
Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management
Istanbul, Turkey, July 3 – 6, 2012

1695

Optimizing the Ant Colony Optimization Algorithm Using Neural
Network for the Traveling Salesman Problem

Ayşe Hande Erol

Department of Industrial Engineering
Marmara University

Goztepe 34722, Turkey

Merve Er
Department of Industrial Engineering

Faculty of Engineering
Marmara University

Goztepe 34722, Turkey

Serol Bulkan
Department of Industrial Engineering

Faculty of Engineering
Marmara University

Goztepe 34722, Turkey

Abstract

Ant Colony Optimization (ACO) has been proved to be one of the most effective algorithms to solve a wide range of
combinatorial optimization (or NP-hard) problems as the Travelling Salesman Problem (TSP). The first step of an
ACO algorithm is setting the parameters that drive the algorithm. The basic parameters that are used in ACS
algorithms are; number of ants, the relative importance (or weight) of pheromone, the relative importance of
heuristics value, initial pheromone value, evaporation rate, and a parameter to control exploration or exploitation.
Generally these parameters are set as discrete values, but past studies has shown that the behavior of the algorithm
can be influenced by the modification of the parameters. In this paper, we propose a Neural Network (NN) to adapt
two parameters of the ACO algorithm dynamically. The proposed hybrid algorithm is applied on the classical TSP,
and tested on different TSP benchmark instances.

Keywords
Ant Colony optimization, evolutionary algorithms, neural network, parameter tuning in ACO, travelling salesman
problem

1. Introduction
Problems in transportation and logistics; such as routing, scheduling, assignment etc. are very complex and hard
combinatorial optimization problems. In recent years, advanced (soft) computing algorithms such as metaheuristics,
Neural Networks (NN), and fuzzy logic are commonly used instead of traditional methods for solving these complex
problems. Heuristic and metaheuristics algorithms can provide approximate solutions in a reasonable time for the
practical applications of transportation problems.

One of the most common problems in areas such as logistics, distribution, and transportation industries / networks is
the well-known Travelling Salesman Problem (TSP) (Applegate, et. al., 2006). The TSP is one of the most
intensively investigated problems studied in both operations research, computer science, and transportation fields,
and often comes up as a sub-problem in more complex combinatorial optimization problems. Given a finite set of

1696

cities and their coordinates, TSP is the problem of finding a shortest closed tour that visits each city exactly once and
turns back to the starting city. It has myriad of applications containing the movement of people, postal delivery,
school bus routes, garbage collection etc. The solution of the TSP enables optimization of many other problems and
transportation tasks, so it has significant value for transportation networks. The availability of extensive literature
and the high applicability of TSP also make it ideal for a case study.

The goal is to find the shortest tour that visits each city in a given list exactly once and then returns to the starting
city. Formally, the TSP can be stated as follows. The distances between n cities are stored in a distance matrix (D)
with elements dij where i, j= 1,…, n and the diagonal elements dii are zero. A tour can be represented by a cyclic
permutation Π of {1, 2,…, n} where Π(i) represents the city that follows city i on the tour. The TSP is then the
optimization problem to find a permutation Π that minimizes the length of the tour denoted by (Hahsler and Hornik,
2007);

 ∑
=

∏

n

i
iid

1
)((1)

For this minimization task, the tour length of (n - 1)! vectors have to be compared. This results in a problem which is
very hard to solve and in fact known to be NP-complete. According to Lenstra and Kan (1975), solving TSPs is an
important part of applications in many areas including vehicle routing, computer wiring, machine sequencing and
scheduling, frequency assignment in communication networks. Applications in statistical data analysis include
ordering and clustering objects. For example, data analysis applications in psychology ranging from profile
smoothing to finding an order in developmental data are presented by Hubert and Baker (Hubert and Baker, 1978).

