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Abstract 
 

In Rotor systems, the imbalance fault generates high dynamic forces. These high dynamic forces are 

catastrophic in nature at especially at high rotational speeds. This hypothesis is known to engineers, 

but how it actually affects the reliability is not established. In this research work a vibration based 

residual generation experimental method is proposed to relate imbalance in terms of vibration 

amplitude and reliability. A stress-strength interference approach together with a simulation-based 

methodology is used for modeling and analysis of this complex relationship. The paper also proposes 

a method for establishing the safe and critical limits of imbalance and rotational speed for achieving 

the specified reliability targets. Thus the concepts can be effectively used in industrial machinery for 

controlling the level of imbalance of a rotor designed to operate at a specified rotational speed. 
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1. Introduction 
 

During the operational stage of industrial rotor systems, the dynamic forces generated due to machinery faults 

affect the system performance and reliability. The rotating machineries are vulnerable to varieties of defects and 

faults such as mass imbalance, shaft misalignment, improper surface finish etc., which may lead to catastrophic 

accidents [1]. Rotor imbalance is one of the most common faults and it generates unwanted motion of the rotors, 

such as whirling and vibrations. A detailed literature survey on imbalance is presented in [2].  

Many research works are available in the literature for identification and detection of faults in rotor systems. A 

methodology for fault identification and diagnosis of machine faults based on the parameter estimation, 

calculation of physical coefficients and symptom-fault tree is presented in [3, 4]. Model based fault 

identification in the rotor systems is described by [5, 6]. The model based identification of faults for the 

occurrence of two simultaneous faults (crack and imbalance) in the rotor system is presented by [7]. A model 

based fault diagnosis of a rotor–bearing system is discussed in [8]. The authors identified faults such as 

misalignment and imbalance using a test setup by comparing the experimental residual forces with theoretical 

residual forces from fault models. Model based fault identification for the two imbalance faults in two-spin rotor 

system is presented in [9]. An equivalent load minimization and vibration minimization method is applied for 

identification of the imbalance [10]. The aforementioned literature shows that the vibration data of the system is 

utilized by model based diagnostics to identify the commonly occurring faults such as imbalance, misalignment, 

crack etc.  

Many failure models for evaluating the reliability of the mechanical systems (viz rotor systems) are discussed in 

[11]. Furthermore, this paper identifies that the Stress–Strength Interference (SSI) model is suitable for the 

failure analysis of mechanical systems and components where strength and stress are often treated as the random 

variables. A brief literature survey on SSI models and their applications is presented in [2, 12].  
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The traditional approach for reliability assessment of the rotor systems is based on the factor of safety or safety 

margin. This concept relies on the empirical methods and experience rather than statistical approach [13].  In 

actual practice, it can be seen that the stress on a component and its strength are both random variables. For 

example, the applied load on the rotor shaft is not a constant deterministic quantity. It depends on several factors 

such as the variations in load, speed, friction and the additional forces due to imbalance, misalignment, etc. 

Similarly, the strength of rotor shaft is also a function of several stochastic variables such as variations due to 

manufacturing process, material strength, metal removal due to wear, corrosion, and other factors such as 

fatigue. As we know, failure occurs when the stress on a component increases beyond its strength. Therefore, 

the SSI models are found suitable for evaluating the reliability of the rotor systems subjected to the mass 

imbalance.  

A critical review of the literature indicated that some research work is available for reliability modeling of rotor 

systems considering dynamic forces due to faults and defects. A theoretical model to relate reliability with mass 

imbalance is presented in [2, 12]. However, experimental validation of such models is a very important step for 

confirmation and acceptance of the models for practical applications in industry. This paper has presented a 

frame work for carrying out such studies. The focus is on the most common problem of mass imbalance in rotor 

systems and its effect on reliability. It is well known that the mass imbalance in rotor systems produces 

additional centrifugal force and high vibration amplitude at rotational frequency. Therefore, an experimental 

vibration analysis using a machine fault simulator and SSI approach has been used for developing a reliability 

model for the rotor system with imbalance. Even though the current focus is only on the problem of imbalance, 

the proposed frame work can be extended to include forces in rotor systems due to other faults such as 

misalignment, resonance, oil whirl, etc.  

