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Abstract—In this paper a model is developed to investigate the value of coordination of production and distribution planning in 
a three-layer supply chain consisting of multiple suppliers, manufacturers, and distribution centers. The combinations of several 
factors such as purchasing, production, storage, backordering, and transportation are considered. The aim of the model is to find 
the optimal order, production, and shipment quantities, so that the cost of the whole supply chain is minimized, and demand is 
satisfied over a given planning horizon without violating the capacity restrictions of the plants and suppliers. Transfer decisions 
between plants are made when production at a plant cannot meet demand due to lack of adequate resources and it can be satisfied 
by other production plants. Since the proposed model is NP-hard, two metaheuristic algorithms namely simulated annealing and 
genetic algorithm are used to find the optimal or near-optimal solution within a moderate computation times. The results show that 
presented algorithms are computationally effective and beneficial for obtaining the optimal solution for the proposed lot-sizing 
problem. 

Keywords—capacitated lot-sizing; multi-plant; production and distribution planning; integrated supply chain; simulated annealing; 
genetic algorithm 

I. INTRODUCTION  
In order to remain competitive in today’s ever-changing markets, companies have to examine alternative solutions for 

their logistics network. One of these solutions can be shifting from one plant manufacturing facility to multi-plant enterprise. 
Reference [1] distinguished supply chain coordination planning into two broad categories: coordination in terms of 
incorporating decisions of various functions including production planning, distribution, and marketing, and coordination of 
associating decisions within the same operation through several echelons of the corporation. The authors refer to the latter 
level of coordination as “multi-plant coordination”. Each plant here refers to a manufacturing facility that is centered around 
related production processes. The multi-plant structure is a complex multi-stage manufacturing system, where each plant 
itself denotes a multi-stage system in which the flow of products may be serial, parallel, assembly or general [2]. In this case, 
lot-sizing problems become more complicated because of the interdependency between plants. In the multi-plant problem, 
there is no common resource between sites, and therefore, the production is controlled independently in each site. The multi-
plant capacitated lot sizing problem (MPCLSP) with multiple products and time periods is comprised of multiple production 
centers that manufacture all the same products and allow inter-plant transfers [3].  

Shifting from single plant to multi-plant organization offers several advantages such as saving on transportation cost and 
time, improving the customer service by locating the plant close to the customer, being close to low cost raw materials, 
flexibility in producing several products and specialization in activities, increasing the competitive advantage in the 
international economic arena, and so forth [4]. However, decision making in multi-plant systems has to attempt towards 
integration of several manufacturing plants’ activities in such a way that they align their tasks in direction of improving 
overall performance of the enterprise. Each plant’s internal function is as important as its relation with other plants since each 
plant is a part of the network [5]. The MPCLSP can be observed in several industries such as electric power generating 
industries [6], food and chemical process industries [7], automotive factories [8], steel corporations [9], production of thin 
film transistor-liquid crystal display [10], beverage industries [11], cultivation systems [12], and feed mill industries [13] 
where multiple plants producing the same products are located at different geographical locations in a country or scattered 
around the world.  
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Reference [14] addressed a capacitated master production planning and capacity allocation problem for a multi-plant 
manufacturing system with two serial stages in each plant. The resulting mixed binary linear programming model was solved 
by Lagrangian relaxation based heuristic algorithms. Reference [15] proposed a simulated annealing (SA) methodology to 
design a production and distribution system characterized by a central plant, multiple product families, multiple cross-
docking sites, and multiple retailers. Reference [16] studied the problem of coordinating the short-term production and inter-
facility transportation scheduling decisions between a plant that produces intermediate products and a finishing plant which 
processes the intermediate products into finished goods. Using real and simulated data from a process industry firm, the 
computational study showed that coordinated schedules yield significant cost savings resulting from the modest use of the 
expensive fast transport mode, coordinated product changeovers between plants and reduced intermediate product 
inventories. Reference [17] proposed an advanced process planning and scheduling model for the multi-plant chain, and 
developed an evolutionary algorithm to solve the model in order to minimize makespan and operation sequences with 
machine selections.  