TSP belongs to the NP-hard problem class and cannot be solved optimally in a polynomial time (Papadimitriou,
1997; Garey and Johnson, 1979). Therefore, the TSP has provided a remarkable source for testing solution
algorithms for combinatorial optimization problems, and many heuristics have been proposed to find near-optimal
solutions for it. The development of computational methods to solve the TSP is an active field of research, and
Applegate et. al. (2006) proposed a comprehensive review about solving TSP. These methods can be classified into
two broad categories, exact algorithms which are guaranteed to output optimal tours and heuristics which generate
good quality tours within a reasonable execution time. The former category includes cutting plane algorithms
proposed by Dantzig et. al. in 1954; Grőtschel and Padburg in 1985; Hong in 1972, branch and bound algorithms
proposed by Balas in 1965; Held and Karp in 1970; Lin in 1965, branch and cut algorithms proposed by Hong in
1972; Crowder and Padberg in 1980; Grőtschel and Holland in 1991; Padberg and Rinaldi in 1991 among other
techniques. The latter include several construction heuristics such as the nearest neighbor heuristic, the nearest,
farthest, and cheapest insertion heuristics, Christofides’ heuristic, as well as improvement heuristics such as local
search proposed by Lin and Kernighan in 1973, tabu search proposed by Fiechter in 1990; Gendreau et. al. in 1994;
Knox, in 1994; Potvin et. al. in 1996; Tsubakitani and Evans in 1998, simulated annealing proposed by Cerny in
1985, genetic algorithms proposed by Nguyen in 2004, and swarm algorithms proposed by Goldbarg et. al. in 2008;
Wang et. al. in 2003 (Ghosh and Basu, 2011).

One of the most successful algorithms for the TSP is the Ant Colony Optimization (ACO) metaheuristic (Dorigo and
Caro, 1999). ACO algorithms mimic the real ants’ capabilities of finding the shortest path between the nest and a
food source. Therefore the first ACO algorithm, named “Ant System (AS)”, was originally applied on a path
optimization problem; the TSP (Dorigo, et. al., 1991; Dorigo, 1992). Since then different variations and extensions
of the basic AS algorithm have been proposed, and a lot of researchers have studied on the potential and
improvements of the ACO algorithms (Dorigo and Caro, 1999).

One of the significant issues that affect the performance of the ACO algorithm is the parameter selection. The ACO
algorithms start by initializing some parameter values that are used in the solution construction and pheromone
management phases of the algorithm. In the literature, most of the studies use hand-tuned parameters for ACO
algorithms. But the values of these parameters may change both the execution time and the quality of the solution. In
this study, a systematic approach is proposed to determine the parameters of the ACO algorithm. The performance
of the ACO is enhanced by using a Neural Network algorithm. The NN takes the results obtained by the ACO
algorithm for the used parameters, and update them in order to send to the ACO as feedback information. In the next
section, the ACO metaheuristic will be introduced briefly, and the working principle of the ACO algorithm will be

1697

given. Then the importance of the parameter selection in ACO will be emphasized with the support of some
literature review. The third section explains the methodology of the proposed hybrid algorithm and gives empirical
results. Finally the last section evaluates the solutions, and gives concluding remarks and possible future work.

2. Ant Colony Optimization and Parameter Selection
ACO has emerged in the early 90s as a nature inspired metaheuristic framework to solve hard combinatorial
optimization problems (Dorigo and Caro, 1999; Blum, 2005). This class of optimization algorithms studies the
systems in which artificial ants that take inspiration from the real ant’s behavior stand for multi-agent methods. In
other words, ACO brings the indirect communication (by pheromone) and self organization properties of ant
colonies from nature to optimization problems. Since it was first proposed by Dorigo et. al., a lot of researchers have
studied the potential and the improvements of the ACO algorithms, and its adaptation to different types of problems.
Therefore, there are many extensions and variations of the basic AS algorithm in the literature (see Dorigo and
Stützle, 2004 and Mullen, et. al., 2009).

Ant Colony System (ACS) algorithm is one of the most successful (efficient) variants of the original AS algorithm
(Dorigo and Gambardella, 1996). AS differs from the basic AS algorithm with three properties:

1. the decision rule,
2. addition of a local pheromone updating procedure, and,
3. the restriction of the global pheromone updating only to the best solution.