The rest of this paper is organized as follows: Section 2 along with its sub sections present the various steps 

followed for developing the proposed model. Section 3 illustrates the proposed model for the shaft of a rotor 

system and the section 4 demonstrates proposed model for the shaft in an experimental setup with data 

collection, analysis and interpretation of results. Section 5 presents the conclusions with scope of future work. 

The paper ends with references. 
 

2. Proposed Reliability Model  
The force due to imbalance in a rotor system depends on the amount of imbalance mass, its distance from the 

axis of rotation, and the rotational speed [14]. The force produced due to imbalance is given by, 

𝐹𝑖𝑚 = 𝑚𝑟𝜔2 (1) 

From the equation (1), it can be found that a small amount of imbalance mass will generate huge force resulting 

in substantial amount of stress on the system.  

In Industrial rotor systems, it is difficult to estimate the amount of imbalance mass and its distance from the axis 

of rotation, and hence the equation (1) will be only of theoretical importance. Hence, the residual force 

generation technique of model based diagnosis which is discussed in [5, 6, 8, 9, 10] is used to estimate the 

amount of force due to imbalance mass in the practical rotor systems. The model presented here uses the 

information of a dynamic model of rotor system, and it uses the difference between the vibration response of the 

rotor system with fault and without fault conditions.  

 

2.1 Residual Force Generation 
The vibrations of an undamaged rotor system represented by the displacement vector 𝐱𝑜(𝑡) at N degrees of 

freedom due to the operating load 𝐅𝑜(𝑡) during normal operating condition is described by the linear equation of 

motion (2), 

 

𝐌𝐱̈0(𝑡) + 𝐂𝐱̇𝑜(𝑡) + 𝐊𝐱𝑜(𝑡) = 𝐅𝑜(𝑡) (2) 

 

The occurrence of a fault in the undamaged system induces the change in the dynamic behavior of the system. 

The change in dynamic behavior depends on the type of fault, severity of the fault and location of its occurrence. 

The introduction of the fault in the undamaged system adds the additional load and influences the change in the 

vibration response. The equation of motion for the faulty system is represented by, 

 

𝐌𝐱̈(𝑡) + 𝐂𝐱̇(𝑡) + 𝐊𝐱(𝑡) = 𝐅𝑜(𝑡) + ∆𝐅(𝑡) (3) 

 

The difference between the faultless system response and the faulty system response will give the residual 

displacements, velocities and accelerations. These are represented as, 

∆𝐱(𝑡) = 𝐱(𝑡) − 𝐱𝑜(𝑡) (4) 

∆𝐱̇(𝑡) = 𝐱̇(𝑡) − 𝐱̇𝑜(𝑡) (5) 

∆𝐱̈(𝑡) = 𝐱̈(𝑡) − 𝐱̈𝑜(𝑡) (6) 
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The subtraction of equation of motion of undamaged system (2) from the equation of motion of the faulty 

system (3) and substituting (4, 5 and 6) yields the following equation, 

 

𝐌∆𝐱̈(𝑡) + 𝐂∆𝐱̇(𝑡) + 𝐊∆𝐱(𝑡) = ∆𝐅(𝑡) (7) 

 

In this model it is assumed that the rotor system is linear and hence the system matrices (M, C, and K) remain 

unchanged. The equivalent load represented as ∆𝐅(𝑡) induces the change in the dynamic behavior of the 

undamaged linear rotor system and this equivalent load will fetch the magnitude of the fault and the location of 

its occurrence. This additional force (∆𝐅(𝑡)) due to fault is also termed as residual force. 

To calculate the residual vibration response due to the fault in the rotor system, the measured vibration response 

data for both undamaged and faulty rotor system should be available for the same operating and measurement 

conditions [5, 7, 8, 15].  

