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Abstract 

As there are chances that businesses and supply chains might be easily disturbed due to pandemics, for example, 
planning under uncertainties becomes an essential step that would mitigate the consequences. In this context, multiple 
objectives, considering the uncertainties and flexibility model to design a closed loop supply chain is proposed. We 
use a new approach that integrates linear physical programming and scenario-based robust optimization, which is the 
first of its kind to solve the problem of designing a closed loop supply chain network. We conclude the paper by 
presenting a numerical experiment to show the use of our model to design a tire industry CLSC in Saudi Arabia. 
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1. Introduction 
It is undeniable that forecasts and estimates fall apart when disasters take place. COVID-19 pandemic is a good 
example of what the world is going through as the pandemic had a negative impact economically and socially. In 
terms of the supply chain, when a network including supply, demand and production is less dynamic, less flexible and 
ignore uncertainties, it will experience an extensive suffer (Ivanov 2020). For example, to clarify how the supply chain 
was impacted from COVID-19: half of the world’s need for LCD panels, which are the main part of TVs, laptops and 
computer monitors, is manufactured in China. Wuhan city, which is the center of coronavirus spread in china, has five 
factories to manufacture LCD panels that all experienced a full shut down (McCrea 2020).  
 
Planning a closed loop supply chain (CLSC), which is an extension of the regular supply chain, is more complex than 
the regular supply chain. The complexity arises from the uncertainties associated with CLSC by itself. In reverse 
logistics of the CLSC, the number of returned products, their condition and time of their arrival are highly uncertain 
(Ilgin and Gupta 2013). These are very important factors as they are being considered a source of recycling or 
remanufacturing, depending on the CLSC type. This is in addition to other uncertainties already existing from the 
regular supply chain, such as a demand for products. Therefore, designing the CLSC network becomes a more 
challenging problem from this perspective. 
 
Although there are available papers discussing designing the CLSC network, the majority of their proposed models 
are deterministic (Gupta and Ilgin 2018; Ilgin and Gupta 2010; Ilgin et al. 2015; Lahane et al. 2020). There is less 
research about uncertainties in their proposed models. In this paper, we extend the model proposed by Aldoukhi and 
Gupta (Aldoukhi and Gupta 2020), in which we integrate uncertainties on the product demand and the number of 
returned products. Our model differs from other available models by allowing the product to substitute, which adds 
flexibility to our model and using a new approach that integrates linear physical programming (LPP) and scenario-
based robust optimization. To the best of our knowledge, this is the first attempt to use this new integrated approach 
in this area. 
 
2. Problem Description  
The problem of our concern is a network of CLSC that consists of raw material suppliers, manufacturing centers, 
distribution centers, collection centers and market locations. The manufacturing centers are responsible for producing 
new and remanufactured products and then shipping them to the market locations through the distribution centers. The 
returned products are shipped from the market locations to the collection centers, where they are inspected and sorted. 
Products with remaining useful life are shipped to the manufacturing centers for remanufacturing according to their 
quality level while the remaining products are disposed of. Our goal is to design the CLSC network with an optimal 

3352

mailto:aldoukhi.m@northeastern.edu
mailto:s.gupta@northeastern.edu


Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management 
Detroit, Michigan, USA, August 10 - 14, 2020 
 

© IEOM Society International 
 

number of facilities opened and the number of products shipped across the network under multiple objectives, 
considering uncertainties and flexibility.  
 
The objectives considered are economic objective, which aims to minimize the total cost of the network, 
environmental objective, which minimizes carbon emission of different activities in the network, and service level 
objective, which aims to maximize market locations’ level of service in terms of products delivered from distribution 
centers. More details on the service level objective and how to calculate the level of service coefficient of the market 
location are shown in the maximal covering location problem section. 
 
The uncertainties considered in the proposed model are the demand of new and remanufactured products and the 
number of returned products. Allowing products to substitute in case of not being able to satisfy the original demand 
of a product using a one-way substitution policy, is the flexibility considered in our model and this differs our model 
from other available models. 
  
3. The Maximal covering location problem (MCLP) 
To calculate the level of service coefficient of the market locations in the service level objective, we use MCLP which 
was first introduced by Church and ReVelle (1974). It aims to maximize the service level (coverage level) to a location 
within a predetermined distance from the service provider according to a coverage function as shown in figure 1. 
Selim and Ozkarahan (2008) and Zarandi et al. (2011) implemented the same technique to find the service level 
coefficient. However, the first model was only for a forward supply chain and both models neglected uncertainties, 
except the second model by Zarandi and Davari which considered fuzziness in the objective functions. 
 