Dorigo and Gambardella (1996) applied the ACS algorithm to the TSP. Each ant k constructs a solution by
iteratively moving from city i to city j according to the pseudo-random proportional rule (a probabilistic state
transition rule) that is given as:

[]{ }





 ≤

= ∈

otherwiseJ

qqif
j ililNl k

i
0maxarg βητ

 (2)

where j is the random proportional rule, τil and ηil are the pheromone level and heuristic value between city i and city
l, q is a random variable uniformly distributed between [0, 1], q0 is a parameter (0≤ q0 ≤1) to control exploration and
exploitation, β is a parameter which determines the relative importance of the pheromone versus the heuristic value,
and J is the action obtained by using the AS rule. The transition rule used by the AS gives the probability for ant k to
move from city i to city j at time t,)(tp k

ij , and is calculated as follows:








∈

∑= ∈

otherwise

allowedjif
t

t
tp k

ililallowedk

ilil
k
ij k

0

][)]([
][)]([

)(βα

βα

ητ
ητ

 (3)

where allowed k represents the feasible nodes that ant k can move to from city i, and α and β represent adjustable
parameters that control the influence of the pheromone versus the heuristic information. The heuristic value, η is
problem specific information that guides the ants’ search, and changes according to the problem type.

When an ant moves from node i to node j, a local pheromone updating is performed by the evaporation of a small
amount of pheromone from path (i, j) according to the following formula:

 0)()1()(ρττρτ +−= tt ijij (4)

where τ0 is the initial pheromone value, and ρ is the pheromone evaporation rate. While τ0 value is set to a user-
defined small constant in AS algorithm, in the ACS algorithm it is usually found with a Nearest Neighbor (NN)

1698

heuristic (Solomon, 1987). Also after a cycle has been completed, a global updating is applied to edges belonging to
the best solution. The pheromone trails on these paths are updated as follows:

)1,()()1()1(+∆+−=+ tttt bs
ijijij τρτρτ (5)

and ∆τij
bs is calculated as follows:





 ∈

=∆
otherwise

Tjiif
c

bs
bsbs

ij

0

),(1
τ (6)

where Tbs is the best solution and cbs is its cost/length.

Most of the algorithms in the literature focus on the enhancement of the pheromone update mechanism of the basic
AS algorithm (how to compute and how to update), parallelization strategies, or the improvement of the initial or the
final solution by additional methods. However the existing literature about the importance and the effects of
parameter selection in the performance of ACO algorithms is not reach. But past researches show that the
performance of the algorithms also depends on the correct tuning of the used parameters (Dorigo, et. al., 1991 and
Dorigo, et. al., 1996). While the pheromone level will have a greater influence in the ants’ decisions when α>β, the
edge visibility will have a greater influence otherwise. Also, while a high value for α may cause stagnation, a high
value for β leads to a greedy search (for search stagnation we refer to Dorigo, et. al., 1996).

Some researchers have studied driving the optimal combinations of the adjustable parameters of ACO to increase
the success of the algorithm (Dorigo, et. al., 1996; Dorigo, et. al., 1991; Dorigo, et. al., 1996; White, et. al., 1998;
Pilat and White, 2002; Zaitar and Hiyassat, 2005). Dorigo et. al. (1991) experimentally determined the best values of
α, β, ρ, and Q (quantity of trail laid by ants) parameters for three AS algorithms, and compared the three models by
running them ten times using the best parameters set (the influence of Q parameter is found negligible). The ant-
cycle algorithm has obtained better results than the other two algorithms, and its behavior is investigated for
different combinations of parameters α and β. The results that are obtained by running the algorithm ten times and
for 2500 cycles for each set of parameters are summarized in Figure 1. They also investigated the stagnation
behavior that is the situation in which all the ants find the same solution.

Figure 1: Ant-cycle Behavior for Different Combinations of α-β Parameters (Dorigo, et. al., 1991)

 - the algorithm does not find very good solutions and enters stagnation behavior
∞ - the algorithm does not find very good solutions without entering stagnation behavior

x - the algorithm finds very good solutions without entering stagnation behavior

Pilat and White (2002) use a GA to evolve experimental variable values used in ACS-TSP. The suggested values for
β, ρ, and q0 are 6, 0.2, and 0.7 respectively. Zaitar and Hiyassat (2005) also use the standard GA in optimizing the
ACO parameters, and apply it on the classical TSP. First a random population of chromosomes is generated, and
then the values for both α and β parameters are calculated. Then the ACO algorithm is implemented for each

1699

chromosome, and the shortest path is selected. Both the ACO and GA are implemented iteratively. The outputs of
the ACO-GA for a certain set of cities are collected in order to find the optimal parameter values. The average
values of α, β, and ρ are 1.5729, 1.3896, and 0.52 respectively. Zhangqi et. al. (2011) apply GA to optimize and
configure parameters of the basic ant colony algorithm. Simulation results show that the improved ant colony
algorithm is superior to the basic ant colony algorithm in terms of stability and the quality of the solution for mobile
robot path planning problem.

