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Abstract 
In this paper, a Meta heuristic method is used to solve an extended Markowitz mean-variance portfolio selection 
model.  Since the problem is modeled by quadratic integer programming, we should use Meta heuristics to solve it. 
This paper proposes a simulated annealing Meta heuristic method to solve the problem and the results for a large 
scale example is compared with genetic algorithm. The Computational results show that the proposed method is 
more efficient on large scale examples. 
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1. Introduction 
Portfolio management is one of the most studied topics in finance. The problem is concerned with managing the 
portfolio of assets that minimizes the risk objectives subjected to the constraint for guaranteeing a given level of 
returns. Markowitz introduced the concepts of Modern Portfolio Theory. (Lin and Liu 2008) have used genetic 
algorithms to solve portfolio selection problem. They have presented three possible models for portfolio selection 
based on Markowitz’ model. (Markowitz 1952)  uses the mean and variance of historical returns to measure the 
expected return and risk of a portfolio. Conventionally, such portfolio selection problems are solved with quadratic 
or linear programming models under the assumption that the asset weights in the portfolio are real numbers, which 
are difficult to implement. Specifically, each asset has its minimum transaction lot, while the solutions involve only 
real-number asset weights rather than asset trading units. For example, stocks might be traded at the unit one share, 
and mutual funds have their individual minimum trading amounts. Thus, the solution obtained by Markowitz' model 
must be integers to be applicable in practice.  
 
Other than Markowitz' model, (Speranza 1996), (Mansini and Speranza 1997, Mansini and Speranza 1999a) and 
(Kellerer, Mansini and Speranza 2000). (Kellerer et al. 2000) proposed their respective portfolio selection models 
based on Konno and Yamazaki's mean absolute deviation (MAD) model (Konno and Yamazaki 1991). (Speranza 
1996) proposed a mixed integer program considering realistic characteristics in portfolio selection, such as minimum 
transaction lots and the maximum number of securities, and suggested a simple two-phase heuristic algorithm to 
solve the proposed integer program. (Mansini and Speranza 1999b) showed that the portfolio selection problem with 
minimum transaction lots is an NP-complete problem and proposed three heuristics algorithms to solve the problem. 
Based on the MAD model, (Konno and Wijayanayake 2001) proposed an exact algorithm for portfolio optimization 
problems under concave transaction costs and minimum transaction lots. However, minimum transaction lots were 
not the major concern in their study. Late, (Mansini and Speranza 2005) derived a mean-safety model with side 
constraints from the MAD model, and proposed an exact algorithm to solve for portfolios under the consideration of 
transaction costs and minimum transaction lots. However, Markowitz' model is still the most widespread portfolio 
selection model. Solving the portfolio selection problem based on Markowitz' model and, simultaneously, 
considering minimum transaction lots are of practical significance. However, it appears that no methods in the past 
solving the portfolio selection problem with minimum transaction lots were based on Markowitz' model. (Parra, 
Terol and Urı´a 2001) proposed a fuzzy goal programming approach to solve a portfolio selection problem, using a 
multi-index model to estimate the return and risk of portfolios and treating fuzzy goals as fuzzy numbers. However, 
their method ignores the existence of minimum transaction lots. 
 
The rest of this paper is organized as follows. In section 2 the portfolio selection problem and former researches 
about it are described. In section 3 a summary of simulated annealing method is presented. Our proposed method 
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and its steps are described in section 4.Section 5 presents the experiments with the proposed method. Finally, 
Section 6 concludes the paper. 
 
2. Portfolio selection problem  
The standard Markowitz mean-variance portfolio selection problem is formulated as follows (Markowitz 1959): 

      (1) 
Subject to 

       (2) 

         (3) 

       (4) 
 
Where N is the number of different available assets,  is the mean return of asset i, Cov  is the covariance 

of returns of assets i and j, and R is the investor's expected rate of return. The decision variable , represents the 
proportion of capital to be invested in asset I, and, thus, the constraint (3) ensures that the total available budget is 
invested. The goal is to minimize the portfolio risk, , for a given value of portfolio expected return, . 
 
