Quantile-Based Stochastic Optimization Using Modified Stochastic Nelder-Mead Simplex Method

Hou-Kuen Lu and Kuo-Hao Chang
Department of Industrial Engineering and Engineering Management
National Tsing Hua University
Hsinchu, Taiwan

Abstract

The risk management has received considerable attention because it allows the downside of decisions to be minimized. Quantile is one of the most popular measure used for performing risk management. We present a new Quantile-based approach that is called Stochastic Nelder-Mead Simplex method for Quantile (SNM-Q) can effectively control the risk compared to the traditional mean-based approach. SNM-Q is a newly-developed direct-search method for Quantile-based stochastic optimization problems. Because SNM-Q does not require gradient information and is proved to have nice convergence property, it can be applicable to many practical problems. Numerical experiments show that its efficiency is satisfactory and is worth of further investigation.

Keywords
Stochastic Nelder-Mead simplex method, quantile, direct-search method

Biography

Hou-Kuen Lu is a master student in National Tsing Hua University. He will apply for a job in semiconductor manufacturing after graduation. His research interests include simulation optimization, and simulation applications in semiconductor manufacturing. His e-mail address is gn0047@hotmail.com.

Kuo-Hao Chang is an assistant professor in Industrial Engineering and Engineering Management at National Tsing Hua University. He received his PhD in Industrial Engineering from Purdue University. He won the 2012 INFORMS Bodner Research Award. He has consulted with many industrial companies including TSMC, VisEra, YOMURA, ITRI etc. Currently, he serves as the executive editor of Journal of Industrial and Production Engineering. He is also a member of INFORMS. His research interests include simulation optimization, stochastic models and Monte Carlo simulation. His email address is chang@mx.nthu.edu.tw.