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Abstract 

In this paper, stochastic data models for the arrival process of a call center are investigated. Comprehensive analysis 
of real-life call center data revealed several problems with modeling arrival processes. The high uncertainty in the 
arrival counts during different time intervals and the strong correlation between arrivals counts in consecutive time 
periods show that using popular models are rather insufficient. A stochastic model is thus developed, for the arrival 
process, which successfully handles the above-mentioned difficulties. Arguments are provided for the suitability of 
the proposed model to characterize the arrival counts to model real-data obtained from large call center.  
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1. Introduction 
Telephone inbound call centers could be described as a typical queuing system in which the customers are callers 
seeking telephone-based services presented by the call center agents, and they are queued in tele-queues waiting to 
be served. One of the key management decisions, in this setting, is how to manage the agents to serve the arriving 
calls in an optimal manner; a few percent saving in agents’ salaries means several million dollars because inbound 
call centers are highly labor-intensive, with the cost of agents typically comprising 60–80% of the overall operating 
budget (Aksin, Z., Armony, M., and Mehrotra, V. 2007). This could be done by building staff schedules that satisfy 
certain performance measures achieving the least possible agents cost. A key input to build the agents schedules is 
the staffing decisions (how many agents to have in the center for each period of the scheduling horizon). These 
numbers of agents are, naturally, determined according to, the demand of the acquired services from the call center; 
that is, the arrival counts. The arrival counts, in fact, show a lucid nature where they experience significant variations 
with time during the same day, day-to-day variations, and different seasonality patterns over a time scale of weeks 
and months. The ignorance of such a fact about the calls arrival patterns, in making the staffing decisions, results in 
flat staff levels over the time. Pursuant to this, the call center performance would be affected negatively due to any 
variation in those call arrivals especially during peak load periods where the customers would encounter significant 
delays and might abandon without acquiring any service. Hence, developing accurate arrival data models – 
accounting for that highly stochastic nature of arrivals – is an essential requirement to make accurate staffing 
decisions without understaffing leading to unsatisfactory performance or even overstaffing leading to high agents’ 
costs. 

1.1 Modeling Approaches  
The analysis and modeling of call center input data could be performed using three different approaches (Koole, G. 
and Mandelbaum, A. 2002). Descriptive models provide summaries of the empirical data obtained from the real 
system in the form of tables and histograms such as a histogram of total daily number of arrived calls as the call 
arrivals fluid-like model presented in (Mandelbaum, A., Sakov, A., and Zeltyn, S. 2002). Explanatory models utilize 
regression and time series analysis to determine and describe the desired parameters using explanatory variables; for 
example, a type of first-order autoregressive structure is suggested in (Brown, L., Gans, N., Mandelbaum, A., Sakov, 
A., Shen, H., Zeltyn, S., and Zhao, L. 2005) for the random daily effects influencing the daily call volumes. 
Theoretical models provide a mathematical representation to fit the empirical data using theoretical statistical 
distributions and to sample from them. The arrival counts to a call center, for example, are modeled using a Poisson 
mixture model in (Jongbloed, G. and Koole, G. 2001). 
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1.2  Modeling Issues  
In spite of the high capabilities of modern computerized data collection systems used in call centers, the construction 
of accurate arrival data models faces, in practice, a wide range of real world problems which complicate this task 
considerably. The level of detail, at which the operational data is collected, is limited to aggregate data parameters 
over fixed short time intervals varying between fifteen to sixty minutes, hence, the call-by-call data is not available. 
The available data, in particular, is the aggregated number of arrived calls to the center in each time interval. The 
main issue with such kind of data is that standard parameter estimation methods could not be used, to estimate the 
required statistical models, due to the unavailability of records for each individual call (Henderson 2003). 
Consequently, devising a suitable data modeling method that could deal with this issue is not an easy task. 

In addition to the lack of call-by-call data issue, the stochastic nature of arrival counts exhibits three main properties 
that characterize the arrival process in telephone inbound call centers (Avramidis, A., Deslauriers, A., and L'Ecuyer, 
P. 2004): 

A. The call volumes vary significantly over the time (arrival rate uncertainty). 

B. The variance of the arrival volumes is much greater than their means (data over-dispersion). 

C. The dependence between arrival volumes in the successive periods of a day is very strong (strong positive 
correlation). 