3. Optimizing the Ant Colony Optimization Algorithm using Neural Network
The parameters of the ACO have a critical impact on the performance of the algorithm. A lot of testing is needed to
determine the best combination of the ACO parameters. This paper introduces NN to optimize the parameters of the
ACO algorithm. The NN takes the results obtained by the ACO algorithm for the used parameters (α and β), and
update them in order to send to the ACO as feedback information. NN is used for choosing best parameters to
minimize the length of the tour for TSP instances, where as the ACO serves as the evaluation algorithm. Hybridizing
ant algorithm with NN is shown in Figure 2.

First the ACO algorithm is run with different α and β parameters for 50 times. Then the generated solutions with the
given parameters are given to a NN as an input data set and the NN algorithm predicts the best parameter values.
The pseudo code of the proposed algorithm is shown in Figure 3.

Figure 2: Hybridizing ant algorithm with NN (adapted from Sivagaminathan and Ramakrishnan, 2007)

Figure 3: The pseudo code of the proposed ACO-NN algorithm

Two parameters,
N ants Parameter selection

Neural Network Training for 50
epoches & Testing

Final NN
Training

If
(Terminatio
n Criteria
reached)

Final Parameter values

No

Yes

Begin ACO-NN ()
 do i=1 to sample size
 Randomize parameter alpha(α) and beta(β)
 while termination condition not met
 do each ant
 Generate solution
 Local pheromone update
 else
 Global pheromone update
 end if
 else
 Apply NN with the generated samples
 Run ACO with the parameters predicted by the NN
end if
Best is the ideal solution
end

1700

The proposed ACO-NN hybrid algorithm is applied on a set of TSP benchmark instances. Input files are the problem
sets taken from the TSP Library (TSPLIB). Symmetric TSP instances are used in this study. The algorithm is
developed on Eclipse Classic 3.5.2 and JCreator LE 4.50 by using Java programming language. The program ran on
a computer with Intel ® Core(TM) 2 Duo 1.83Ghz CPU and 1 GB-RAM.

One type of TSP instances is chosen and trained by NN algorithm. The best α and β combination which is given by
NN algorithm is 0.886 and 4, respectively. According to these parameters other symmetric problem instances are
solved. As a summary of results; the minimum and maximum values of performance measure for TSP instances in
TSPLIB is shown in Table 1.

Table 1: Summary of results using ACO-NN algorithm for TSP instances

Problem name

Performance over Best
Known Solution (%)

Best
solution of
application

Best
known

solutions

Average
CPU times
(seconds) Min Max

ulysses16.tsp 0 0.034 6859 6859* 10.953
ulysses22.tsp 0 0.030 7013 7013* 15.578

fri26.tsp 0 0.082 937 937* 17.313

bays29.tsp 0 0.053 2020 2020* 14.765

bayg29.tsp 0 0.088 1610 1610* 34.543

att48.tsp 0 0.034 10648 10648* 57.340

hk48.tsp 0 0.045 11461 11461* 32.231

berlin52.tsp 0 0.065 7542 7542* 54.346

burma14.tsp 0 0.032 3323 3323* 57.453

eil51.tsp 0 0.053 426 426* 24.357

eil76.tsp 0 0.045 538 538* 43.456

eil101.tsp 0 0.089 629 629* 59.234

st70.tsp 0.019 0.035 688 675* 35.621

brg180.tsp 0.012 0.088 1975 1950* 57.459

ch130.tsp 0.033 0.088 6310 6110* 69.594

ch150.tsp 0.039 0.088 6789 6528* 69.976
* Optimum solutions

For symmetric problem instances, the proposed ACO-NN algorithm finds either optimum solutions or above the
best known solutions by 5% on the average.

4. Conclusions and Future Research
Determining the best combination of the ACO parameters (α and β) is a critical impact on the performance of the
algorithm. For increasing the performance of the algorithm, these parameters must be estimated and used as good as
possible by NN. In this study, NN is proposed for the adjustment of parameters of the ACO algorithm. The use of
NN for parameter selection has improved the solution quality of ACO algorithm. This improvement justifies the
development of the ACO-NN algorithm. Same algorithm will be applied for asymmetric problem instances in a
future study. Also, all sets of TSP instances will be used in training NN algorithm instead of one type of TSP
instance.

