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Abstract 
 

Disassembly lines are the best way to disassemble products with similar components in large quantities. A 
disassembly line consists of a series of workstations. However, unlike their assembly counterpart, disassembly lines 
are affected by factors such as multiple component demand arrivals and end-of-life (EOL) product arrivals, 
uncertainty in EOL product and component demand arrivals and varying processing times. Altogether, these factors 
make a disassembly line very complex and cause demand fluctuations in the inventory levels of sub-assemblies and 
components in the system. The fluctuations in the inventory levels lead to increased cost of operation and decreased 
customer satisfaction. This research focuses on addressing inventory management problem in multi-product, multi-
demand disassembly line using Reinforcement Learning, specifically Q-learning, which learns from experience to 
perform very effectively in dynamic environments with stochastic elements.  
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1. Introduction and Background 
Manufacturers, particularly in the appliance, electronics and computer industries are facing the problem of shortened 
product lifetime due to technological advancements. Shortened product lifetime is causing the consumers to buy the 
latest and advanced models of products in use before their functional life is over. Instead of returning the end-of-life 
(EOL) products for material and component recovery, consumers simply discard them. This attitude has serious 
environmental repercussions on landfills. Thus, governments of the industrialized countries are now forcing original 
equipment manufacturers (OEM) to extend their products responsibility. The extended product responsibility 
includes the collection of EOL products and engaging in operations such as disassembly, recycling and 
remanufacturing to recover components, recover raw material and bring the EOL products to a like-new state. When 
the EOL products arrive at a disassembly facility, they go through a series of operations for recovery purposes. 
Unlike typical assembly line, disassembly systems include complexities such as arrival of multiple demand types, 
arrival of multiple product types and stochastic demand and product arrival.  These complexities are not present in a 
regular assembly system and they can impede the overall productivity and performance of a disassembly system. In 
this research we are focusing on a disassembly line with uncertain multi-demand and multi-product arrival. In such a 
disassembly system, the aforementioned complexities can cause inventory fluctuations which, if left unmanaged, 
can lead to an increase in the overall cost of maintaining the system and a decrease in the customer satisfaction due 
to unsatisfied demands. In this paper we seek to maximize the efficiency and profitability of the disassembly system 
described above by managing the inventory using reinforcement learning (RL) techniques. 
 
The sections in this paper are organized as follows: in section 2 we discuss the literature on inventory management 
in disassembly systems; in sections 3 we elaborate on the problem of inventory management in disassembly lines 
and issues tied to addressing the problem; in section 4 we provide the framework for the proposed solution 
methodology (RL); in section 5 we discuss how the proposed solution methodology is applied to an example 
problem;  and in section 6we discuss the results and present conclusions.  
 
Product/component recovery operations and related problems have been studied thoroughly over the last couple of 
decades due to increasing environmental and economic concerns. McGovern and Gupta (2011) provide a 
comprehensive review of problems associated with product/component recovery and disassembly. 
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In the area of disassembly inventory management, Johar and Gupta (2006) developed a mathematical approach to 
balancing the inventory generated from a disassembly line depending on the shape and size of the components and 
the amount of space available in the sorting area of the disassembly line. Udomsawat and Gupta(2003, 2005) 
presented a Multi-Kanban mechanism (MKBS) for disassembly line with single type products, disassembly line with 
component discriminating demands, and disassembly line with products having multiple precedence relationships.  
There have been many studies related to RL, implementation of RL to problems that involve large state/action 
spaces and integration of neural networks and RL. Bakker (2007) illustrated backpropagation through long short 
term memory recurrent neural network model/critic. Qiao, et al. (2007) described a neural network for selecting 
actions in a mobile robot with Q-Learning. Shiraga et al.(2001, 2002) described a reinforcement learning algorithm 
for neural networks with incremental learning ability using a resource allocating network and long term memory. 
Sun, et al. (2008) discussed a RL method for continuous state space by utilizing Elman network. Here, the authors 
utilized a dynamic Elman network to approximate the Q-value for a state-action pair. 
 
To author’s knowledge RL techniques (Q-learning algorithm) have not been applied to address disassembly 
inventory management problem.  
 