Reference [18] presented a mixed-integer linear programming model for the optimum planning of multi-plant, multi-
supplier, and multi-grade petrochemical production. The model incorporated demand, capacity, raw-material availability, and 
sequencing constraints in order to maximize total profitability. Reference [19] considered a supply chain including multiple 
suppliers, multiple manufacturers and multiple customers, addressing a multi-site, multi-period, multi-product aggregate 
production planning problem under uncertainty. A robust multi-objective aggregate production planning model was 
presented, and was solved as a single-objective mixed integer programming model by applying the linear programming 
metrics method. Reference [20] addressed a multi-item, multi-plant lot-sizing problem with capacity restrictions, and inter-
plant transfers, such that the total production, inventory, setup and transfer cost is minimized. A Lagrangian lower bound on 
the optimal cost value of the problem was proposed based on the decomposition of the problem into facility location and 
multi-commodity flow problems.  

Based on the existing literature, little attention has been paid to the multi-plant capacitated lot-sizing problem in 
integrated production-distribution systems. Therefore, this study attempts to address these shortcomings by developing a 
comprehensive mathematical model and solution approaches for such problem. Moreover, from the metaheuristic viewpoint, 
the contribution of the study is to find out how metaheuristic algorithms perform for the MPCLSP, as previously they have 
been applied mostly to other production-related problems, in particular scheduling, but not to this exact lot-sizing problem.  

II. MODEL DESCRIPTION AND MATHEMATICAL FORMULATIONS  
This study is concerned with the multi-item multi-period lot-sizing problem in a three-echelon supply chain environment 

consisting of multiple suppliers, manufacturers, and distribution centers, considering deterministic dynamic demand and 
finite time horizon. The objective of three-layer supply chain problem is to determine the purchasing, production, 
transportation, storage, and shortage schedule for the products that are optimal from a system’s perspective, in addition to 
minimizing the cost of the whole supply chain.  

It is assumed that production takes place in a multi-plant manufacturing company, where the plants are geographically 
spread in different locations of a country. Each product is made of raw materials which are provided by the suppliers. It is 
designated that for each raw material type there is only one particular supplier. If the quality of raw materials is not 
acceptable, they can be rejected, but plants do not pay for the rejected raw materials, and their associated cost is paid by the 
respective supplier. Each plant is characterized by its own inventory and production capacities. It is possible to store excess 
production at the plant storage which has capacity limit, but no storage is possible for end products at distribution centers. 
Any of the products produced in each plant can be transported to any of the distribution centers that are located in different 
areas. Obviously, demand in a distribution center is served by the closest plant. Transfer decisions between plants are made 
when demand observed at a plant can be satisfied by other production plants to cope with under-capacity of that particular 
plant. It should be noted that the customer would pay only for the transportation from the nearest plant. The transportation 
cost from other plants to the plant where demand has been placed, has to be borne by the company. Since all factories, 
suppliers, and distribution centers are spread out geographically, the transportation cost can vary. Transportation cost is 
composed of a fixed cost plus a variable cost that depends on the amount transported and the distance between entities. 
Homogenous vehicles of a given capacity are stationed at each supplier and plant to deliver products from suppliers to plants, 
between the production plants, and from plants to distribution centers. In addition, backordering is allowed when demand at a 
distribution center cannot be entirely satisfied.  
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A. Definition of Symbols
The following notations are used to formulate the model.