1701

References
1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., The Travelling Salesman Problem: A

Computational Study, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ,
2006.

2. Hubert, L.J., Baker, F.B., Applications of Combinatorial Programming to Data Analysis: The Traveling
Salesman and Related Problems, Psychometrika, 43(1), 81-91, 1978.

3. Botee, H.F., Bonabeau, E., Evolving Ant Colony Optimization, Adv. Complex Systems, 1, 149-159, 1998.
4. Blum, C., Ant Colony Optimization: Introduction and Recent Trends, Physics of Life Reviews, 2(4), 353-

373, 2005.
5. Dorigo, M., Caro, D.C., The Ant Colony Optimization Meta-heuristic, New Ideas in Optimization, Corne et

al. editors, McGraw Hill, London, UK, 11- 32, 1999.
6. Dorigo, M., Maniezzo, V., Colorni, A., Positive feedback as a search strategy, Technical Report 91-016,

Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.
7. Dorigo, M., Optimizing Learning and Natural Algorithms, PhD thesis, Dipartimento di Elettronica e

Informazione, Politecnico di Milano, 1992.
8. Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press, Cambridge, MA, USA, 2004.
9. Dorigo, M., Gambardella, L.M., Ant Colony System: A Cooperative Learning Approach to the Travelling

Salesman Problem, Technical Report 96-5, IRIDIA, Universit´e Libre de Bruxelles, 1996.
10. Dorigo, M., Maniezzo, V., Colorni, A., The Ant System: Optimization by a Colony of Cooperating Agents,

IEEE Transactions on Systems, Man and Cybernetics, B26 (1), 29-41, 1996.
11. Dorigo, M., Maniezzo, V., Colorni, A., Ant System: An Autocatalytic Optimizing Process, Technical

Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.
12. Ghosh, D., Basu, S., Diversified Local Search for the Traveling Salesman Problem, Working Paper Series,

Indian Institute of Management Ahmedabad, India, W.P. No. 2011-01-03, 2011.
13. Hahsler, M., Hornik, K., TSP-Infrastructure for the Traveling Salesperson Problem, Journal of Statistical

Software, 23(2), 1-21, ISSN 1548-7660, 2007.
14. Hubert, L.J., Baker, F.B., Applications of Combinatorial Programming to Data Analysis: The Traveling

Salesman and Related Problems, Psychometrika, 43(1), 81-91, 1978.
15. Lenstra, J., Kan., A.R., Some simple applications of the travelling salesman problem, Operational

Research Quarterly, 26(4), 717-733, 1975.
16. Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P., A Review of Ant Algorithms, Expert Systems

with Applications, vol. 36, 9608-9617, 2009.
17. Pilat, M.L., White, T., Using Genetic Algorithms to Optimize ACS-TSP, Proceedings of the Third

International Workshop on Ant Algorithms, ANTS-2002, Springer-Verlag, London, UK, 282-287, 2002.
18. Sivagaminathan, R.K., Ramakrishnan, S., A hybrid approach for feature subset selection using neural

networks and ant colony optimization, Expert Systems with Applications 33, 49–60, 2007.
19. Solomon, M.M., Algorithms for the Vehicle Routing and Scheduling Problems with Time Windows

Constraints, Operations Research, vol. 35, 254-265, 1987.
20. TSPLIB, TSP Library, Accessed from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ in

02.10.2011.
21. White, T., Pagurek, B., Oppacher, F., ASGA: Improving the Ant System by Integration with Genetic

Algorithms, Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin,
USA, 610-617, 1998.

22. Zaitar, R.A., Hiyassat, H., Optimizing the Ant Colony Optimization Using Standard Genetic Algorithm,
Proceedings of the 23rd International Multi-Conference Artificial Intelligence and Applications, Innsbruck,
Austria, 2005.

23. Zhangqi, W., Xiaoguang, Z., Qingyao, H., Mobile Robot Path Planning based on Parameter Optimization
Ant Colony Algorithm, Procedia Engineering 15, 2738 – 2741, 2011.

	1. Introduction
	2. Ant Colony Optimization and Parameter Selection
	3. Optimizing the Ant Colony Optimization Algorithm using Neural Network
	4. Conclusions and Future Research