In this paper, both descriptive and theoretical modeling approaches are used to study and develop suitable stochastic 
data models for the arrival counts to inbound call centers. In the model development, the issues mentioned above are 
considered in order to create data models that are capable of representing real-life arrival data effectively. 

2. Statistical Models for the Arrival Process 
In literature, several statistical models have been considered to deal with the modeling issues discussed above as the 
following models. 

2.1 The Poisson Process 
According to the Palm-Khintchine theorem, the counting process of events occurring from a large number of 
independent sources – where anyone of the sources contribution to the total number of events is small – behaves 
asymptotically as a Poisson process (Heyman, D. and Sobel, M. 2004). In call centers context, when a large number 
of independent customers, each of whom has a comparatively small calling probability, are possible callers of a call 
center, the Palm-Khintchine theorem provides justification for using the Poisson process to model the arrival process 
to that call center. The Poisson process is the most elementary random process used in modeling the arrivals of 
customers to call centers. The standard definition of this process as it appeared in (Ross, Introduction to Probability 
Models 2007) is as follows. 

Definition 1.The counting process {N(t), t ≥ 0} – where N(t) is the total number of “events” that occur by time t – is 
said to be a Poisson process having rate λ, λ > 0, if the following assumptions hold:  

i. N (0) = 0. 

ii. The process has independent increments. That is, for all s, t, v, and u ≥ 0, N(t) – N(s) and N(u) – N(v) are 
independent for any non-overlapping intervals (s, t] and (v, u].  

iii. The process has stationary increments. The number of events in any interval of length s is Poisson 
distributed with mean λs. That is, for all s, t ≥ 0 

𝑃{𝑁(𝑡 + 𝑠) − 𝑁(𝑡) = 𝑛} = 𝑒−𝜆𝑠
(𝜆𝑠)𝑛

𝑛!
, 𝑤ℎ𝑒𝑟𝑒  𝑛 = 0, 1, … (1) 

Property A of the arrival process in a call center contradicts the assumption of the standard Poisson model that the 
arrival process has stationary increments with the same arrival rate as the arrival rate varies considerably during 
different daily periods. Moreover, the arrival rate – in the presence of property B – could not be modeled using a 
Poisson distribution as it assumes that the mean and variance are equal while the data experiences considerable over-
dispersion. Additionally, the independent increments assumption is inconsistent with property C where the strong 
positive correlation refutes the independence between the non-overlapping periods. Consequently, these properties 
render the standard Poisson process model inadequate. 



 

1342 
 

2.2 The Non-Homogeneous Poisson Process 
In view of property A, the problem of uncertain arrivals during different periods of the day could be solved by 
considering the arrival process during separate periods, for instance one-hour periods, as a Poisson process but with a 
rate varying from a time-period to another. This time sampling Poisson process generates a non-homogeneous 
process that, by definition, allows to model time-dependent arrivals (Ross, Introduction to Probability Models 2007).  

Definition 2. The counting process {N(t), t ≥ 0} – where N(t) is the total number of “events” that occur by time t – is 
said to be a non-homogeneous Poisson process (NHPP) with intensity function for time varying arrival rate λ(t),   
λ(t) > 0, if the following assumptions hold:  

i. N (0) = 0. 

ii. {N(t), t ≥ 0 } has independent increments. That is, for all s, t, v, and u ≥ 0, N(t) – N(s) and N(u) – N(v) are 
independent for any non overlapping intervals (s, t] and (v, u].  

iii. The process has stationary increments. The number of events in any interval of length s is Poisson 
distributed with mean sλ(t). That is, for all s, t ≥ 0 

𝑃{𝑁(𝑡 + 𝑠) − 𝑁(𝑡) = 𝑛} = 𝑒−𝑠𝜆(𝑡) �𝑠𝜆(𝑡)�𝑛

𝑛!
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, 1, 2, … (2) 

The main problem here is how to estimate the time-varying arrival rate. Jongbloed and Koole in (Henderson 2003) 
assume that the arrival rate function is piecewise constant over the subsequent time-intervals of the day and that 
could be estimated from the data, and show that this estimator could be a consistent estimator of the original arrival-
rate function by performing an asymptotic analysis of this method. In (Massey, W., Parker, G., and Whitt, W. 1996), 
a piecewise linear rate function is proposed for the arrival rate and then several ways are investigated for the 
parameters estimation of this model such as ordinary least squares (OLS), iterative weighted least squares (IWLS) 
and maximum likelihood (ML) methods. A piecewise polynomial approximation is suggested in (Kao, E. and Chang, 
S. 1988) to represent the rate function using maximum likelihood estimators. Time-inhomogeneous Poisson 
processes successfully address the problem of daily period-to-period variability; the other levels of variability (day-
to-day variability as well as weekly and monthly variability) could be handled by providing a separate model for 
each period in which the arrival patterns are consistent by means of clustering various periods. 