 
 

Figure 1. Coverage functions (Eiselt and Marianov 2009) 

 
4. Methodology 
For the first time in the literature, we use an approach that integrates LPP and a scenario-based robust optimization.  
LPP deals with optimization problems consisting of multiple objectives. By using preference functions as shown in 
figure 2, expressing the preference of each objective function becomes more accurate to the decision-maker. For more 
information about how LPP is performed, we refer the reader to Ilgin and Gupta (2012). The final LPP formulation is 
as follow: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  � � (𝑤𝑤𝑤𝑤𝑖𝑖,𝑟𝑟𝑟𝑟+
5

𝑟𝑟𝑟𝑟≥2𝑖𝑖

𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ +  𝑤𝑤𝑤𝑤𝑖𝑖,𝑟𝑟𝑟𝑟− 𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟−  ) 
 

 

 

(1) 

Subjected to: 

𝑔𝑔𝑖𝑖 −  𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ ≤   𝑡𝑡𝑖𝑖,𝑟𝑟𝑟𝑟−1+                                 (2) 

𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ ≥ 0 𝑎𝑎 𝑛𝑛𝑛𝑛 𝑔𝑔𝑖𝑖 ≤   𝑡𝑡𝑖𝑖5+                                              (3) 
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In equation (1), 𝒘𝒘𝒘𝒘𝒊𝒊,𝒓𝒓𝒓𝒓+  is a positive weight and 𝒘𝒘𝒘𝒘𝒊𝒊,𝒓𝒓𝒓𝒓− is a negative weight for objective i in the desirability range 𝒓𝒓𝒓𝒓𝒕𝒕𝒕𝒕. 
To find these weights, we use the linear physical programming weight (LPPW) algorithm as explained in Ilgin and 
Gupta (2012). The deviations between the value of objective i (𝒈𝒈𝒊𝒊) and  𝐭𝐭𝐢𝐢,𝐫𝐫𝐫𝐫+  and  𝐭𝐭𝐢𝐢,𝐫𝐫𝐫𝐫− , which are the target values, are 
represented by 𝒅𝒅𝒊𝒊,𝒓𝒓𝒓𝒓+ and 𝒅𝒅𝒊𝒊,𝒓𝒓𝒓𝒓− . A lot of research has been done using this approach where it showed a full capability to 
handle complex problems in areas like disassembly-to-order problems (Imtanavanich and Gupta 2006a, 2006b; 
Kinoshita et al. 2018; Kongar and Gupta 2002, 2009), designing reverse supply chain network problems (Alkhayyal 
2019; Ijuin et al. 2017; Pochampally and Gupta 2012; Pochampally et al. 2004) and evaluation of the product design 
in reverse logistics (Joshi and Gupta 2018b, 2018a, 2019).  
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Figure 2. Soft Class Functions for Linear Physical Programming 

 

Scenario-based robust optimization, on the other hand, is an approach that is concerned with uncertainties. In this 
approach, there are two types of variables that are considered here, design and control variables. The uncertainty is 
considered as a set of scenarios where each scenario has a probability of occurrence (𝜌𝜌𝑠𝑠𝑠𝑠) as shown in the below simple 
model. To have a better understanding of how this approach has been developed and for space limitation, we refer the 
reader to (Li HL 1996; Mulvey et al. 1995; Yu and Li 2000).  

Our integrated approach is as follow: 
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𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  � � (𝑤𝑤𝑤𝑤𝑖𝑖,𝑟𝑟𝑟𝑟+
5

𝑟𝑟𝑟𝑟≥2𝑖𝑖

𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ +  𝑤𝑤𝑤𝑤𝑖𝑖,𝑟𝑟𝑟𝑟− 𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟−  ) 
(4) 

S.T  

𝐺𝐺𝑖𝑖 −  𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ ≤   𝑡𝑡𝑖𝑖,𝑟𝑟𝑟𝑟−1+  (5) 

𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟+ ≥ 0 𝑎𝑎 𝑛𝑛𝑛𝑛 𝐺𝐺𝑖𝑖 ≤   𝑡𝑡𝑖𝑖5+  (6) 

𝐺𝐺𝑖𝑖 = ∑ 𝜌𝜌𝑠𝑠𝑠𝑠  𝑠𝑠𝑠𝑠 𝜉𝜉𝑠𝑠𝑠𝑠+𝜆𝜆∑ 𝜌𝜌𝑠𝑠𝑠𝑠[(𝜉𝜉𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠 ∑ 𝜌𝜌𝑠𝑠𝑠𝑠′ 𝑠𝑠𝑠𝑠′ 𝜉𝜉𝑠𝑠𝑠𝑠′) + 2𝜃𝜃𝑠𝑠𝑠𝑠] +  𝜔𝜔∑ 𝜌𝜌𝑠𝑠𝑠𝑠  𝑠𝑠𝑠𝑠 𝛿𝛿𝑠𝑠𝑠𝑠 (7) 

