τi actual starting time for the jobs scheduled in interval i
∆i gap between ρi and the actual starting time τi for jobs with rj ≥ ρi
cl(
−→a ; j) minimum completion time of a schedule for jobs {1, ..., j}

that uses exactly ai total processing time in the interval [ρi + ∆i, ρi+1 + ∆i+1)
s sample size
D set of possible values of ∆i

π set of all possible size κ vectors of ∆i

M number of processors (cores)
Cm the candidate schedule obtained by processor m

The algorithm is designed for shared memory parallel machines with M processors. First, the algo-
rithm rounds down all the release dates to the nearest multiple of ε

2 maxj{rj} to obtain a fixed number
κ of release dates, where ε is the approximation error. Then, it employs a second phase of rounding
in which the processing times and the release dates are rounded to the nearest multiple of εP

4n , where
P =

∑n
j=1 pj (lines 6-9). Next, all the jobs are sorted in nonincreasing order of their delivery dates and

s = d4ε e random numbers are drawn from the uniform distribution within [1, P̂ ], where P̂ =
∑n

j=1 p̂j .
These generated numbers form the set D. The algorithm generates all possible choices of vectors of size
κ out of the s elements of set D which are then stored in the array π. All the above steps are executed
by only one processor. Once the above steps are completed the algorithm proceeds to evaluate all (4ε )

κ

schedules in parallel, each processor out of the M processors being responsible for evaluating (4ε )
κ/M

schedules. For all choices of ∆i and all possible values of ai, jobs are scheduled such that each job is
scheduled last in the interval which leads to the minimum increase in the completion time. Here, ai is
the total processing time for jobs {1, ..., j} in the interval [ρi + ∆i, ρi+1 + ∆i+1). This is done by employ-
ing dynamic programming for each choice of ∆is, where each choice is associated with an index l. The
dynamic programming formulation [6] for determining the minimum completion time cl is given by:

cl(
−→a ; j) = min{max{cl(a1, . . . , ai−1, ai − pj , ai+1, . . . , aκ; j − 1), (1)

ρi + ∆i + ai + qj}; i|rj ≤ ρi}

It should be noted that to make the last interval a feasible interval, we must set the release date of
interval κ + 1 to infinity, i.e., ρκ+1 = ∞. The best schedule among all the schedules explored by a
processor m is stored in Sm. Then, the best schedule Sbest among all schedules obtained by the M
processors is determined by a parallel reduction operation with the minimum as the operator. Finally,
the algorithm uses the ordering of jobs in schedule Sbest to schedule the jobs and determines the makespan
of the final schedule using the original release dates and processing times of the jobs. In the following,
we prove that the proposed algorithm finds a schedule whose expected length is within 1 + ε from the
length of the optimal schedule.

Theorem 1 The proposed parallel randomized approximation algorithm for 1|rj , qj |Cmax finds a schedule
with an expected length of (1 + ε)T ∗, where T ∗ is the length of the optimal schedule.

Theorem 2 The time complexity of the proposed parallel randomized approximation algorithm for 1|rj , qj |Cmax
is O(8n(1ε )

2(4ε )
2
ε /M).
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(a) ε = 0.2
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(b) ε = 0.6
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(c) ε = 1.0

Figure 1: Best execution time vs. size of instances

2.2 Experimental analysis

In this section, we analyze the performance of the proposed algorithm by performing extensive experi-
ments on a multi-core system. First, we present the experimental setup, where benchmarks, distribution
of the input parameters, and performance measures are defined. Then, we present the experimental
results and analyze the performance of the proposed algorithm. Release dates, processing times, and
delivery times are the three main parameters that would affect the performance of any solution method
designed for 1|rj , qj |Cmax. Among different experimental designs, analyzing the impact of the variance of
the release date and the ratio of the delivery time to the processing time is of high importance. Therefore,
to provide some insights about the performance of our proposed algorithm on different configurations of
these parameters, we employ several benchmark problem instances classified into four classes, as follows:

I. Short delivery time, high variance release dates (SD-HVR): the delivery times are not very large
compared to the processing times, and the release dates have a high variance.

II. Long delivery time, high variance release dates (LD-HVR): the delivery times are large compared
to the processing times, and the release dates have a high variance.

III. Short delivery time, low variance release dates (SD-LVR): the delivery times are not very large
compared to the processing times, and the release dates have a low variance.

IV. Long delivery time, low variance release dates (LD-LVR): the delivery times are large compared to
the processing times, and the release dates have a low variance.