2.3 Doubly Stochastic Poisson Model in Call Centers 
According to the above discussion, ignoring any of the calls arrival process main properties will produce inaccurate 
queuing/simulation models that are to be used later in solving the staffing problem which may bring the validity of 
this work into question. If the variability in the real arrival process, for example, is higher than that obtained by the 
standard Poisson process, then the estimated service level is lower than it would be otherwise (Steckley, S., 
Henderson, S., and Mehrotra, V. 2005). In order to consider the aforementioned data properties in the data generation 
model, the conditional Poisson process is used to model the call arrival counts.  

Definition 3. Let {X(t), t ≥ 0} be a counting process and there is a positive random variable 𝛬 such that conditional 
on 𝛬 = λ the counting process is a Poisson process with rate λ. That counting process is called a conditional Poisson 
process representing the doubly stochastic arrival model. This model stands for the call center context when the 
following hold: 

i. If the random vector of arrival counts is X = (X1, X2…, Xk), where Xi is the number of call arrivals in period i 
and k is the number of daily periods, then the random arrival counts Xi follow Poisson distributions with 
probability mass function 

𝑃(𝑋𝑖 = 𝑥) = 𝑒−𝛬𝑖  
𝛬𝑖𝑥

𝑥!
 (3) 

ii. The rate 𝛬𝑖 of a Poisson random variable Xi is a random variable generated randomly from a period-
dependent distribution for 𝛬 on (0, ∞). This accounts for the over -dispersion problem (property C) in the 
standard Poison model (Jongbloed, G. and Koole, G. 2001). 

iii. The Poisson random variable Xi with a rate  𝛬𝑖 is generated separately for each daily period from a separate 
standard Poisson process and this accounts for the high level of variability in arrival counts data (property 
A). 
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There are many ways to estimate the rate of the doubly stochastic Poisson process such as those proposed in 
(Jongbloed, G. and Koole, G. 2001, Avramidis, A., Deslauriers, A., and L'Ecuyer, P. 2004). In this study a new 
model for the rate function – daily proportion-based arrival rate – is developed, studied and compared to the gamma 
dependant arrival rate proposed by (Avramidis, A., Deslauriers, A., and L'Ecuyer, P. 2004). 
 
According to (Avramidis, A., Deslauriers, A., and L'Ecuyer, P. 2004), the arrival rates Λi are modeled as dependent 
random variables randomized by a common gamma variable that accounts for the correlation between the number of 
arrivals in the subsequent periods (property C) where  

𝛬𝑖  =  𝑊𝜆𝑖 , 𝑊~𝐺𝑎𝑚𝑚𝑎(𝛾, 1) 

The proposed function of arrival rates could result in a negative multinomial distribution for the vector X with 
parameters (γ, λ1, λ2… λk) where probability mass function is given by 

𝑓(𝐱) =
Г�𝛾 + ∑ 𝑥𝑖𝑘

𝑖=1 �
Г(𝛾)∏ 𝑥𝑖!𝑘

𝑖=1
�

1
1 + ∑ 𝜆𝑗𝑘

𝑗=1
�
𝛾

��
𝜆𝑖

1 + ∑ 𝜆𝑗𝑘
𝑗=1

�
𝑥𝑖𝑘

𝑖=1

 (4) 

The parameters of the negative multinomial distribution could be estimated by the maximum likelihood estimation 
method (MLE). If the vector �𝐗𝑗 = �𝑋1,𝑗 ,𝑋2,𝑗, … ,𝑋𝑘,𝑗��𝑗=1

𝑛
 represents the data set of arrival counts observations – 

where n is the number of similar days in the data set and k is the number of daily periods – then the maximum 
likelihood estimators (MLEs) could be obtained according to the following estimation algorithm: 

𝐷𝑎𝑖𝑙𝑦 𝐶𝑎𝑙𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑌𝑗 = � 𝑋𝑖,𝑗
𝑘

𝑖=1
, 𝑓𝑜𝑟 𝑗 = 1, 2, … ,𝑛 (5) 