Indices: 
Notation Definition 
i Product, { }1,2,...,∈i N  

k Raw material, { }1,2,...,∈k K

v Resource, { }1,2,...,∈v V

m Supplier, { }1,2,...,∈m M

j, l, l’ Plant, { }, , 1, 2,...,′∈j l l J  

w Distribution center, { }1,2,...,∈w W  

t Period, { }1,2,...,∈t T  

Parameters: 
Notation Definition 
diwt Demand of product i at distribution center w in period t 
Aijt Setup time of product i at plant j in period t 
Pijt Production time of product i at plant j in period t 
Fjt Total available production time at plant j in period t  
xki Amount of raw material k required to produce a unit of product i  
Ekmt Number of raw material k that can be provided by supplier m in period t 

kmjtλ Percentage of rejected raw material k delivered by supplier m to plant j in period t 
Rvij Amount of resource v required to produce a unit of product i at plant j 
Nvjt Total amount of resource v available at plant j in period t 

kmtπ Ordering cost of raw material k at supplier m in period t  
kmtτ Purchasing cost of raw material k at supplier m in period t 

Sijt Setup cost for product i at plant j in period t 
Oijt Production cost of product i at plant j in period t 
Hkjt Holding cost of raw material k at plant j in period t 
′ijtH Holding cost of product i at plant j in period t 

Biwt Backordering cost of product i at distribution center w in period t 
mjϖ Distance between supplier m and plant j 

jlµ Distance between plant j and plant l 

jwζ  Distance between plant j and distribution center w 

kjσ Storage capacity for raw material k at plant j 
′ijσ Storage capacity for item i at plant j  

kς Vehicle available capacity respect to raw material k  
′iς Vehicle available capacity respect to product i  
Fη Fixed transportation cost of vehicle  
Vη Variable transportation cost of vehicle per trip 

kρ Safety stock coefficient respect to raw material k  

jε Performance percentage of available time at plant j  

vjξ Productivity percentage of resource v at plant j 
δ A very large number 
′δ  A very large number 
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Decision Variables: 
Notation Definition 
Qijt Quantity of product i produced at plant j in period t 

kmjtα  Purchase amount of raw material k shipped from supplier m to plant j in period t 

kjtI  Inventory level of raw material k stored at plant j at the end of period t 
′ijtI  Inventory level of product i stored at plant j at the end of period t  

Cijwt Quantity of product i that is available to be shipped from plant j to distribution center w in period t 
Zijlt Quantity of product i transferred from plant j to plant l in period t 

j
iwtY  Total number of product i shipped from plant j to distribution center w in period t 

biwt Shortage amount of product i at distribution center w in period t  
mjtφ  Number of vehicles required to ship products from supplier m to plant j in period t 

jltν  Number of vehicles required to transfer products from plant j to plant l in period t 
Ωjwt  Number of vehicles required to ship products from plant j to distribution center w in period t 

ijtχ  1 If there is a setup for product  at plant  in period 
0 Otherwise




i j t  

kmjtϕ  1 If an order for raw material  is allocated to supplier  by plant  in period 
0 Otherwise




k m j t  

 
  

B. The Mathematcal Model 
Cost Function: 

Min 
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 (1)  

Equation (1) is the objective function of the proposed model, where the sum of procurement, production, inventory, 
transportation, and shortage costs over the planning horizon should be minimized. 

Constraints: 

 
 ( 1)max 0, ( ) , , ,−

  = − ∀ 
  
∑kmjt k ki ijt kj t

i

x Q I k m j tα ρ  (2)  

Equation (2) shows the required amount of raw material k that plant j must purchase from supplier m in period t. If total 

amount of raw material k used in production of all items multiplied by a safety stock coefficient (ρk) is less than the existing 

inventory of raw material k, then the factory does not need to order any raw material in period t. 
 

 
 ( 1) 0 , , 1− = ∀ =kj tI k j t  (3)  

Initial inventory level of raw materials is considered to be zero as shown in (3).
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 ( 1) , , ,−= + − − ∀∑kjt kj t kmjt kmjt kmjt ki ijt
i

I I x Q k m j tα λ α  (4)  

Equation (4) represents the balance equation for the inventory of raw materials at plants at the end of period t.  

 , , ,≤ ∀kmjt kmjt k m j tα δϕ  (5)  

Equation (5) describes that a plant cannot place a procurement order without charging an ordering cost. kmjtϕ  is a binary 
variable with value of 1 if an order is allocated to supplier m at time t, otherwise, it is 0. 

