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Abstract 
 
Ant Colony Optimization (ACO) has been proved to be one of the most effective algorithms to solve a wide range of 
combinatorial optimization (or NP-hard) problems as the Travelling Salesman Problem (TSP). The first step of an 
ACO algorithm is setting the parameters that drive the algorithm. The basic parameters that are used in ACS 
algorithms are; number of ants, the relative importance (or weight) of pheromone, the relative importance of 
heuristics value, initial pheromone value, evaporation rate, and a parameter to control exploration or exploitation. 
Generally these parameters are set as discrete values, but past studies has shown that the behavior of the algorithm 
can be influenced by the modification of the parameters. In this paper, we propose a Neural Network (NN) to adapt 
two parameters of the ACO algorithm dynamically. The proposed hybrid algorithm is applied on the classical TSP, 
and tested on different TSP benchmark instances. 
 
Keywords 
Ant Colony optimization, evolutionary algorithms, neural network, parameter tuning in ACO, travelling salesman 
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1. Introduction 
Problems in transportation and logistics; such as routing, scheduling, assignment etc. are very complex and hard 
combinatorial optimization problems. In recent years, advanced (soft) computing algorithms such as metaheuristics, 
Neural Networks (NN), and fuzzy logic are commonly used instead of traditional methods for solving these complex 
problems. Heuristic and metaheuristics algorithms can provide approximate solutions in a reasonable time for the 
practical applications of transportation problems. 
 
One of the most common problems in areas such as logistics, distribution, and transportation industries / networks is 
the well-known Travelling Salesman Problem (TSP) (Applegate, et. al., 2006). The TSP is one of the most 
intensively investigated problems studied in both operations research, computer science, and transportation fields, 
and often comes up as a sub-problem in more complex combinatorial optimization problems. Given a finite set of 
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cities and their coordinates, TSP is the problem of finding a shortest closed tour that visits each city exactly once and 
turns back to the starting city. It has myriad of applications containing the movement of people, postal delivery, 
school bus routes, garbage collection etc. The solution of the TSP enables optimization of many other problems and 
transportation tasks, so it has significant value for transportation networks. The availability of extensive literature 
and the high applicability of TSP also make it ideal for a case study. 
 
The goal is to find the shortest tour that visits each city in a given list exactly once and then returns to the starting 
city. Formally, the TSP can be stated as follows. The distances between n cities are stored in a distance matrix (D) 
with elements dij where i, j= 1,…, n and the diagonal elements dii are zero. A tour can be represented by a cyclic 
permutation Π of {1, 2,…, n} where Π(i) represents the city that follows city i on the tour. The TSP is then the 
optimization problem to find a permutation Π that minimizes the length of the tour denoted by (Hahsler and Hornik, 
2007); 
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For this minimization task, the tour length of (n - 1)! vectors have to be compared. This results in a problem which is 
very hard to solve and in fact known to be NP-complete. According to Lenstra and Kan (1975), solving TSPs is an 
important part of applications in many areas including vehicle routing, computer wiring, machine sequencing and 
scheduling, frequency assignment in communication networks. Applications in statistical data analysis include 
ordering and clustering objects. For example, data analysis applications in psychology ranging from profile 
smoothing to finding an order in developmental data are presented by Hubert and Baker (Hubert and Baker, 1978). 
 
TSP belongs to the NP-hard problem class and cannot be solved optimally in a polynomial time (Papadimitriou, 
1997; Garey and Johnson, 1979). Therefore, the TSP has provided a remarkable source for testing solution 
algorithms for combinatorial optimization problems, and many heuristics have been proposed to find near-optimal 
solutions for it. The development of computational methods to solve the TSP is an active field of research, and 
Applegate et. al. (2006) proposed a comprehensive review about solving TSP. These methods can be classified into 
two broad categories, exact algorithms which are guaranteed to output optimal tours and heuristics which generate 
good quality tours within a reasonable execution time. The former category includes cutting plane algorithms 
proposed by Dantzig et. al. in 1954; Grőtschel and Padburg in 1985; Hong in 1972, branch and bound algorithms 
proposed by Balas in 1965; Held and Karp in 1970; Lin in 1965, branch and cut algorithms proposed by Hong in 
1972; Crowder and Padberg in 1980; Grőtschel and Holland in 1991; Padberg and Rinaldi in 1991 among other 
techniques. The latter include several construction heuristics such as the nearest neighbor heuristic, the nearest, 
farthest, and cheapest insertion heuristics, Christofides’ heuristic, as well as improvement heuristics such as local 
search proposed by Lin and Kernighan in 1973, tabu search proposed by Fiechter in 1990; Gendreau et. al. in 1994; 
Knox, in 1994; Potvin et. al. in 1996; Tsubakitani and Evans in 1998, simulated annealing  proposed by Cerny in 
1985, genetic algorithms proposed by Nguyen in 2004, and swarm algorithms proposed by Goldbarg et. al. in 2008; 
Wang et. al. in 2003 (Ghosh and Basu, 2011). 
 