𝐹𝑙 =
1
𝑛
� 𝐼�𝑌𝑗 ≥ 𝑙�

𝑛

𝑗=1
, 𝑓𝑜𝑟 𝑙 = 1, 2, … ,𝑀            𝑤ℎ𝑒𝑟𝑒 𝑀 = 𝑚𝑎𝑥�𝑌𝑗� (6) 

� (𝛾� + 𝑙 − 1)−1
𝑀

𝑙=1
𝐹𝑙 = 𝑙𝑜𝑔 �1 +

1
𝑛𝛾�

� 𝑌𝑗
𝑛

𝑗=1
� (7) 

𝜆̂𝑖 =
∑ 𝑋𝑖,𝑗𝑛
𝑗=1

𝑛𝛾�
, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑘 (8) 

I{ξ} is the indicator function which is equal to one if ξ is true and zero otherwise. Yj and Fl are calculated directly 
from the observed data. 𝛾�-value is calculated by solving equation (7) above numerically using Newton–Raphson 
method and then 𝜆̂𝑖 is obtained for each period. This estimation process is repeated, separately, for each day within 
the week due to the high amount of day-to-day variability (e.g., 𝜆̂1 on Saturdays is different from 𝜆̂1 on Sundays and 
so on). 

3. Daily Proportion-Based Arrival Rate Model  
The model of Gamma-dependent arrival rate succeeds in finding remedies for all problems of call arrivals data 
related to its three properties. Reaching a better model validity and the reduction of required number of parameters to 
be estimated, however, are the main motive to propose a new model for arrival counts. In the new model, daily 
proportion-based arrival rate model, the arrival rate in each daily time period is modeled as a proportion Pi of the 
total daily volume of arrivals Yj where 

𝛬𝑖 = 𝑃𝑖 .𝑌𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … , 𝑘 𝑎𝑛𝑑 𝑗 = 1, 2, … , 7 (9) 

3.1 Total Daily Arrivals Model 

Proposition 1.The total number of daily call volume arrived to call center Yj is normally distributed with probability 
density function 

𝑓Y = N(𝜇,𝜎) =
1

𝜎√2𝜋
. 𝑒

−(𝑦−𝜇)2
2𝜎2       𝑤ℎ𝑒𝑟𝑒 − ∞ < 𝑦 < ∞,−∞ < 𝜇 < ∞, 𝑎𝑛𝑑 𝜎 > 0 (10) 

Proof. Given that 𝑌𝑗 = ∑ 𝑋𝑖𝑘
𝑖=1 , the proof of proposition 1 follows directly from the central limit theorem. ∎ 
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The central limit theorem states that the sum of a large number of random variables has a distribution that is 
approximately normal. It also explains the remarkable fact that the empirical frequency of so many natural 
populations exhibit bell shaped (that is, normal) curves (Ross, A First Course in Probability 1998). Andrews in 
(Andrews 1991) extended the results of the central theorem to be applied to dependent non-identically distributed 
random variables. This is the case with call center total daily volume of arrivals which is a sum of dependent, but 
non-identically, distributed random variables (i.e., call arrivals in each daily period). Hence, Yj is assumed to be 
normally distributed according to the central limit theorem. Furthermore, this assumption is supported empirically 
from the observed data by testing the goodness of fit of the total daily volume data to the normal distribution. 
Kolmogorov-Smirnov test is used to assess the goodness of fit revealing high p-values which means it yields a very 
good fit supporting the theoretical assumption of normally distributed total daily call volumes.  

Due to the high level of variability in total daily call volume as described previously, a separate daily arrival normal 
model is estimated for each day of the week (i.e., there may be seven separate models for total daily arrivals). In 
order to verify the need to these separate models, the statistical significance of the difference between different 
samples of the daily call arrivals for different week days are studied. This could be done using the two samples t-test 
of hypothesis. The hypothesis testing on the difference between the means μ1 and μ2 of two normal populations is 
considered. Suppose that we are interested in testing whether the difference in means μ1 – μ2 is equal to a specified 
value δ0. Thus, the null hypothesis will be stated as 

𝐻0: 𝜇1 − 𝜇2 = 𝛿0 (13) 

Obviously, in many cases, δ0 = 0 is specified to test the equality of two means (i.e., H0: μ1 = μ2). Suppose that the 
alternative hypothesis is 

𝐻1: 𝜇1 − 𝜇2 ≠ 𝛿0 (14) 

Now, a sample value of 𝑥̅1 − 𝑥̅2 that is considerably different from δ0 is evidence that H1 is true. 