Ax = b  (8) 

𝐵𝐵𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐶𝐶𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠 + 𝛿𝛿𝑠𝑠𝑠𝑠 =  𝑒𝑒𝑠𝑠𝑠𝑠 (9) 

𝜉𝜉𝑠𝑠𝑠𝑠 −�𝜌𝜌𝑠𝑠𝑠𝑠  
𝑠𝑠𝑠𝑠

𝜉𝜉𝑠𝑠𝑠𝑠 + 𝜃𝜃𝑠𝑠𝑠𝑠 ≥ 0  (10) 

𝑥𝑥, 𝑦𝑦𝑠𝑠𝑠𝑠 , 𝛿𝛿𝑠𝑠𝑠𝑠 ≥ 0 (11) 

In our integrated approach, 𝐺𝐺𝑖𝑖 in equation (5), (6) and (7) is the robust objective function i where 𝜆𝜆  and ω are 
parameters to control the robustness of our solution and model, respectively. x is the design variable, where it 
represents in our model the decision variable of opening facilities, and 𝑦𝑦𝑠𝑠𝑠𝑠 is the control variable, which represents the 
other variable such as the number of products to ship in the network and 𝜉𝜉𝑠𝑠𝑠𝑠 = 𝑥𝑥 + 𝑦𝑦𝑠𝑠𝑠𝑠. Equation (8) is a constraint 
that is not associated with uncertainties while equation (9) is associated. 𝛿𝛿𝑠𝑠𝑠𝑠 is the violation variable that occurs in 
case of the infeasibility of any scenario realization and it is penalized to ensure the model robustness. Equation (10) 
is used as an auxiliary constrain to linearize the problem as its original has a quadratic format. Equation (11) is the 
non-negativity constraint. We assume the same value of 𝜆𝜆 and ω for all objective functions. In addition, the time 
horizon in this model is a single period.  

5. Numerical Example 
We implemented our model to design the CLSC network in the tire industry, as the government of Saudi Arabia aims 
to open up this business and to be the first one of its kind. Most of the data used are obtained from National Industrial 
Clusters Development Program (NICDP), Saudi Authority for Industrial Cities and Technology Zones (MODON) and 
GCC Automobile Industry Report (GCC Automobile Industry Report 2016; National Industrial Clusters Development 
Program (NICDP) in Saudi Arabia 2016; Saudi Authority for Industrial Cities and Technology Zones (MODON) 
2020). In table 1, we present data regarding the number and location of facilities considered in the CLSC network 
while the distance data are calculated using google map. We set 𝜆𝜆 = 1 and ω = 10. Giving that there are 3 scenarios 
assumed for the new and remanufactured tire demand and the number of returned tires as shown in figure 3, we 
generate 27 scenarios using the decision tree analysis and the probability of occurrence of each scenario is shown in 
table 2.  
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Table 1. Number of facilities and locations data 

 
Facility   Number Location 

. 3 Riyadh 
Manufacturing center 1 

1 
1 

Riyadh industrial city 1 
Riyadh industrial city 2 
Riyadh industrial city 3 

Distribution center  
 
 
 
 
Collection center 
 
 
 
Market locations 

1 
1 
1 
 

1 
1 
1 
 
 

5 
 

 

Suair industrial city 
Alkharj industrial city 
Durma industrial city 

Alahsa industrial city 2/ Salwa 
Hail industrial city 2 

Madinah industrial city 

Saudi Arabia

⎩
⎪
⎨

⎪
⎧

Central region (SACR)
Eastern region (SAER)

Western region (SAWR)
Northern region (SANR)
Southern region (SASR)

 

 1 
1 
1 
1 
1 

Bahrain- Sitra industrial city (BHR) 
Oman- Rusayl industrial city (OMN) 
Qatar- Alrayyan industrial city (QAT) 

Kuwait – Shuwailkh industrial city. (KT) 
Alquiz industrial area 4- (UAE)  

 

  
 

Figure 3. Decision tree analysis 
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Table 2. Probability of occurrence of each scenario 

 
 Scenario 

(new tire demand. 
Reman. tire demand. 