One of the most successful algorithms for the TSP is the Ant Colony Optimization (ACO) metaheuristic (Dorigo and 
Caro, 1999). ACO algorithms mimic the real ants’ capabilities of finding the shortest path between the nest and a 
food source. Therefore the first ACO algorithm, named “Ant System (AS)”, was originally applied on a path 
optimization problem; the TSP (Dorigo, et. al., 1991; Dorigo, 1992). Since then different variations and extensions 
of the basic AS algorithm have been proposed, and a lot of researchers have studied on the potential and 
improvements of the ACO algorithms (Dorigo and Caro, 1999).  
 
One of the significant issues that affect the performance of the ACO algorithm is the parameter selection. The ACO 
algorithms start by initializing some parameter values that are used in the solution construction and pheromone 
management phases of the algorithm. In the literature, most of the studies use hand-tuned parameters for ACO 
algorithms. But the values of these parameters may change both the execution time and the quality of the solution. In 
this study, a systematic approach is proposed to determine the parameters of the ACO algorithm. The performance 
of the ACO is enhanced by using a Neural Network algorithm. The NN takes the results obtained by the ACO 
algorithm for the used parameters, and update them in order to send to the ACO as feedback information. In the next 
section, the ACO metaheuristic will be introduced briefly, and the working principle of the ACO algorithm will be 
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given. Then the importance of the parameter selection in ACO will be emphasized with the support of some 
literature review. The third section explains the methodology of the proposed hybrid algorithm and gives empirical 
results. Finally the last section evaluates the solutions, and gives concluding remarks and possible future work. 
 
2. Ant Colony Optimization and Parameter Selection  
ACO has emerged in the early 90s as a nature inspired metaheuristic framework to solve hard combinatorial 
optimization problems (Dorigo and Caro, 1999; Blum, 2005). This class of optimization algorithms studies the 
systems in which artificial ants that take inspiration from the real ant’s behavior stand for multi-agent methods. In 
other words, ACO brings the indirect communication (by pheromone) and self organization properties of ant 
colonies from nature to optimization problems. Since it was first proposed by Dorigo et. al., a lot of researchers have 
studied the potential and the improvements of the ACO algorithms, and its adaptation to different types of problems. 
Therefore, there are many extensions and variations of the basic AS algorithm in the literature (see Dorigo and   
Stützle, 2004 and Mullen, et. al., 2009). 
 
Ant Colony System (ACS) algorithm is one of the most successful (efficient) variants of the original AS algorithm 
(Dorigo and Gambardella, 1996). AS differs from the basic AS algorithm with three properties: 

1. the decision rule,  
2. addition of a local pheromone updating procedure, and,  
3. the restriction of the global pheromone updating only to the best solution.  

Dorigo and Gambardella (1996) applied the ACS algorithm to the TSP. Each ant k constructs a solution by 
iteratively moving from city i to city j according to the pseudo-random proportional rule (a probabilistic state 
transition rule) that is given as: 
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where j is the random proportional rule, τil and ηil are the pheromone level and heuristic value between city i and city 
l, q is a random variable uniformly distributed between [0, 1], q0 is a parameter (0≤ q0 ≤1) to control exploration and 
exploitation, β is a parameter which determines the relative importance of the pheromone versus the heuristic value, 
and J is the action obtained by using the AS rule. The transition rule used by the AS gives the probability for ant k to 
move from city i to city j at time t, )(tp k

ij , and is calculated as follows: 
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where allowed k represents the feasible nodes that ant k can move to from city i, and α and β represent adjustable 
parameters that control the influence of the pheromone versus the heuristic information. The heuristic value, η is 
problem specific information that guides the ants’ search, and changes according to the problem type. 
 