In this analysis, we rely on independently generated random instances. The size of each instance
is determined by the number of jobs, n. Also, there are three input parameters for each instance: (i)
processing times, pj , which are drawn from a normal distribution; (ii) release dates, rj , which are drawn
from a uniform distribution; and (iii) delivery times, qj , which are drawn from a normal distribution.

We present a summary of our experimental analysis by comparing the results for the four classes
of benchmarks. We aim at providing insights on the performance of the proposed parallel randomized
approximation algorithm under different distributions of the parameters. First, we compare the gap
in performance of the proposed randomized approximation algorithm with respect to EJR for different
classes of benchmarks. We observe that generally, the proposed algorithm performs better for the classes of
benchmarks with low variance for the release dates, i.e., SD-LVR and LD-LVR. Comparing short delivery
time and long delivery time classes shows that the performance of our algorithm is not significantly
sensitive to the relative distribution of the processing and delivery times.

We also compare the best execution times of the algorithms for different sizes of instances (10i, i ∈
{3, . . . , 7}) under four classes of benchmarks (Figure 1). We observe that the execution times of the
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Figure 2: Maximum speed-up with respect to EJR vs. size of instances (ε = 1.0)

proposed algorithm for the SD-HVR and LD-HVR classes are much higher than the execution times
obtained for the other two classes of benchmarks (i.e., SD-LVR and LD-LVR). This indicates that the
execution time of the proposed parallel randomized approximation algorithm is highly correlated with the
variance of the release dates. This trend is observed for all the three different values of ε considered here.
The difference between the execution time in classes with high variance release dates and low variance
release dates is more significant for small values of ε. On the other hand, no significant difference is
observed in the performance of the proposed algorithm between class SD-HVR and LD-HVR, and also
between class SD-LVR and LD-LVR. This indicates that the execution time of the proposed algorithm
is not very sensitive to the relative distribution of the processing and delivery times.

Figure 2 shows the maximum speed-up ratio with respect to EJR, SEJR, for instances of various
sizes from different classes of benchmarks. The number of required cores for obtaining the maximum
speedup is also provided. We observe an increasing trend in the maximum SEJR, which indicates that
the parallel approximation algorithm performs better than EJR in the case of large size instances. For
small size instances, the relative magnitude of the parallelization overhead prevents the algorithm to yield
a significant speed-up. No significant difference is observed in the maximum speed-up ratio, SEJR, among
different classes of benchmarks.

3 Parallel Shifting Bottleneck Algorithms for Flow Shop Scheduling

Among all the scheduling problems, the flow shop scheduling problem is one of the most complex and
widely applicable. In this research, we focus on the general flow-shop scheduling problem which has as
objective the minimization of the makespan. Using the notation for scheduling problems proposed by
Lawler et al. [9], the flow shop scheduling problem is denoted by F || Cmax, where F specifies that the
environment is a flow shop, and Cmax specifies the objective, that is, the minimization of the makespan.
The F || Cmax problem is defined as follows:

F || Cmax Problem: We are given a set of n jobs that need to be processed on a set of m
machines located in a given order. Each job j, j = 1, . . . , n, consists of a sequence of m
operations, one operation for each of the m machines. Operation i of job j executed on
machine i requires tij units of time. All jobs must be processed in the given order of the
machines and preemption is not allowed. Each machine can process at most one operation at
a time and each operation of a job starts processing only after all the preceding operations
of the job have been completed. The objective is to find a feasible schedule that minimizes
the makespan Cmax, where Cmax : = maxj=1,...,nCj , and Cj is the completion time of the last
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operation of job j, j = 1, . . . , n.

F || Cmax is strongly NP-hard [5], even for instances with only three machines (F3||Cmax). However,
Johnson [7] developed a solution method that finds the optimal solution for the F2||Cmax problem in
polynomial time. When it comes to solution approaches, a variety of methods have been developed for
different flow shop scheduling problems. Johnson’s rule [7] has served as a basis for developing heuristic
methods for general flow shop scheduling problems. Due to the complexity of the flow shop scheduling
problem, the main focus has been on developing heuristic algorithms.