According to their important role in decision making in financial market, bounds on holdings and cardinality 
constraints are required (J.Chang et al. 2000, H.Kellerer and D.Maringer 2001). The former guarantee that the 
amount invested (if any) in each asset is between its predetermined upper and lower bounds while the latter ensures 
that the total number of selected assets in the portfolio is equal to a predefined number. To make the model more 
practical, two other important constraints, namely, minimum transaction lots and sector capitalization are added 
(J.Chang et al. 2000, Soleimani 2007, H.Soleimani, H. R.Golmakani and M. H.Salimi 2009). The minimum 
transaction lots constraint requires that each asset can only be purchased in batch with a given number of units. The 
significance of sector capitalization is discussed in (J.Chang et al. 2000), (K. J.Oh et al. 2006), and (H.Soleimani et 
al. 2009). Investors tend to invest in assets belong to the sectors with higher value of market capitalization to reduce 
their risk of investment (H.Soleimani et al. 2009). According to (Hamid Reza Golmakani and Fazel 2011) the 
extended mean-variance model for the portfolio selection problem is, thus, formulated as follows: 

     (5) 
Where 

      (6) 
Where 

   (7) 
Subject to 

       (8) 
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        (9) 

    (10) 

       (11) 

    (12) 
Where 

      (13) 

       (14) 
 
Where M is the number of assets to be selected out of N available assets and B is the total budget.  and  
are lower and upper limits of the budget that can be invested in asset i, respectively. S is the total number of sectors. 
To incorporate minimum transaction lots constraint, variable is defined as the minimum transaction lot for asset i. 

 Denotes the number of ’s that is purchased and, thus, represents the number of units of asset i in the 
selected portfolio. Both  and  are integer values. For cardinality constraint, decision variable  is defined; 
which is equal to 1 if asset i is in the portfolio and 0 otherwise. With these notations, inequality (7) indicates the 
cardinality constraint and inequality (8) is the same as (2). The budget constraint is presented by (9) and it is 
intentionally converted to inequality for the ease of search. Inequality (10) represents bounds on holdings constraints 
and inequalities (11) and (12) incorporate sector capitalization constraint into the model. 
 
Sector capitalization constraint is held if some securities in the corresponding sectors are selected. The sector with 
more capitalization would have more proportion in ultimate portfolio, if selected. This constraint generally implies 
that investing in assets belong to the sector with higher capitalization value is preferable. Clearly, the assets with low 
return and/or high risks in those sectors must be excluded as well. Thus, to exclude such assets a 0/1 variable , is 
defined which is equal to 1 if the sector s has at least one selected asset and 0 otherwise. This is show in Eq. (12) 
where  is the set of asset indices which belong to sector s. it is assumed that sectors are sorted in descending order 
by their capitalization value, namely, sector number 1 has the highest capitalization value and sector S has the 
lowest value.  
 
The mentioned model is classified as a quadratic mixed-integer programming model necessitating the use of 
efficient heuristics to find the solution. In next section, SA is first reviewed and, then, New SA algorithm is 
presented. 
 
3. Solution approach: Simulated annealing 
SA is a local search method that finds its inspiration in the physical annealing process studied in statistical 
mechanics (Aarts and J.H.M. Korst 1989). An SA algorithm repeats an iterative neighbor generation procedure and 
follows search directions that improve the objective function value. While exploring solution space, the SA method 
offers the possibility to accept worse neighbor solutions in a controlled manner in order to escape from local 
minima. More precisely, in each iteration, for a current solution x characterized by an objective function value f(x), 
a neighbor x' is selected from the neighborhood of x denoted N(x), and defined as the set of all its immediate 
neighbors. For each move, the objective difference  is evaluated. For minimization problems x' 

replaces x whenever  .otherwise, x' could also be accepted with a probability  . the acceptance 
probability is compared to a number  generated randomly and x' is accepted whenever 