When an ant moves from node i to node j, a local pheromone updating is performed by the evaporation of a small 
amount of pheromone from path (i, j) according to the following formula: 
 

                                                  0)()1()( ρττρτ +−= tt ijij                                                             (4) 

 
where τ0 is the initial pheromone value, and  ρ is the pheromone evaporation rate. While τ0 value is set to a user-
defined small constant in AS algorithm, in the ACS algorithm it is usually found with a Nearest Neighbor (NN) 
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heuristic (Solomon, 1987). Also after a cycle has been completed, a global updating is applied to edges belonging to 
the best solution. The pheromone trails on these paths are updated as follows: 
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where Tbs is the best solution and cbs is its cost/length. 
 
Most of the algorithms in the literature focus on the enhancement of the pheromone update mechanism of the basic 
AS algorithm (how to compute and how to update), parallelization strategies, or the improvement of the initial or the 
final solution by additional methods. However the existing literature about the importance and the effects of 
parameter selection in the performance of ACO algorithms is not reach. But past researches show that the 
performance of the algorithms also depends on the correct tuning of the used parameters (Dorigo, et. al., 1991 and 
Dorigo, et. al., 1996). While the pheromone level will have a greater influence in the ants’ decisions when α>β, the 
edge visibility will have a greater influence otherwise. Also, while a high value for α may cause stagnation, a high 
value for β leads to a greedy search (for search stagnation we refer to Dorigo, et. al., 1996). 
 
Some researchers have studied driving the optimal combinations of the adjustable parameters of ACO to increase 
the success of the algorithm (Dorigo, et. al., 1996; Dorigo, et. al., 1991; Dorigo, et. al., 1996; White, et. al., 1998; 
Pilat and White, 2002; Zaitar and Hiyassat, 2005). Dorigo et. al. (1991) experimentally determined the best values of 
α, β, ρ, and Q (quantity of trail laid by ants) parameters for three AS algorithms, and compared the three models by 
running them ten times using the best parameters set (the influence of Q parameter is found negligible). The ant-
cycle algorithm has obtained better results than the other two algorithms, and its behavior is investigated for 
different combinations of parameters α and β. The results that are obtained by running the algorithm ten times and 
for 2500 cycles for each set of parameters are summarized in Figure 1. They also investigated the stagnation 
behavior that is the situation in which all the ants find the same solution.  

 
Figure 1: Ant-cycle Behavior for Different Combinations of α-β Parameters (Dorigo, et. al., 1991) 

 - the algorithm does not find very good solutions and enters stagnation behavior 
∞ - the algorithm does not find very good solutions without entering stagnation behavior 

x - the algorithm finds very good solutions without entering stagnation behavior 
 
Pilat and White (2002) use a GA to evolve experimental variable values used in ACS-TSP. The suggested values for 
β, ρ, and q0 are 6, 0.2, and 0.7 respectively. Zaitar and Hiyassat (2005) also use the standard GA in optimizing the 
ACO parameters, and apply it on the classical TSP. First a random population of chromosomes is generated, and 
then the values for both α and β parameters are calculated. Then the ACO algorithm is implemented for each 
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chromosome, and the shortest path is selected. Both the ACO and GA are implemented iteratively. The outputs of 
the ACO-GA for a certain set of cities are collected in order to find the optimal parameter values. The average 
values of α, β, and ρ are 1.5729, 1.3896, and 0.52 respectively. Zhangqi et. al. (2011) apply GA to optimize and 
configure parameters of the basic ant colony algorithm. Simulation results show that the improved ant colony 
algorithm is superior to the basic ant colony algorithm in terms of stability and the quality of the solution for mobile 
robot path planning problem. 
 