Remark 1. Performing this test on different pairs of week days yields an important result. If there are pairs that fail 
to reject the null hypothesis, they could be dealt as clusters of days that have the same total daily arrivals distribution 
which could be used to reduce the number of estimated parameters and distributions. 

3.2 The Proportions Model 
As for the proportion value Pi, it is assumed to be independent from the daily volume itself, and thus, it does not 
differ significantly from day-to-day during the week. This assumption could be verified empirically by showing that 
there is no significant statistical difference between different samples of the same daily period proportions for 
different week days. A two samples t-test could be used again to assess the statistical significance of that amount of 
difference. Pursuant to this assumption, the daily proportions of different daily periods could be defined by a single 
vector P = (P1, P2... Pk). Pi is the ratio between period i arrival rate and the total arrival rate of the day. Then, 

𝑃𝑖 =
𝛬𝑖

∑ 𝛬𝑖𝑘
𝑖=1

 (15) 

Proposition 2.  
i. The daily proportions vector P has a Dirichlet distribution with parameters (α1, α2...αk) with probability 

mass function 

𝑓(𝑝1, 𝑝2 … 𝑝𝑘−1) = D(𝛼1,𝛼2 …𝛼𝑘) =
1
𝑐

.�𝑝𝑖
𝛼𝑖−1

𝑘

𝑖=1

 (16) 

Over the k-dimensional simplex Sk defined by inequalities Pi > 0 (i = 1, 2...k-1), 𝑃𝑘 = 1 − ∑ 𝑃𝑖𝑘−1
𝑖=1  

and ∑ 𝑃𝑖𝑘
𝑖=1 = 1. Here, c (normalization constant) is the multinomial beta function with the following 

expression 

𝑐 =
∏ Г(𝛼𝑖)𝑘
𝑖=1

Г(𝛼0) , 𝑤ℎ𝑒𝑟𝑒 𝛼0 = � 𝛼𝑖
𝑘

𝑖=1
 (17) 

ii. The marginal probability distribution of Pi is a Beta distribution defined on the interval (0, 1) having 
parameters (αi, βi) with probability mass function 
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𝑓𝑃𝑖 = �
Г(𝛼𝑖 + 𝛽𝑖)
Г(𝛼𝑖). Г(𝛽𝑖)

. 𝑝𝑖
𝛼𝑖−1. (1 − 𝑝𝑖)𝛽𝑖−1          0 < 𝑝𝑖 < 1, 𝑤ℎ𝑒𝑟𝑒 𝛽𝑖 = 𝛼0 − 𝛼𝑖

0                                                                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (18) 

Proof. Assuming that the arrival rates Λ1, Λ2...Λk are independent Gamma random variables with parameters αi > 0 
respectively. The joint density function of the Λi’s is 

𝑓(𝜆1, 𝜆2, … , 𝜆𝑘) = 𝑐.�𝜆𝑖
𝛼𝑖−1

𝑘

𝑖=1

. 𝑒−∑ 𝜆𝑖
𝑘
𝑖=1  (19) 

Consider the transformation 𝑍 = ∑ 𝛬𝑖𝑘
𝑖=1 ,𝑃𝑖 = 𝛬𝑖 𝑍⁄  (i ≤ k), which has a reverse transformation Λi = Z.Pi, and 

𝛬𝑘 = 𝑍�1 −∑ 𝑃𝑖𝑘−1
𝑖=1 �. The Jacobian of the transformation is Zk. Thus, the joint density function of (Z, P1, P2...Pk) is 

𝑓(𝑧, 𝑝1, 𝑝2, … , 𝑝𝑘−1) = 𝑐.�𝑝𝑖
𝛼𝑖−1

𝑘

𝑖=1

. 𝑧∑ 𝛼𝑖−1
𝑘
𝑖=1 . 𝑒−𝑧 (20) 