  , ,≤ ∀∑ kmjt kmt
j

E k m tα

 
(6)  

Equation (6) ensures that the order size of raw materials released for each supplier is limited by its capacity. 

  ( 1) 0 , , 1−′ = ∀ =ij tI i j t
  

(7)  

Equation (7) shows the initial inventory level of products at the beginning of planning horizon. 

 ( 1)   , , ,′−
′≠ ≠

′ ′= + + − − ∀∑ ∑j
ijt ij t ijt il jt iwt ijlt

l j l j

I I Q Z Y Z i j w t  (8)  

Equation (8) is the inventory balance equation for finished items at plants. 

It is supposed that if during period t there is a transfer into plant j, there cannot be any transfer out from plant j to other 
plants during that period. Hence:  

 0 , , & ,′ ′× = ∀ ≠ijlt il jtZ Z i j l l j t  (9)  

 , ,′≤ ∀ijt ijtQ i j tδ χ  (10)  

Equation (10) forces ijtχ to be nonzero if Qijt is nonzero.  

 ( ) ,+ ≤ ∀∑ ijt ijt ijt ijt jt j
i

P Q A F j tχ ε  (11)  

Equation (11) limits the production time available at a plant during period t. The overall time consumptions for 
production and setup in each plant for all products must be lower than or equal to the available time capacity. It also 
considers the available time’s performance. 

 , ,≤ ∀∑ vij ijt vjt vj
i

R Q N v j tξ  (12)  

Equation (12)
 
ensures that a manufacturer does not plan beyond the available resources (machine or human) of each plant 

in each period. It also considers resources’ productivity.   

 1 , , ,′−
′≠ ≠

+ ≤ + + ∀∑ ∑ijwt ijlt ijt ijt il jt
l j l j

C Z I Q Z i j w t  (13)  

Equation (13) shows that the number of products available to be transferred from plant j to distribution center w and other 
plants in period t should not exceed the previous period inventory and production quantity in plant j as well as transferred 
products to plant j in period t.  

 { }( 1)max ( ) ,0 , , ,′ −
′≠

≤ + − ∀∑ il jt iw t iwt ijwt
l j

Z b d C i j w t  (14)  
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Equation (14) restricts the transfer quantity from other plants to plant j during period t. It implies that if total amount of 
item i available at plant j to be transferred to distribution center w in period t is greater than backorder amount from previous 
period and demand at distribution w in period t, then plant j does not need outsourcing. In this condition ijwtC will be equal to 

j
iwtY . Otherwise, plant j needs to request the shortage amount of item i from other plants. 

 
 

, ,≤ ∀∑ kmjt
mjt

kk

m j t
α

φ
ς

 (15)  

Equation (15) calculates the number of vehicles used for transportation of raw materials from suppliers to plants. 

 
 

, ,≤ ∀ ≠
′∑ ijl t

jlt
ii

Z
j l j tν

ς
 (16)  

 , ,≤ Ω ∀
′∑
j

iwt
jwt

ii

Y
j w t

ς
 (17)  

 Equations (16) and (17) determine the number of vehicles required for delivery of products from a plant to other plants 
and distribution centers respectively. 

  { }( 1)max ( ) ,0 , , ,−= + − ∀j
iwt iw t iwt iwtb b d Y i j w t  (18)  

Equation (18) limits the backorder quantity in period t by the current demand plus the backorder amount from the 
previous period. The shortage in period t will be zero if the amount of demand of item i at distribution center w in period t 
plus its previous backorder is equal to or smaller than total quantity of item i transferred to distribution center w. 

 , ,≤ ∀kjt kjI k j tσ  (19)  

 , ,′ ′≤ ∀ijt ijI i j tσ  (20)  

Equations (19) and (20) determine the upper limit of inventory level for each type of raw material and product in plants 
respectively. 