 

2.2 Modal expansion 
To compute the residual force vector (∆𝐅(𝑡)) at all the nodes, the residual vibration response at all the degrees 

of freedom (N) of the system should be available in the form of residual displacement, residual velocity and 

residual acceleration. But due to the practical limitations, the vibration response is measured only in few degrees 

of freedom (𝑛) and hence 𝑛 ≪ 𝑁. 

The vibration response for the non-measurable degrees of freedom has to be estimated from the measured 

vibration response. To estimate the residual vibration at all degrees of freedom from the measured residual 

vibration response ∆𝐱n(𝑡), the modal expansion technique is used. This modal expansion technique is rooted on 

the approximation of the residual vibration by a linear combination of few eigenvectors (𝛟̂). The full residual 

vector ∆𝐱(𝑡) can be approximated by a reduced modal matrix 𝛟̂ which contain a set of mode shapes 𝐗̂k 

𝛟̂ = [𝐗̂1, 𝐗̂2, . . . 𝐗̂k] (9) 

The number of mode shapes used in the reduced modal matrix  𝛟̂ , logically may not exceed the number of 

independently measured vibration response contained in the ∆𝐱n(𝑡), i.e. 𝐾 ≤ 𝑛.  

Now, the measured residual vibration response ∆𝐱n(𝑡) is related to the full residual vector ∆𝐱(𝑡) by the 

transformation matrix 𝐓̃ , which uses the modal matrix  𝛟̂, and given by 

∆𝐱n(𝑡) = 𝐓̃ ∆𝐱(𝑡) (8) 

In this research paper, for the expansion of the available measured data ∆𝐱n(𝑡) the System Equivalent 

Reduction Expansion Process (SEREP) has been used. The SEREP expansion technique utilizes the SEREP 

transformation matrix to expand the measured degrees of freedom in all the degrees of the system [16]. The 

SEREP transformation matrix is given by 

𝐓̃ =  [𝜙][𝜙̂]
𝑔

 (9) 

where 

[𝜙̂]
𝑔

= [[𝜙̂]
𝑇

[𝜙̂]]
−1

 [𝜙̂]
𝑇
 

 

(10) 

 

2.3 Residual Force 
The residual force ∆𝐅(𝑡) which characterizes the fault is calculated by substituting the system matrices which 

describes the system mass, damping and stiffness, and the residual vibration response of the full vibration state 

in the form of residual displacement, residual velocity and residual acceleration, in the equation (7). And the 

corresponding substitution of equation (8) finally yields the equation (11), 

𝐌𝐓̃∆𝐱̈n(𝑡) + 𝐂𝐓̃∆𝐱̇n(𝑡) + 𝐊𝐓̃∆𝐱n(𝑡) = ∆𝐅(𝑡) (11) 

The equation (11) can be used to estimate the equivalent loads at all the degrees of freedom from the few 

measured vibration responses. 

 

2.4 Effective stress 
The force due to imbalance (𝐹𝑖𝑚) has to be found from the vector of equivalent load (∆𝐅(𝑡)). The force due to 

imbalance is accountable for the additional stress in the system, apart from the design stress. The imbalance 

force is used to compute equivalent additional stress. This additional stress is to be incorporated in to the design 

equation of the system, to find the effective stress. The effective stress is used to find the reliability of the 

system. This procedure of finding effective stress has been shown in Figure 2. Following sub-section explains 

about the reliability computation using the effective stress in the component and the ultimate strength of the 

component. 
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2.5 Reliability modeling for imbalance  
To calculate the reliability of the rotor system the stress-strength interference (SSI) failure model is used [11, 

16]. For this SSI failure model, the following reliability expression (12) has been used. Equation (12) represents 

the reliability of the component or system for all the possible values of strength (𝑆𝑇𝐻) of the component and 

stress (𝑆𝑡𝑠) on the component. 