𝑇ℎ𝑒𝑛, 𝑓(𝑝1, 𝑝2 … 𝑝𝑘−1) = D(𝛼1,𝛼2 …𝛼𝑘) 𝑎𝑛𝑑 𝑃𝑘 = 1 −� 𝑃𝑖
𝑘−1

𝑖=1
 (21) 

and this proves result (i) of proposition 2. Result (ii) is a known result derived from the probability mass function of 
the Dirichlet distribution, which is mentioned and proven in (Ferguson 1973). Moreover, the assumption that the 
arrival rates Λ1, Λ2...Λk are Gamma random variables is verified empirically by testing the goodness of fit of arrival 
rates to Gamma distribution; in (Jongbloed, G. and Koole, G. 2001) the same assumption is employed to develop 
also a model of arrivals to call centers. ∎ 

Remark2. Through the analysis of the observed data, the validity of result (ii) has been recognized in an attempt to 
find a suitable distribution to fit the proportions of daily periods. Applying goodness of fit tests for the Beta 
distribution supported the plausibility of the assumption. The suitability of the Beta distribution also follows from 
the fact that the beta distribution is used in modeling continuous random variables which take on values that lie 
between 0 and 1, such as proportions and percentages. The fact that Beta distribution is an appropriate model for the 
individual period’s proportions motivated the use of its multivariate generalization, Dirichlet distribution, to achieve 
the correlated tuple of call arrivals. 

Definition 4: Based on the above discussion, the number of arrival counts to a call center at a certain time period i 
{Xi} is a Poisson random variable with rate Λi where the following holds: 

i. Λ = (Λ1, Λ2... Λk) , where  𝛬𝑖 = 𝑃𝑖 .𝑌𝑗 

ii. P = (P1, P2...Pk-1) where 𝐏 ~ D(𝛼1,𝛼2 …𝛼𝑘) 𝑎𝑛𝑑 𝑃𝑘 = 1 − ∑ 𝑃𝑖𝑘−1
𝑖=1  

iii. Y = (Y1, Y2...Y7) where Yi ~ N (μj, σj) 

3.3 Parameter Estimation  
In order to estimate the parameters of the new model, the parameters of both the Normal distribution and the 
Dirichlet distribution need to be estimated. Let �𝐘𝐪 = (𝑌1,𝑞 ,𝑌2,𝑞 , … ,𝑌7,𝑞)�

𝑞=1

𝑚
 represents the data set of total daily 

arrivals observations – where m is the number of weeks in the data set – then both parameters of the normal 
distribution μj and σj for each week day could be estimated directly from the observed data set through using the 
following couple of formulas 

𝜇𝑗 = 𝑌�𝑚 =
1
𝑚
�𝑌𝑗,𝑞

𝑚

𝑞=1

, where j = 1, 2, … ,7 (22) 

𝜎𝑗 = 𝑆𝑚2 =
1

𝑚− 1
��𝑌𝑗,𝑞 − 𝜇𝑗�

2
𝑚

𝑞=1

 (23) 
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Unlike the Normal distribution, the Dirichlet distribution is defined with parameters that do not correspond directly 
to either the mean or variance of the distribution. Rather, the mean and variance of the Dirichlet distribution are 
functions of its parameters αi. Thus, the parameters of the Dirichlet distribution are represented by the maximum 
likelihood estimators MLEs. If the vector �𝐏𝑧 = �𝑃1,𝑟 ,𝑃2,𝑟 , … ,𝑃𝑘,𝑟��𝑟=1

𝑉
 represents the data set of observed daily 

period proportions – where V is the number of days in the data set and k is the number of daily periods – then the 
parameters for a Dirichlet distribution could be estimated by maximizing the log-likelihood function of the data, 
which is given by: 

𝐹(𝛼) = 𝑙𝑜𝑔�
Γ(∑ 𝛼𝑘𝑘 )
∏ Γ(𝑘 𝛼𝑘)

𝑖

�𝑝𝑖𝑘
𝛼𝑘−1

𝑘

= 𝑁�𝑙𝑜𝑔Γ ��𝛼𝑘
𝑘

� −�𝑙𝑜𝑔Γ(𝛼𝑘) + �(𝛼𝑘 − 1)𝑙𝑜𝑔  𝑝̅𝑘
𝑘𝑘

� (24) 

where 𝑙𝑜𝑔 𝑝̅𝑘 = 1
𝑁
∑ 𝑙𝑜𝑔 𝑝𝑖𝑘𝑖 . Newton-Raphson method is traditionally used to find the unknown parameters.  