The Shifting Bottleneck (SB) algorithm, developed by Adams et al. [1] is among the most popular and
powerful heuristic solution method for the Job Shop Scheduling Problem (J ||Cmax). SB is an iterative
algorithm that decomposes the job shop scheduling problem into single machine scheduling subproblems
(i.e., the single machine scheduling problem with release dates and due dates, where the objective is to
minimize the maximum lateness, 1|rj |Lmax). These single machine scheduling problems are then solved
and the machine with the largest maximum lateness, called the bottleneck machine, is given priority in
the schedule. The performance (both the quality of solution and the computational complexity) of the
SB algorithm is highly dependent on the algorithm which is used for solving the subproblems. F ||Cmax
is a special case of the job shop scheduling problem, where the order in which the jobs must pass through
machines is identical for all jobs. Therefore, the SB heuristic could be a promising method for solving
flow shop scheduling problems. We focus on the SB method because it is suitable for parallelization and
it will allow us to exploit the huge computing power of the current and future parallel computing systems
such as multi-core and many-core systems. In this research, we design two efficient parallel algorithms
based on the SB heuristic for F ||Cmax. The first one is a coarse-grained parallel algorithm that is suitable
for execution on multi-core systems with a small number of cores, while the second one is a fine-grained
parallel algorithm suitable for multi-core systems with a large number of cores. To design the parallel
algorithms we leverage our previous work [4] on designing parallel randomized approximation algorithms
for 1|rj |Lmax. We perform an extensive experimental analysis on instances of various sizes to evaluate the
performance of the proposed parallel algorithms for F ||Cmax. To the best of our knowledge the proposed
algorithms are the first parallel algorithms for solving the F ||Cmax problem presented in the literature.

3.1 Our proposed algorithms

Our proposed parallel SB algorithms (PSB-CG and PSB-FG) for the F ||Cmax problem are presented in
Algorithm 1 as a single algorithm called PSB-X, where X can be CG or FG. The input to PSB-X consists
of the number of machines m, the number of jobs n, the processing times of the operations tij , and
the binary variable REOPT , which specifies whether a re-optimization policy is used or not. In the
first step (line (1)) the algorithm initializes the set of scheduled machines, Σ̂, to the empty set. In lines
(2)-(10), it iteratively schedules the bottleneck machine until all the machines are scheduled (i.e., Σ̂ = Σ,
where Σ is the initial set of machines). In each iteration, it finds the longest path in graph G, and
updates the value of release dates, rij , and due dates, dij , of all operations. In lines (5)-(10), it identifies

the bottleneck machine from the set of unscheduled machines, Σ− Σ̂, and schedules it. These steps are
executed in parallel in both PSB-CG and PSB-CG algorithms. To identify the bottleneck machine, the
algorithm solves the 1|rj |Lmax problem for each unscheduled machine.

The PSB-CG algorithm, calls the serial version of the randomized approximation algorithm (RAA-S)
to solve the single machine scheduling problems and identifies the bottleneck machine. The PSB-FG
algorithm, employs RAA-P to solve each single machine scheduling problem using multiple cores. Once
the single machine scheduling problems are solved for all unscheduled machines, in line (7) it determines
the machine with the maximum lateness, Lmax, as the bottleneck machine. Determining the machine with
the maximum lateness is done in parallel by using a parallel reduction operation with minimum as the
reduction operator [8]. In line (9), it updates the graph G by adding the disjunctive arcs corresponding
to the solution of the bottleneck machine. Then, in line (10), it adds the bottleneck machine to the set of
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Algorithm 1 Parallel Shifting Bottleneck Algorithms (PSB-X)

Input: n, m, tij , j = 1, . . . , n, j = 1, . . . ,m, REOPT

1: Set Σ̂ = ∅.
2: while Σ 6= Σ̂ do
3: Cmax(Σ̂)← the longest path in disjunctive graph G.
4: Compute rij and dij of all operations.

5: for all machines in Σ \ Σ̂ do in parallel
6: Call RAA-S for PSB-CG or

Call RAA-P for PSB-FG
7: β ← arg maxi∈(Σ\Σ̂) Lmax(i)

8: end for
9: Add disjunctive arcs corresponding to the sequence of machine β in graph G.

10: Σ← Σ \ {β} and Σ̂← Σ̂ ∪ {β}.
11: if REOPT = True then
12: for all machines in Σ̂ \ {β} do
13: Remove the disjunctive arc corresponding to the schedule of the machine.
14: Call RAA-S for PSB-CG or

Call RAA-P for PSB-FG
15: if there is an improvement in Cmax then
16: Add disjunctive arcs corresponding to the new schedule in graph G.
17: else
18: Restore disjunctive arcs removed in line (13).
19: end if
20: end for
21: end if
22: end while

scheduled machines, Σ̂, and removes it from Σ. Lines (11)-(22) are associated with the re-optimization
of the scheduled machines. In fact, these steps are optional in the SB heuristic and are executed only if
REOPT = True.