 

{ }

, , , , , , , 0 , , , , , ,

, , 0, integer                            , , , ,

, 0,1                                    , , , ,

′ ≥ ∀ ≠

Ω ≥ ∀ ≠

∈ ∀

j
ijt kmjt kjt ijt iwt

mjt jlt jwt

ijt kmj

iwt ijlt ijwt

t

Q I I Y k i m j l j w t

m j l j w t

k

b C

m t

Z

i j

α

φ ν

χ ϕ

 (21)  

Equation (21) enforces the restrictions of non-negativity and binary nature on the decision variables. 

III. SOLUTION ALGORITHMS  
Since the MPCLSP is considered as NP-hard problem, using the exact methods may encounter difficulties for solving 

medium to large size instances. Furthermore, both deterministic and heuristic optimization methods may not be able to solve 
such problem efficiently. Therefore, the SA algorithm is employed to solve the proposed mathematical problem. 
Furthermore, since no benchmark for the MPCLSP can be found in the literature, the genetic algorithm (GA) is applied as 
well to solve the problem and to verify the solution. These methods are explained in the following subsections. 

A. SA Algorithm   
The SA algorithm is an effective stochastic search method for solving combinatorial and global optimization problems 

proposed by Kirkpatrick [21]. The basic idea is inspired from the physical process of cooling molten material to solid form. 
Based on this procedure, the SA explores different areas of the solution space of a problem by annealing from a high to a low 
temperature. During the search process both good solutions as well as low quality solutions are accepted with a nonzero 
probability related to the temperature in the cooling schedule at that time. This feature can prevent getting trapped in local 
minima. In the beginning, this probability is large, and it will be reduced during the execution with a positive parameter such 
as temperature [21]. The main steps of the SA algorithm are described below. 

1) Initialization of Parameters 
In this step, the input parameters of the SA algorithm are initialized. The parameters are: 

© IEOM Society International 412



Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 
Kuala Lumpur, Malaysia, March 8-10, 2016 

i. Initial temperature (D0): it is the starting point of temperature computation in every iteration. D0 should be adequately 
high to escape a premature convergence. Basically, the SA algorithm starts with an initial temperature where almost 
all worsening moves are accepted regardless of the objective function value. 

ii. Population size (Npop): it is the number of sustaining solutions in every iteration. In this study, a population-based SA 
is utilized. Unlike the conventional SA, population-based SA iterates a population of solutions rather than a single 
solution. During each iteration, it explores the candidate solutions around several promising samples, and prevents the 
candidate solution from being stagnated in one local optimum. This not only enhances the search speed, but also 
yields a solution near the global optimum [22, 23]. 

iii. Iteration: it shows the number of iteration in each temperature. 

iv. Final temperature (DU): the temperature will remain fixed once it reaches the lowest temperature limit.  

2) Solution Representation 
To design the SA, a suitable representation scheme that shows the solution characteristics is required. In this study, the 

solution structure is constructed of the quantities of the produced items (lot size Q) with N × J × T dimensions where N shows 
the total number of products, J indicates total number of plants, and T denotes total number of periods. The general structure 
of the solution representation is shown in Fig. 1.  

11 12 1

21       22 2

1 2

                        Plant
      

  
Product

                 
    

 
 
 
 
 
  





   



t t Jt

t t Jt

N t N t NJT

Q Q Q
Q Q Q

Q Q Q
 

Fig. 1. Solution representation 

This presentation technique encodes only the variable for the lot size but derives other decision variables by making use 
of the problem-specific knowledge. 

3) Creating the Initial Solution 
The SA generates a randomly initial population of g solutions within the boundary of the component. Let Qg represent the 

gth solution in the population. Then, each solution is generated by: 

 [ ]round lb ( , , ), ub ( , , )=gQ Q i j t Q i j t  (22)  

 Where g denotes the size of population (g = 1, 2, …, Npop), and lbQ and ubQ are the lower and upper bounds for variable 
Q respectively. Therefore, (22) produces integer random numbers for variable Q within the predetermined limits.  