3.4 Random Number Generation 
Regarding the generation of the random arrival rates, the total daily arrivals is generated using a generator of Normal 
random numbers. After that, the daily period proportions of each daily period will be generated from the Dirichlet 
distribution using either the marginal beta distribution utilizing the result (ii) of proposition 2 so that 𝑃𝑖~𝐵(𝛼𝑖 ,𝛽𝑖) or 
using the Gamma distribution by finding 𝛬𝑖~𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 1), then 𝑃𝑖 = 𝛬𝑖 ∑ 𝛬𝑖𝑘−1

𝑖=1⁄  and 𝑃𝑘 = 1 − ∑ 𝑃𝑖𝑘−1
𝑖=1 . The rate 

of the arrivals in each period is the product of the two generated random variables. Finally, a Poisson arrival count is 
generated using that rate of arrivals. 

4. Case Study (Egyptian Phone Directory Call Center) 
The studied data is obtained from the telephone directory call center of the national Terrestrial Communications 
Network Company in Egypt. This call center is a single-skill inbound call center that operates in two different 
locations, Cairo and Alexandria. The operations in both centers are similar and independent from each other so this 
study focuses only on Cairo site. The call center provides twenty-four hours a day/seven days a week support to its 
customers. The available data to this work – three months of call center operations – is aggregated as explained 
above over sixty-minute time periods. That is, the twenty-four hours are partitioned into twenty-four periods in each 
of which the model parameters remains constant and then changes when the new period starts on each of seven week 
days. 

4.1 Prelude Data Analysis  
The analysis of the call center arrival process reveals the existence of the three main properties of arrivals data: high 
level of uncertainty, over-dispersion, and strong correlation. These properties are investigated here in details for the 
data obtained from the Egyptian Phone Directory call center. 

4.1.1 High Uncertainty Property 
The uncertain arrival pattern is a key property in the call center arrivals and presents several problems in modeling 
call centers. Considering this issue, we find different levels of variability: monthly, weekly, daily, and periodically 
within the same day. Considering the monthly arrival volumes in year 2010 reveals high seasonality in the six 
month-period between May and November with a mean of 3,885,064 arrived calls per month, a standard deviation of 
396,789 calls, and the coefficient of variation of 0.102. Analyzing the arrivals data at the weekly level shows a 
considerable variation from week-to-week. The degree of variability, at the weekly level, also differs considerably 
from period to period along the year. In May-July period, the weekly arrivals coefficient of variation is 1.5 times that 
of February-April period. The daily call volumes vary also from day-to-day over the course of a week. This variation 
may extend to find that the daily arrivals pattern differ from week to week. In eight weeks period, for example, the 
variation coefficient of the daily call volumes over the course of each week varies from 0.19 to 0.25. Call volumes 
exhibit also a strong seasonality pattern over the course of a day with coefficient of variation varying between 0.22 
and 0.9 over the different days. In addition to the strong period-to-period variability during the same day, call arrivals 
in a certain period experiences a significant variation from day to day and that is concluded from the significant 
variation of the coefficient of variation of the different days. 

4.1.2 Over-dispersion Property 
The arrival volumes to the call center have a considerable over-dispersion relative to the Poisson distribution. The 
variance of the number of arrival counts is much greater than the mean of the same arrival counts. This property is 
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verified by studying the mean and variances of the twenty-four hour periods arrivals over the course of a month, and 
the mentioned over-dispersion exists in all of them. The least ration between the variance and mean during that 
month was 18 not one at all. 

4.1.3 Strong Correlation Property 
The careful analysis of call arrivals data shows that there is a strong dependence between the arrival volumes in the 
subsequent time periods during the day. One reason for this correlation may be due to the retrial phenomenon that 
occurs when calls – that abandoned in a period – retry to call again but in the subsequent period. This property is 
verified by calculating the Pearson Correlation Coefficient r for the successive daily-period pairs over the course of 
a month. The calculated values show a strong positive correlation between the subsequent periods, with values as 
low as 0.27 and as high as 0.98; 56% of the twenty-four pairs possess correlation coefficient greater than (0.7).   