.  
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The factors that influence acceptance probability are the degree of objective function value degradation  (smaller 
degradations induce grated acceptance probabilities) and the parameter T called temperature (higher values of T give 
higher acceptance probability). The temperature can be controlled by a cooling scheme specifying how it should be 
progressively reduced to make the procedure more selective as the search progresses to neighborhoods of good 
solutions. There exist theoretical schedules guaranteeing asymptotic convergence toward the optimal solution. They 
require however infinite computing time. In practice, much simpler and finite computing time schedules are 
preferred even if they do not guarantee an optimal solution. (Bouleimen and Lecocq 2003)have described  a new 
simulated annealing (SA) algorithms for the resource-constrained project scheduling problem (RCPSP) and its 
multiple mode version (MRCPSP). A typical finite time implementation of SA consists in decreasing the 
temperature T in S steps, starting from an initial value T0 and using an attenuation factor α (0  .The initial 
temperature T0 is supposed to be high enough to allow acceptance of any new neighbor proposed in the first step. In 
each step s, the procedure generates a fixed number of neighbor solutions  and evaluates them using the current 
temperature value . The whole process is commonly called "cooling chain" or also "markov chain". 
Adaptation of SA to an optimization problem consists in defining its specific components: a solution representation 
of the problem, a method for the objective function value calculation, a neighbor generation mechanism for solution 
space exploration and a cooling scheme including stopping criteria. These adaptation steps for our SA for portfolio 
selection are described below. 
 
4. The proposed approach: NSA algorithm (Simulated annealing for complex portfolio 
selection problems) 
Based on (Crama and Schyns 2003)In order to apply the NSA algorithm to portfolio selection problem, we should 
undertake important tailoring work, so we have to define two notions, notions related to solution and neighborhood. 
At the solution notion, an n-dimensional vector x is defined in which each variable xi represents the relative 
investment on asset i in the portfolio. as mentioned in order to measure the quality of the portfolio, it’s variance 

 is evaluated. 
Now, in order to get a final feasible solution, a penalty approach is used. By using this method, infeasible solutions 
would be taken too, but with adding a penalty term to the objective function for each violated constraint. So finally, 
a feasible solution will be taken. 
 
4.1 Neighborhood 
In order to choose an efficient neighborhood, the following algorithm is proposed: for each required portfolio 
return , first the position of asset with the closest return to , q is stored. then at each iteration of the 
algorithm, the first asset is chosen to be modified by computing a random number normally distributed with mean q 
and with standard deviation large enough to cover all the list, it’s clear that mentioned random number points of the 
first asset in the ordered list. Next two assets are then chosen uniformly at random. 
 
4.2 Cardinality constraint 
The initial portfolio only involves two assets, so it’s always feasible with respect to cardinality constraint. now if 
k>=1 for current portfolio with N-k assets, now as we draw the three assets to be modified, it’s clear that at most k 
of assets in the current portfolio are not already and this ensures that the new portfolio involves N assets. 
 
4.3 Stopping criterion and cooling schedule 
In order to design an efficient SA algorithm, cooling rate and Stopping criterion should be determined in 
competently according to problem specifications. in this article, according to (E. Aarts and J.K. Lenstra 1997, D.S. 
Johnson et al. 1989, Pirlot 1992) the initial temperature T0 is determined in a way which during the first cooling 
stage, the probability of acceptation of a move is approximately equal to a  predetermined and relatively high 
value  in our numerical test, . To achieve mentioned conditions, in the primary phase, the algorithm is 
run for L steps and would reject no solution. The initial temperature is equal to the average increase of the objective 
function over this phase ( ) 