4) Cooling Schedule 
System temperature determines the degree of randomness towards solution, and it is reduced with a known plan in 

accordance with the progress of solution procedure. In reality, system temperature is a solution subspace of the problem 
accepted in each iteration. As the algorithm progresses and the temperature decreases, inappropriate solutions have smaller 
chance of being accepted. Cooling schedule determines the functional form of the change in temperature required in the SA. 
A geometric temperature reduction rule, which is the most commonly utilized decrement rule, is applied for this study. If the 
temperature at uth iteration is Du, then the temperature at (u+1)th iteration is given by [24]: 

 1+ = ×u uD z D  (23)  

Where z denotes the cooling factor and it is obtained as shown in (24): 

 (1/max iteration)
0( / )= U Dz D  (24)  

5) Neighborhood Representation  
The neighborhood search structure is a procedure which generates a new solution that slightly changes the current 

solution and prevents the fast convergence of the SA procedure. The following process is used to delineate the neighborhood 
configuration.  
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i. An integer random number in range [1, Npop] is generated in order to select a solution (Qg). The total numbers of 
elements selected for change are n .= × ×Q N J T   

ii. Two integer random numbers r1 and r2 are produced in order to select the elements of the solution for alteration. The 
considered range for r1 is [1, nQ-1] and r2 is [r1+1, nQ].  

iii. The value of selected elements of solution Qg is changed using (25): 

 ( ) ( ) ( )1 2 1 2: : 0.1 ub lb′ = + × × −g g g gQ r r Q r r r Q Q  (25)  

Where r is a random number generated from the continuous uniform distribution within the range of [-1, 1]. The size of 
generated random numbers is equal to the upper bound Qg. The result obtained by (25) is rounded to attain an integer value. 
However, there is a possibility that the calculated value by (25) exceeds the upper and lower bounds of Qg. Therefore:   

 
min( ,ub ) 
max( ,lb ) 

′ ′=
 ′ ′=

g g g

g g g

Q Q Q
Q Q Q

 (26)  

6) Main Loop of the SA 
The SA begins with a high temperature and selects initial solutions (s0) randomly. Next, a new solution (sn) within the 

neighborhood of the current solution (s) is computed in each iteration. In the minimization problem, if the value of the 
objective function, f(sn), is smaller than the previous value, f(s), the new solution is accepted. Otherwise, the SA algorithm 
uses a stochastic function given in (27) for accepting the new solution in order to prevent the local optimum trap. 

 exp( / )= −∆a f D  (27)  

Where ( ) ( )∆ = −nf f s f s and D is the current state temperature. This procedure is repeated until the termination condition 
is reached. 

B. GA Algorithm 
The GA is considered as an evolutionary algorithm and a population-based method that attempts to finds the optimal or 

near-optimal solutions through conducting a random search. Fundamental of the GA was primarily instated by Holland [25]. 
This algorithm is based upon “survival of the fittest” principles by Darwin Theory of Evolution and simulates the process of 
natural evolution. The GA method has been effectively used for solving continuous and discrete combinatorial problems [26]. 
Simplicity and capability of finding quick reasonable solutions for intricate searching and optimization problems have 
brought about a growing interest over the GA. The general steps of the GA can be summarized as follow [27]:  

i. Encoding solutions of problem into chromosomes.  

ii. Creating initial population of solutions randomly.  

iii. Evaluating chromosomes in terms of their fitness in order to select parents.  

iv. Applying genetic operators (crossover and mutation) in order to reproduce new chromosomes (offspring).  

v. Evaluating the new population.  

vi. Maintain the best chromosomes among parents and offspring.  

vii. If stopping criteria is met, then stop. Otherwise, go to step iii.  

1) Initilization of Parameters 
The initial information required to begin a GA includes the number of chromosomes kept in each generation called 

population size (Npop), the probability of operating crossover (Pc), the probability of operating mutation (Pm), and maximum 
number of generations. 

2) Chromosome Representation  
The algorithm starts with encoding the variables of the problem as finite-length strings or chromosomes as shown in (22). 

After generation of the chromosomes, each chromosome is evaluated using the objective function given in (1). 