4.2 Model Estimation 
According to remark 1, the test of hypothesis on the significance of the statistical difference between total daily 
volumes showed that the week days could be divided to four clusters in each of which the parameters of the normally 
distributed total daily arrivals are constant. This could be concluded from the statistical comparisons, between the 
total daily arrivals of week days’ different pairs, made using two samples t-test. Knowing that the pair failing to 
reject the null hypothesis obtains high p-value greater than the significance level α = 0.05, then Sunday, Monday, 
and Tuesday form a separate cluster as the p-values of different pairs of these days vary between 0.45 and 0.7. 
Additionally, Wednesday and Thursday give another cluster with P-value of 0.56; while each of Friday and Saturday 
form separate clusters as they show very low P-values for all pairs with other weekdays. Likewise, refereeing to 
remark 2, all week days except Friday have the same structure of the daily period proportions. Friday shows a 
different structure of the proportions. 

4.2.1 Gamma Dependent Random Arrival Rate Model Estimation 
Following the parameter estimation algorithm obtained previously, the values of γ for each cluster is estimated 
separately from equation (7), and λ is also estimated for each period of the twenty-four daily periods in the four 
clusters from equation (8). This results in estimating twenty-five parameters for each cluster and totaling one 
hundred parameters. A sample of estimated parameters for the first cluster is shown in Table 1. 

Table 1: Sample of estimated parameters for the first cluster 
γ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

107.4 29.314 20.788 11.017 6.0346 3.7631 2.2377 2.5676 4.9082 16.26 46.644 

4.2.2 Daily Proportion-Based Arrival Rate Model Estimation  
In this model, there are actually two models to be estimated, the model of total daily arrivals and the model of period 
proportion. In order to estimate the total daily arrivals model, the mean and standard deviation for each cluster is 
calculated from equations (22 & 23) resulting in eight parameters (e.g., for cluster 1, μ = 127,249 and σ = 12,663). 
The parameters of the period proportion model are estimated according to the algorithm mentioned in section 3.3 and 
the number of estimated parameters is twenty-four parameters for all weekdays except Friday, shown in, and other 
twenty-four parameters for Friday only. The total number of estimated parameters here is fifty-six parameters. 

Table 2: Sample of estimated parameters αi for weekdays Saturday – Thursday  
α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 

6.69806 4.78286 2.63384 1.46477 0.89055 0.51233 0.58453 1.11749 3.55878 10.1227 17.7973 

4.3 Models Validation 
The main properties of the studied/developed models are investigated and compared to the real-data main properties 
to quantify how far they are valid and represents the real data. This is done by developing simulation models and 
running them using the developed data models to produce simulated data sets similar to the real one. The following 
results are obtained from the analysis of the first cluster data and the same results are the same for all other clusters. 
The first thing to be compared is the estimated and real means of arrival counts during the different periods. The 
means comparison shows, as shown in Figure 1, that the developed models succeed in producing accurate estimates 
for the arrival counts; the difference from the mean is, nearly, neglected. This result is also supported by measuring 
the statistical difference using the test of hypothesis of the means equality which results in high P-values for both 
models. The mean comparison does not show tangible difference between both models.  



 

1348 
 

 

Figure 1: Comparison of Estimated and Real Means of Call Volumes/Period 

Comparing the coefficient of variation (CV), as shown in Figure 2, reveals that both models obtain, nearly, similar 
constant CV for all periods. The estimated CV for both models match that of real data in the periods that experience 
high arrival counts (periods between 10:00 am and 09:00 pm) but fail to do that in the less-dense periods. 

 

Figure 2: Coefficient of Variation Comparison 

As shown in Figure 3, the developed models produce, nearly, similar correlation structures that overestimate the 
correlation values in some periods and underestimate it in the other periods. The most important result, however, that 
there is a correlation structure that reflects the effect of each period on its successor. The other discussed models in 
literature almost neglect that effect and assume zero-correlation.  

 

Figure 3: Sample Correlation Comparison 
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5. Conclusions 
Studying the problem of arrival data modeling in call centers shows three important issues on arrival data, each of 
which has a great influence on the validity of any model representing the arrival data. Several models from literature 
were studied and one of those models tried to account for the three issues. In this paper, a new model is presented to 
capture also the effects of the different modeling issues but with different modeling approach seeking better fit to the 
real data and less parameter. Both of models is studied and applied on the arrival process of the Egyptian Phone 
Directory Call Center. Through this case study, the three modeling issues were verified and both models were 
compared showing that they succeeded in dealing with these issues with nearly similar performance. The developed 
model in this study, however, is still better as it requires the half number of parameters that other model requires. 
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