 
Therefore, to decrease the temperature T, the Alpha is intended equal to standard value 0.95. 
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5. ComputationalExperiments 
The NSA algorithm and the proposed GA in (Soleimani 2007) are compared with each other, using a data set 
including 150 stocks. The data set were originally used in (Soleimani 2007).both algorithms are coded in C# and run 
on a PC with Intel Pentium 4 dual core 2.2 GHz with 2MB of RAM. Each algorithm is run 10 times for each data set 
and each parameter setting (the expected return and the number of assets to be included into the portfolio).For GA 
according to (Soleimani 2007), the population size is equal to 20 and the mutation rate equal to 0.5. It should be 
noted that the number of iterations is set equal to 1000. 
The comparisons of the results are performed based on four criteria: 

(1) Best (lowest) variance (risk) among the risks obtained from the algorithm runs, showing the best solution 
found, 

(2) Mean variance, the average of the value of the objective function found by the algorithm 
(3) Standard deviation of variances, showing how solutions found by the algorithm are close to each other, and, 
(4) Mean run time, measuring the amount of time needed to obtain the solutions. 

 
Table 1 is the comparison between NSA algorithm and GA proposed by (Soleimani 2007). Based on the results of 
this table, it is obvious that, for this data set, best variances found by NSA are better than those found by GA. In 
addition, NSA can achieve these superior solutions in less amount of time in average. At the other hand, according 
to variance and standard deviation of variance criteria, it is clearly found that solutions by NSA have worse mean 
variance with higher standard deviation than that of GA. It means that the solutions by created by NSA are not as 
close-to=each-other as those created by GA. It can be justified in a way that NSA go through a larger space to 
examine possible solutions which are not close to each other. 

 
Table 1- Results and Comparison of NSA & GA for data set of 150 stocks 

  Expected rate of 
return 5 8 

Size of 
portfolio Algorithms GA NSA 

Comparison 
GA NSA 

Comparison 
(Improvement 

Percentage) 
(Improvement 

Percentage) 

2 

Best (lowest) 
variance 

0.00E+
00 

0.00E+
00 0.00% 0.00E+

00 
0.00E+

00 0.00% 

Mean variance 3.47E-
11 

4.68E-
12 86.51% 1.62E-

11 
1.32E-

12 91.85% 

Standard deviation 
of variances 

6.83E-
11 

3.87E-
11 43.37% 3.17E-

11 
2.15E-

11 32.23% 

Mean time (s) 8.58E+
00 

3.43E+
00 60.05% 9.12503

2 
4.14203

5 54.61% 

3 

Best (lowest) 
variance 

5.02E-
03 

3.42E-
03 31.90% 0.00501

7 0.005 0.33% 

Mean variance 5.87E-
03 

5.13E-
03 12.61% 0.00554

1 
0.00374

4 32.44% 

Standard deviation 
of variances 

1.43E-
03 

1.06E-
03 25.47% 0.00117

3 
0.00106

3 9.38% 

Mean time (s) 9.62E+
00 

6.52E+
00 32.22% 7.97014

4 
3.96744

3 50.22% 

4 

Best (lowest) 
variance 

4.62E-
08 

3.42E-
08 26.03% 6.85E-

09 
5.84E-

10 91.47% 

Mean variance 0.00310
9 

0.00301
5 3.03% 0.00557

2 
0.00467

3 16.14% 

Standard deviation 
of variances 

0.00744
1 

0.00643
2 13.55% 0.00958

5 
0.00736

5 23.16% 

Mean time (s) 13.0614
3 

9.32446
7 28.61% 12.9672

4 8.87924 31.53% 
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6. Conclusion 
In this paper, a simulated annealing based meta heuristic method is developed to solve the extended portfolio 
selection model. The proposed method is compared with the one of (Soleimani 2007). Both our proposed method 
and (Soleimani 2007) method are used to solve a large scale problem (1500 shares) and the efficiency of our 
proposed method, in solving such problems is evaluated.  
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