3) Selection 
The selection process of the chromosomes in the mating pool is based on the roulette wheel selection. The selection 

probability, ag, for individual g (g denotes the size of population and g = 1, 2, …, Npop), with objective function value fg, is 
calculated by (28): 
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1=

=

∑
g

g Npop

g
g

f
a

f

 
(28)  

Although all individuals in the population have a chance of being selected to reproduce the next generation, those with 
higher fitness value are more likely to be selected for the mating pool.  

4) Crossover and Mutation  
In this study, the arithmetic crossover operator that linearly combines the parent chromosome vector is used to produce 

offspring based on (29) and (30). 

 (1) (1) (2)(1 )= × + − ×offspring y parent y parent  (29)  

  (2) (2) (1)(1 )= × + − ×offspring y parent y parent  (30)  

Where y is a random vector in range [0, 1], and has a dimension equal to the size of the selected part (say the first part) of 
the chosen parent. Because variable Q is integer, the amounts of produced offsprings are rounded.  

The solution spaces that are not discovered by the crossover operator are found using the mutation operator. The 
neighborhood structure of SA is used for the mutation operator of GA. 

5) Stopping Criteria 
The process of generating new chromosomes and searching for better solutions are continued until reaching the maximum 

number of generations without any significant improvement in the solution. 

IV. RESULTS AND DISCUSSIONS 
The following parameter sizes for the proposed MPCLSP are considered: N = 3, K = 3, V = 1, M = 3, J = 3, W = 2, and 

T = 6. The demands and time independent costs are uniformly distributed in the specified intervals: diwt ∈ [500, 700] and 
integer, Aijt ∈ [4, 8], Pijt ∈ [2, 5], kmtπ  ∈ [0.1, 1], kmtτ  ∈ [1, 4], Sijt ∈ [1, 4], Oijt ∈ [3, 7], Hkjt ∈ [2, 4], ′ijtH ∈ [2, 6], and Biwt ∈ 
[26, 29]. Applied optimizers are written and coded in MATLAB software version R2012a and are run on a laptop with 2.5-
GHz AMD and 4GB RAM. To find the values of the algorithms’ parameters, each algorithm is employed through pilot runs, 
each time changing the parameters in their corresponding ranges and obtaining the response values. Several combinations of 
Npop in the range [10, 50], number of neighbors in the range [5, 15], D0 in the range [10, 50], and DU  in the range [1, 0.001] 
for the SA, and Npop in the range [50, 200], Pc in the range [0.1, 1], and Pm in the range [0.1, 1] for the GA are implemented. 
The parameter settings of both algorithms are given in Table I.  

TABLE I.  THE PARAMETERS’ VALUES OF THE ALGORITHMS 

Algorithm Parameter Parameter Value 

SA Npop 40 

Number of neighbors 15 

D0 30 

DU 0.001 

GA Npop 200 

Pc 0.9 

Pm 0.5 

 
In order to compare the performances of the two algorithms, 10 different optimization runs are carried out. The results are 

reported in Table II. Table III provides an insight into each component of the total cost of the supply chain. The production 
quantities for the defined planning horizon obtained by SA and GA approaches are reported in Table IV. In Table V, the 
interaction between plants and the amounts of transportation are presented.  
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TABLE II.  OBJECTIVE FUNCTION VALUES 

Run No. 
SA GA 

Fitness ($) Fitness ($) 

1 1,981,209.86 1,999,064.25 

2 1,992,357.31 1,999,436.01 

3 1,994,099.90 2,000,269.90 

4 1,995,588.08 2,001,715.64 

5 1,999,781.36 2,003,745.26 

6 2,000,547.48 2,004,399.16 

7 2,003,531.15 2,005,925.49 

8 2,009,853.73 2,008,387.88 

9 2,012,092.36 2,009,817.74 

10 2,014,126.68 2,012,281.89 

TABLE III. OBJECTIVE FUNCTION COMPONENTS FOR THE BEST RUN OF THE APPLIED ALGORITHMS  

Cost Total Cost Procurement Production Inventory Transportation Shortage 

SA 1,981,209.86 313,576.77 102,812.09 167,941.00 1,396,880.00 0 

GA 1,999,064.25 316,373.76 102,751.49 161,819.00 1,418,120.00 0 

TABLE IV. THE PRODUCTION QUANTITIES OBTAINED BY THE BEST RUN OF SA AND GA 

Plant j Product i 
Period t 

1 2 3 4 5 6 
SA GA SA GA SA GA SA GA SA GA SA GA 

1 
1 745 656 765 361 148 662 787 312 476 673 188 195 
2 289 537 544 256 489 588 749 664 691 570 244 464 
3 755 423 394 519 490 713 564 473 392 265 546 445 