𝑅 =  ∫ 𝑓𝑆𝑇𝐻

∞

−∞

(𝑆𝑇𝐻) [ ∫ 𝑓𝑆𝑡𝑠
(𝑆𝑡𝑠)

𝑆𝑇𝐻

−∞

d𝑆𝑡𝑠] d𝑆𝑇𝐻 (12) 

The proposed model has been shown in the form of flowchart in figure 1 and it is illustrated by a numerical 

example in the following section. 
 

3.  Illustration for the Proposed Reliability Model for a Shaft  
  

The shaft element of rotor system has been considered here for the illustration. The design equation of the shaft 

is used to find the effective stress in the shaft. The Guest’s and Rankine’s shaft design equations (13, 14) are 

used to estimate the design stress [18]. It is suggested that design stress may be obtained by using both the 

theories (13, 14) and the larger of the two values is adopted for designing the shaft [18].   

𝜏𝑚𝑎𝑥 =
16√𝑀𝑏

2+𝑇2

𝜋𝑑3  
(13) 

𝜎𝑚𝑎𝑥   =    

32 (
𝑀𝑏 + √𝑀𝑏

2 + 𝑇2

2
)

𝜋𝑑3
 

(14) 

The addition of bending moment (𝑀𝑖𝑚) due to imbalance force (𝐹𝑖𝑚) in the stress equations (13, 14) will lead to 

the effective stress equation. The effective stress equations for shaft based on the maximum shear stress and 

maximum normal stress are given in equations (15, 16). 

𝜏𝑒𝑓𝑓 =
16√(𝑀𝑖𝑚 + 𝑀𝑏)2 + 𝑇2

𝜋𝑑3
 

(15) 

𝜎𝑒𝑓𝑓   =    

32 (
(𝑀𝑖𝑚 + 𝑀𝑏)2 + √(𝑀𝑖𝑚 + 𝑀𝑏)2 + 𝑇2

2
)

𝜋𝑑3
 

(16) 

The effective stress equations (15, 16) will estimate the total stress in the shaft, including the stress produced 

due to imbalance force. 

The effective stress equations (15, 16) of any mechanical component or system will have variables which are 

probabilistic in nature, rather than deterministic. This randomness makes the reliability calculations difficult and 

complex. To calculate the reliability of the component with such randomness, we require large amount of field 

test data to compute the stresses accurately. This is not practically feasible. Therefore, the simulation technique 

is used to generate and compute the stresses. For example, in the equations (15, 16), variables such as, radius of 

shaft, length of the shaft, ultimate tensile stress and ultimate normal stresses are probabilistic in nature. The 

arbitrariness in the aforementioned variables are due to many reasons such as, manufacturing variations while 

metal working or casting etc., heat treatment variations, dimensional errors due to human or machine 

inaccuracy, power fluctuations, environmental effects, etc. 

 

The random variables, such as the radius of the shaft, ultimate tensile stress, and ultimate normal stress will 

exhibit arbitrariness. To theoretically calculate the reliability for a shaft, the generation of random variables 

representing the arbitrariness of the radius of the shaft, ultimate tensile and normal stresses according to their 

probabilistic characteristics is necessary. For this, random numbers (distributed between 0 and 1) are generated 

using a computer program. These random numbers are used to generate the values for random variables to 

represent the probabilistic nature of the variables. The generation of random numbers and generation of 

continuous and discrete random variables using random numbers are discussed in [19]. 

 

The generation of continuous random variable according to their probabilistic nature and the calculation for each 

realization of random variable in equations (15, 16) will give a probabilistic character for the effective stress. 