Returned tire) 

Probability of each 
secnario 

Low = .2, mid. = .5, high 
= .3  

SC1 
SC2 
SC3 
SC4 
SC5 
SC6 
SC7 
SC8 
SC9 

SC10 
SC11 
SC12 
SC13 
SC14 
SC15 
SC16 
SC17 
SC18 
SC19 
SC20 
SC21 
SC22 
SC23 
SC24 
SC25 
SC26 
SC27 

   

low.low.low 
low.low.mid 
low.low.high 
low.mid.low 
low.mid.mid 
low.mid.high 
low.high.low 
low.high.mid 
low.high.high 
mid.low.low 
mid.low.mid 
mid.low.high 
mid.mid.lxow 
mid.mid.mid 
mid.mid.high 
mid.high.low 
mid.high.mid 
mid.high.high 
high.low.low 
high.low.mid 
high.low.high 
high.mid.low 
high.mid.mid 
high.mid.high 
high.high.low 
high.high.mid 
high.high.high 

 

0.008 
0.02 

0.012 
0.02 
0.05 
0.03 

0.012 
0.03 

0.018 
0.02 
0.05 
0.03 
0.05 

0.125 
0.075 
0.03 

0.075 
0.045 
0.012 
0.03 

0.018 
0.03 

0.075 
0.045 
0.018 
0.045 

0.027 
∑ =1 

 
 
6. Results 
The numerical experiment was conducted using Microsoft Windows 7 with Intel® Core™ i5-2430M CPU @ 2.4GHz. 
Our results recommend selecting raw material suppliers 1 and 3 and opening the manufacturing center located in 
Riyadh industrial city 3, the distribution center located at Durma industrial city and the collection center located at 
Alahsa industrial city 2 (Salwa). The robust solution of the economic objective (𝐺𝐺1), the environmental objective (𝐺𝐺2) 
and the service level objective (𝐺𝐺3) is $ 31,028,100, 208,557 kg of CO2 and 18,696 unit, respectively. Therefore, the 
desirability range of 𝐺𝐺1is ideal, 𝐺𝐺2 is desirable and 𝐺𝐺3 is ideal as shown in figure 4. 
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Figure 4. Desirability range results of objective 1, 2 and 3 
 
Figure 5 shows the number of new tires, remanufactured tires and new tires substituting remanufactured tires in the 
27 scenarios. The largest quantity of new tires shipped to all market locations is 22,198 tires which is in scenario 19 
where the demand of new tires is high and the demand of remanufactured tires and the number of returned tires are 
low. The highest number of remanufactured tires shipped to all market locations is 12,435. This is in scenario 9 where 
the new tires demand is low and the remanufactured tires demand and number of returned tires are high. The highest 
number of the new tires substituting remanufactured tires is 6,727 tires. This is in scenario 7 where the demand of the 
new tires and the number of returned tires is low while the demand of remanufactured tires is high. More information 
is shown in figure 6 which demonstrates the quantity of each category of tires shipped to all customers over each 
objective function where each color represents a scenario, a circle represents new tires, a square represents 
remanufactured tires, a plus represents substituted tires.    
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Figure 5. Quantity of tires shipped to all customer of each scenario 
 

 
 

Figure 6. Quantity of tires shipped to all customer in each scenario vs each objective function 
 
In the total cost objective, the largest total cost among all scenarios is scenario 25 at $ 28,860,480. In this scenario, 
the demand of the new and remanufactured tires is high while the number of returned tires is low. However, scenario 
2 is the lowest total cost among all scenarios at $ 28,663,909. In this scenario, the demand for the new and 
remanufactured tires is low and the number of returned tires is mid as shown in figure 7.  
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For the carbon emission objective, 191,106 kg is the highest amount of carbon emitted which is associated with 
scenario 27. This scenario represents the high demand of the new and remanufactured tires as well as the number of 
returned tires. On the other hand, scenario 1 is the lowest scenario in terms of emitting carbon. The demand on new 
and remanufactured tires as well as the number of returned tires are low in this scenario as shown in figure 8.  
 
 

 
 

Figure 7. Total cost objective of each scenario 
 

 
 

Figure 8. Amount of carbon emitted of each scenario 
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7. Conclusion   
This study presents a new approach to design the CLSC network considering multiple objectives, uncertainties and 
flexibility. Our proposed approach integrated LPP and a scenario-based robust optimization. The numerical 
experiment used in this paper is based on designing the CLSC network in Saudi Arabia to start a business of 
manufacturing tires to satisfy the demand to locate markets and neighbor countries (GCC). Future research is expected 
to extend our study by using heuristics for a larger size problem, multiple period time horizon and different product 
substitution policy.    
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