2 
1 561 601 787 740 380 631 658 566 441 571 616 472 
2 768 750 701 685 800 581 496 497 409 431 467 453 
3 685 689 800 732 751 682 800 393 374 533 129 449 

3 
1 85 126 86 93 110 125 53 95 158 84 37 107 
2 200 129 152 131 30 102 14 59 44 92 0 81 
3 163 173 37 152 63 136 58 89 63 129 32 75 

TABLE V.  INTERACTIONS BETWEEN PLANTS AND TRANSPORTATION QUANTITIES OBTAINED BY THE BEST RUN OF SA AND GA 

Product i Plant j Plant l 
Period t 

1 2 3 4 5 6 
SA GA SA GA SA GA SA GA SA GA SA GA 

1 
1 2 

651 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 144 47 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 
1 

2 1 
0 0 0 73 0 0 0 0 0 0 61 97 

2 61 0 0 27 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 13 0 
1 

3 1 
0 24 0 166 237 0 0 96 0 0 288 315 

2 200 13 0 247 147 62 0 0 0 10 13 86 
3 0 17 51 181 110 0 0 0 184 289 71 185 
1 

3 2 
4 29 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 99 63 77 
3 0 0 0 0 0 0 0 0 0 0 0 22 

                                                           
1 It means that 65 units of product type 1 are transported from plant 1 to plant 2 during period 1. 
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To compare the performance of the applied algorithms statistically, the one-way analysis of variance (ANOVA) is 
utilized based on the objective function values of 10 experiments. This process is performed using Minitab software. Table 
VI shows the ANOVA results.  

TABLE VI. THE ANOVA RESULTS FOR OBJECTIVE FUNCTION VALUES  

Source Degree of freedom (DF) SS MS F-test p-value 
Optimization Engines 1 87593349   87593349   1.42 0.248 
Error 18 1107842021   61546779 
Total 19 1195435370  

 
The hypothesis is that there is no difference in the average costs of the algorithms. The null hypothesis is rejected when 

the p-value turns out to be less than a predetermined significance level. The p-value obtained from the results is 0.248, which 
indicates the null hypothesis cannot be rejected at 95% confidence level, meaning that there is no significant difference 
between mean values of objective function obtained by two algorithms. Furthermore, the convergence paths of SA and GA 
for the best run are plotted in Fig. 2.  

 
Fig. 2. The convergence path of the best result obtained by SA and GA methodologies 

As it can be seen in Fig. 2, the SA offered better optimal solution in terms of function value compared to GA, while GA 
converged to the near optimal solution faster than SA in the early iterations of the algorithm. 

V. CONCLUSIONS  
In this paper, the multi-plant coordination problem is analyzed by considering different functions such as supply planning, 

production and inventory planning, and distribution planning. The objective of this problem is to coordinate the production 
plans of several manufacturing plants located at multiple locations, so that the overall performance of the firm is improved. A 
mathematical programming model is presented to distribute the raw materials to the suitable plants in order to meet demand 
of distribution centers and to achieve the objective of minimizing the multi-plant manufacturing costs composed of 
procurement, production, inventory, transportation, and shortage costs. Since the model is NP-hard, metaheuristic algorithms 
as solution methods are adopted to find cost effective and quality solutions for the proposed problem. Metaheuristic 
approaches namely SA and GA are applied to solve the model. The statistical results show that both presented algorithms can 
efficiently solve the proposed model in terms of solution quality as well as computational effort. 
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