3. Optimizing the Ant Colony Optimization Algorithm using Neural Network 
The parameters of the ACO have a critical impact on the performance of the algorithm. A lot of testing is needed to 
determine the best combination of the ACO parameters. This paper introduces NN to optimize the parameters of the 
ACO algorithm. The NN takes the results obtained by the ACO algorithm for the used parameters (α and β), and 
update them in order to send to the ACO as feedback information. NN is used for choosing best parameters to 
minimize the length of the tour for TSP instances, where as the ACO serves as the evaluation algorithm. Hybridizing 
ant algorithm with NN is shown in Figure 2. 
 
First the ACO algorithm is run with different α and β parameters for 50 times. Then the generated solutions with the 
given parameters are given to a NN as an input data set and the NN algorithm predicts the best parameter values. 
The pseudo code of the proposed algorithm is shown in Figure 3. 

                 
 

Figure 2: Hybridizing ant algorithm with NN (adapted from Sivagaminathan and Ramakrishnan, 2007) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3: The pseudo code of the proposed ACO-NN algorithm 

          

Two parameters, 
N ants Parameter selection 

Neural Network Training for 50 
epoches & Testing 

Final NN 
Training 

If 
(Terminatio
n Criteria 
reached) 

Final Parameter values 

No 

Yes 

Begin  ACO-NN () 
     do i=1 to sample size 
     Randomize parameter alpha(α) and beta(β) 
     while termination condition not met 
            do each ant 
                  Generate solution 
                  Local pheromone update 
            else 
            Global pheromone update 
     end if 
     else  
     Apply NN with the generated samples 
     Run ACO with the parameters predicted by the NN 
end if  
Best is the ideal solution  
end 
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The proposed ACO-NN hybrid algorithm is applied on a set of TSP benchmark instances. Input files are the problem 
sets taken from the TSP Library (TSPLIB). Symmetric TSP instances are used in this study. The algorithm is 
developed on Eclipse Classic 3.5.2 and JCreator LE 4.50 by using Java programming language. The program ran on 
a computer with Intel ® Core(TM) 2 Duo 1.83Ghz CPU and 1 GB-RAM. 
 
One type of TSP instances is chosen and trained by NN algorithm. The best α and β combination which is given by 
NN algorithm is 0.886 and 4, respectively. According to these parameters other symmetric problem instances are 
solved. As a summary of results; the minimum and maximum values of performance measure for TSP instances in 
TSPLIB is shown in Table 1. 
 

Table 1: Summary of results using ACO-NN algorithm for TSP instances 

Problem name 

Performance over Best 
Known Solution (%) 

Best 
solution of 
application 

Best 
known 

solutions 

Average 
CPU times 
(seconds) Min Max 

ulysses16.tsp 0 0.034 6859 6859* 10.953 
ulysses22.tsp 0 0.030 7013 7013* 15.578 

fri26.tsp 0 0.082 937 937* 17.313 

bays29.tsp 0 0.053 2020 2020* 14.765 

bayg29.tsp 0 0.088 1610 1610* 34.543 

att48.tsp 0 0.034 10648 10648* 57.340 

hk48.tsp 0 0.045 11461 11461* 32.231 

berlin52.tsp 0 0.065 7542 7542* 54.346 

burma14.tsp 0 0.032 3323 3323* 57.453 

eil51.tsp 0 0.053 426 426* 24.357 

eil76.tsp 0 0.045 538 538* 43.456 

eil101.tsp 0 0.089 629 629* 59.234 

st70.tsp 0.019 0.035 688 675* 35.621 

brg180.tsp 0.012 0.088 1975 1950* 57.459 

ch130.tsp 0.033 0.088 6310 6110* 69.594 

ch150.tsp 0.039 0.088 6789 6528* 69.976 
* Optimum solutions 

 
For symmetric problem instances, the proposed ACO-NN algorithm finds either optimum solutions or above the 
best known solutions by 5% on the average. 
 
4. Conclusions and Future Research 
Determining the best combination of the ACO parameters (α and β) is a critical impact on the performance of the 
algorithm. For increasing the performance of the algorithm, these parameters must be estimated and used as good as 
possible by NN. In this study, NN is proposed for the adjustment of parameters of the ACO algorithm. The use of 
NN for parameter selection has improved the solution quality of ACO algorithm. This improvement justifies the 
development of the ACO-NN algorithm. Same algorithm will be applied for asymmetric problem instances in a 
future study. Also, all sets of TSP instances will be used in training NN algorithm instead of one type of TSP 
instance. 
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