There are different policies one might consider for re-optimization. In this research, we employ
a full re-optimization policy, that is, all the machines in set Σ̂ excluding the last scheduled machine
are considered for re-optimization. Based on this policy, in each iteration the algorithm removes the
disjunctive arcs corresponding to the solution of an already scheduled machine (line (13)), then it solves
1|rj |Lmax for that machine. In the case of the PSB-CG algorithm, the single machine scheduling problem
is solved using the serial approximation algorithm RAA-S, while in the case of PSB-FG it is solved using
the parallel approximation algorithm RAA-P. Here, the machines are re-optimized based on the order in
which they have been chosen as bottlenecks. In lines (15)-(18), the algorithm adds to G the disjunctive
arcs corresponding to the new schedule of the single machine if this schedule improves the makespan,
otherwise it restores the previous disjunctive arcs that were removed in line (13). The algorithm that we
use to solve the subproblems is a randomized approximation algorithm proposed in Section 2.

3.1.1 Experimental analysis

Here, we present a summary of our experimental analysis and consider large size instances for which the
serial version of the proposed parallel algorithms might not be able to obtain solutions in a reasonable
amount of time. We solve these instances using the two proposed parallel algorithms (i.e., PSB-CG and
PSB-FG). The large-size instances range from 6 × 103 to 25 × 103. All the experiments for large-size
instances are performed with ε = 0.8. We denote by PSB-CG-I and PSB-FG-I, the parallel algorithms
in which no re-optimization policy is used, and by PSB-CG-II and PSB-FG-II, the parallel algorithms in
which the full re-optimization policy is used.

The execution times of PSB-CG-I and PSB-FG-I for the instances ranging from (5, 3×103) to (5, 5×103)
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Figure 3: PSB-CG-I and PSB-FG-I (without re-optimization): Execution time vs. number of cores for
large-size instances (m = 5, ε = 0.8)
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Figure 4: PSB-CG-II and PSB-FG-II (with re-optimization): Execution time vs. number of cores for
large-size instances (m = 5, ε = 0.8)

Table 3: Best average execution times obtained by the parallel algorithms (sec.)

m n PSB-CG-I PSB-CG-II PSB-FG-I PSB-FG-II

3

2000 4.161 7.576 2.034 3.366
3000 6.777 12.975 2.882 5.578
4000 9.411 16.960 4.123 7.515
5000 11.750 24.272 5.201 10.495

5

2000 6.371 18.756 4.650 9.311
3000 10.630 30.504 7.333 15.426
4000 14.554 42.226 9.103 21.831
5000 19.189 60.274 12.299 31.965

are provided in Figure 3. In these algorithms, there is no re-optimization on the machines that have
already been scheduled. We observe that performing the full re-optimization policy (Figure 4) affects
the efficiency of the parallel algorithm. We also observe that the execution time of PSB-CG-II is more
sensitive to the full re-optimization policy than PSB-FG-II. For example, for the instance (5, 5× 103), the
best execution times of PSB-CG-I and PSB-CG-II are 19.189 and 60.274 seconds, respectively. While for
the same size of instances, PSB-FG-I and PSB-FG-II take 12.299 and 31.965 seconds, respectively. This
difference stems from the fact that the re-optimization part of the algorithms is completely performed
serially in the PSB-CG-II algorithm, while in PSB-FG-II the re-optimization of each machine is preformed
using the parallel randomized approximation algorithm RAA-P.
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Table 3 presents the best average execution times obtained by the PSB-CG-I, PSB-CG-II, PSB-FG-I,
and PSB-FG-II algorithms for the large-size instances. We observe that the proposed algorithms can solve
flow shop problem instances up to size (5, 5× 103) in less than a minute. This table also shows that the
execution time of the proposed algorithms is not considerably sensitive to the number of jobs, that is,
we can solve instances with large number of jobs in a reasonable amount of time. These results confirm
the efficiency of the proposed algorithms for large-size flow shop problems. For small and medium-
size instances, we observed that the value of ε significantly affects the execution time of the proposed
algorithms. The same behavior is expected for large-size instances. Therefore, in practice, we need to
choose a proper value for ε according to our expectations of the quality of solution.

The experimental analysis showed that the proposed parallel algorithms obtain high quality solutions
for fairly large-size instances of the flow shop scheduling problem in a reasonable amount of time. With
the fine-grained parallel algorithm one can solve instances with 5 machines and 5× 103 jobs in less than
a minute. We also observed that the full re-optimization policy can improve the quality of solutions
significantly for instances of all sizes.
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