2. Disassembly Problem  
In section 1 we mentioned that disassembly lines are ridden with many complexities that do not exist in traditional 
assembly lines. In an assembly line, base or the core of the product enters the line through the very first workstation. 
Afterwards, operations are performed on the product at subsequent workstations to produce the final product. The 
finished product comes off the line through the last workstation. Demand exists for the final product and arrives at a 
single location, namely the last station. Both product/component and demand flow through the system are 
convergent. Unlike in an assembly line, EOL products can arrive at any workstation of the disassembly line, 
depending on the product configuration. Each returned product follows a specific disassembly sequence which 
usually varies among different types of returned products. The missing components in EOL products make it harder 
to satisfy incoming demand for components. The demand for components can arrive for any component at any 
workstation. The product/component and demand flow are divergent. Divergent flow factor coupled with 
uncertainty in demand and product arrival contributes to the fluctuations in the inventory levels. The generic 
dynamics of the disassembly system under consideration is illustrated in Figure 1.Depending on the dynamics of the 
system once a product is pulled from its respective buffer it enters a workstation for processing it and is 
disassembled into sub-assemblies and components. Components are put into component buffers whereas the sub-
assemblies are routed to sub-assembly buffers. The incoming products, sub-assemblies and components routed 
according to the decision made by RL agent. The important factor here is that if the arriving products go through 
disassembly operations without any demand arriving for components then the system experiences an inventory 
explosion.  
 

 
Figure 1: Generic disassembly line representation 
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In this paper there are two key objectives: To minimize the work-in-process (WIP) inventory and at the same time 
maximize the number of demands satisfied.  
 
3. Reinforcement Learning Overview 
The basic idea of RL is to learn from experience. RL techniques are categorized under “unsupervised learning” 
branch of the artificial intelligence area in which the decision making agent (DMA) maps situations to actions 
without needing anything but the reinforcement received from the environment(Watkins, 1989; Watkins and Dayan, 
1992; Russel and Norvig, 1995; Sutton and Barto, 1998; Tewari, 2007).At any given time t the selects and executes 
and action based on the current state of the environment. The environment then generates a numerical signal called 
the reinforcement signal (Sutton and Barto, 1998). It is through this signal that the DMA can understand whether or 
not it has made a good decision. 
 
RL algorithms are applicable to Markov Decision Processes (MDP) and are structured around clearly defined states, 
actions and reinforcement. State representation includes the necessary information about the environment and 
communicates it to the DMA. When the DMA selects and executes an action the state of the environment changes 
and the DMA receives a numerical reinforcement from the environment based on the desirability of the newly 
transitioned state. The desirability of the new state is evaluated by the reinforcement signal. Action space contains a 
set of actions which are available to the DMA at any given time t. Suffice it to say that the DMA knows whether or 
not if it does the “right thing” by perceiving the changes in the states caused by the actions it executes.The RL logic 
is mapped to values by utilizing several different functions. The mapping allows the DMA to keep track of the long 
term performance. This way the agent becomes more than a greedy decision making entity which seeks to maximize 
only the immediate reinforcement received from the environment.  In this research we utilize the Action-Value 
(state-action value) function to facilitate the learning. For a set of finite discrete states, 𝑠 ∈ 𝑆, and a set of discrete 
actions, 𝑎 ∈ 𝐴(𝑠), the action-value function is denoted as follows: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠,𝑎𝑡 = 𝑎}∞
𝑘=0                           (1) 

 

 
 

Figure 2: RL framework
 
Figure 2 illustrates the basic RL dynamics. In Eq. (1) γ denotes the discount rate. Discount rate takes a value in the 
0 < 𝛾 ≤ 1 range; it denotes the present value of rewards received in future states. The function given in Eq. (1) 
represents the value of taking action a in state s under a policy π, Qπ(s, a), denoted as the expected reward received 
starting from s, taking action a, and thereafter following policy π. A policy, π, is the probability of selecting 
𝑎 ∈ 𝐴(𝑠) at state𝑠 ∈ 𝑆. RL procedures commonly categorized as on-policy or off-policy depending on whether or 
not they strictly follow a policy or not. 
 
4. RL Implementation and Sample Problem 
Conventional Q-learning algorithm is not able to grant the necessary “learning” when the DMA has to deal with 
large state spaces. This is the case with the inventory management problem in disassembly lines which were 
described in section 3. The size of the state space makes it impossible to use the look-up table to keep track of and 
update the Q-values. In this research we utilize multilayer neural networks (NN) to overcome this challenge.  
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Q-learning works by incrementally updating the values of actions in states. Before learning begins the Q-values of 
the state-action pairs are initialized. Each time the DMA executes an action a from a set of actions A and receives a 
reward at a particular state s which belongs to state space Sthe state-action value 𝑄(𝑠𝑡 , 𝑎𝑡) is updated following a 
simple value iteration update which is defined as: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼𝑡(𝑠𝑡 , 𝑎𝑡)[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]                 (2) 
 
In Eq. (2), stand at denotes the state of the system and action executed at time t whereasrt + 1is the reward given at 
time t + 1, αt(s,a) (0 < α ≤ 1)  is the learning rate and γ is the discount factor. However in order to use the value 
iteration update rule defined in Eq (2) the values of the current and future state-action pairs are required. Due to 
large state space the look-up table becomes too limiting to use. To overcome this problem,we utilize multilayer 
networks to store the Q-values. Figure 3 illustrates Q-value approximation using neural networks. 
 

 
 

Figure 3: Q-value approximation 
 
The neural network illustrated in Figure 3 consists of 4 layers; an input layer (where information regarding the state, 
action and reward is received), two hidden layers and an output layer from which the approximated Q-values are 
obtained.  

 
 

Figure 4: Using multiple NNs for each action 
 
In Figure 4, St represents the state of the system at time t, and At denotes the action executed at time t. At this time 
we select the neural network that yields the maximum Q-value. Only the selected neural network gets its weights 
updated. Afterwards, the state of the system transitions into a new state based on the action that corresponds to the 
selected neural network. The neural network that yields the max Q-value is also found at this new state in order to 
obtain 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎). After Q-values for time t and time t+1 are obtained the value iteration update rule defined 
in Eq. (2) is utilized. Figure 5 illustrates the utilization of neural networks for the resultant state following to 
execution of an action. 



 
 

1870 
 

 
 

Figure 5: Using NNs for the resultant state 
 
The proposed solution methodology provides the following contributions: (i) it enables us to handle a highly 
dynamic and uncertain environment without making any unrealistic assumptions; (ii) integration with NN allows us 
to overcome the curse of dimensionality. We applied the proposed RL methodology in order to test its the 
efficiency. In the sample problem there are three types of products. Data regarding the products and their 
disassembly sequences are obtained from Udomsawat and Gupta (2005) and are listed in Table 1.  
 

Table 1: Sequences and arrival patterns of EOL products 
Appliance Component Structure Disassembly Sequence Mean Arrival 

Rate(units/hour) 
Microwave Oven A-B-C-E 1-2-3-4 15 

Washer/Dryer A-B-C-D-E 1-2-3-4 15 
Refrigerator C-B-A 3-2-1 15 

 
Components are processed at different workstations. The demand arrival rate and disassembly processing time for 
each component is listed in Table 2. 
 

Table 2: Component and operational data 
Component Type Mean Demand Arrival 

Rate (units/hour) 
Mean Disassembly Time 

(minutes) 
A 10 8 
B 10 12 
C 10 8 
D 10 4 
E 10 4 

 
Dynamics of disassembly line under consideration is illustrated in Figure 3. Similar to the generic disassembly line 
representation presented in section 3, the unnecessary disassembly of components leads to an inventory explosion. 
We initially benchmarked RL algorithm against traditional push system. Due to aforementioned reasons push system 
is the worst production strategy that can be applied to the example disassembly line.  
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Figure 6: Workflow 
 

 
 

Figure 7: Preliminary Analysis 
 
Figure 7 illustrates the average inventory obtained from 200 independent runs for both RL and traditional push 
system. We use average inventory as a performance metric because it simply indicator of the overall inventory 
carried throughout the span of the execution. Our preliminary analysis clearly indicates that RL outperforms the 
traditional push system. We also analyzed the changes in the inventory accumulation in the system throughout the 
period of execution in order to gain better understanding about agent’s behavior and the decision making process. 
Figure 8 illustrates the changes in the WIP inventory level vs. time.  
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Figure 8: Time vs. WIP inventory 
 
5. Conclusion and Future Research 
In this paper we propose a RL algorithm to address inventory management problem in a disassembly line. The 
proposed algorithm is designed to be applied to a disassembly line with multiple products and demand arrivals. The 
aforementioned problem is highly dynamic where products and demands arrive on an uncertain pattern which 
continuously changes the state of the system. The highly adaptive Q-learning algorithm is the best fit for handling 
such dynamic and uncertain systems. However, defining the state space as the number of items (components, sub-
assemblies and products) in the system and the number of demands for various components in the system leads to an 
explosion in the size of the state space. This challenge is handled by utilizing neural networks to estimate the Q-
values of the state-action pairs encountered during the execution. We also obtained promising results when we 
compared the average inventory outputs obtained from RL and traditional push system. 
 
Our next step in this research is to further analyzing the results obtained from the implementation of the proposed 
RL methodology. Our goal is to understand how agent behaves during the overall span of the execution to study the 
efficiency of RL. Also we intend to benchmark the RL methodology to a proven methodology selected from earlier 
studies in order to verify the efficiency of the proposed solution methodology.  The proposed solution methodology 
is designed in a way that it can be applied to problems of similar nature such as demand driven disassembly systems 
and disassembly buffer allocation problem. 
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