And in the same way the ultimate shear strength and ultimate normal strength for the shaft with a particular 

material type and shape is generated according to their probabilistic characters. This ultimate shear strength and 
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ultimate normal strength will resist the effective shear stresses and effective normal stresses acting on the shaft. 
The SSI equation [17] for the maximum shear stress model and maximum normal stress model are given in the 

following equations (17, 18) respectively, 

𝑅 =  ∫ 𝑓𝜍

∞

−∞

(𝜍) [ ∫ 𝑓𝜎𝑒𝑓𝑓
(𝜎𝑒𝑓𝑓)

𝜍

−∞

d𝜎𝑒𝑓𝑓] d𝜍 (17) 

𝑅 =  ∫ 𝑓𝒯

∞

−∞

(𝒯) [ ∫ 𝑓𝜏𝑒𝑓𝑓
(𝜏𝑒𝑓𝑓)

𝒯

−∞

d𝜏𝑒𝑓𝑓] d𝒯 (18) 

 

 

Figure 1: Flow chart of the proposed reliability model for rotor system with imbalance fault 

After the simulation cycles (in this illustration 250,000 simulation cycles) the resultant random variables for the 

τeff  and σeff are fit into the suitable distribution. A similar procedure is followed for generation of the strength 

variables. Reliability of the shaft is computed by substituting the density functions and its parameters in the 
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equations (17, 18). An experimental method is used to physically simulate imbalance and to measure the 

vibration due to this. The stresses are computed based on the measured vibrations. 

 

Figure 2: Flow chart for computation of effective stress 

 
 

4. Experimental work for the illustration 
The experimental work to get acquire the vibration response is carried out in a machine fault simulator (MFS) 

test rig. The fault simulator is having provisions to introduce different types of faults to carry out the 

experimental work. The finite element modeling [20] of the test setup has been given in the appendix-I. The 

schematic diagram of the MFS with the essential dimensions, and the photograph has been shown in figure 3. 

Four ICP accelerometers (0.3 – 10 KHz, 100m V/G) with BNC connectors are used for vibration data 

acquisition. The OROS software is used to acquire and investigate vibration data. The OROS uses the digital 

integration to find the displacement and velocity amplitude from the measured acceleration data, and OriginPro 

is used to plot the data. MATLAB software has been used to write codes for the further analysis of the acquired 

data. 

 

 

 

Figure 3:Schematic representation of experimental setup  Figure 4: Finite element model of test setup 

4.1 Experimental procedure and signal processing 
The vibration response was measured without introducing any fault (𝐱̈o(𝑡)) and the imbalance is introduced 

from 0.004 kg to 0.220kg,  the vibration responses are measured at the speeds from1500 rpm to 8000 rpm. The 

rotational speed of the machine has been kept under the critical speed of 9000 rpm. The sample vibration 

responses plots are given in the figures 5 (for faultless condition) and 6 (with the presence of fault). Figure 6 

clearly shows that vibration amplitude of 1x running speed component increases due to presence of imbalance in 

the system. The 1x and 2x components in figure 5 are due to the residual faults present within the system. 

 

4.2 Imbalance force estimation: 
The imbalance force (Fim) is found from residual force vector (∆𝐅(𝑡)).The force vector (∆𝐅(𝑡)) is estimated by 

substitution of numerical values for residual acceleration, velocity, and displacement from the acquired vibration 

signal, and substitution of system matrices obtained from the FEM analysis of the test setup. In the FEM 

analysis, the test setup (figure 4) has been divided into nine nodes and each node is having four degrees of 

freedom (two translation motion and two rotational motions). The force vector (∆𝐅(𝑡)) gives corresponding 

equivalent load at all DOF. The force due to imbalance (Fim) is found by plotting the residual forces at the 

corresponding nodes.  The sample numerical values of Fim for different imbalance masses for different rotational 

speeds are shown in the table 1. 

Table 1: Force (Fim) due to imbalance mass (N) 
 

Imbalance 

mass(kg) 

 

Speed (rpm) 

0.004 0.01 0.02 0.04 0.08 0.12 0.2 

1500 6.5820  15.5890 30.8316 66.7234 136.4521 207.7985 345.4312 

1800 9.1788 25.4413 48.7849 99.7296 192.9731 297.3096 490.8490 

2400 17.0243 39.9079 86.7368 175.3452 355.2653 530.1560 887.5434 

2700 21.3257 54.9980 110.2401 220.2149 449.1365 675.5469 1125.4189 
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4.3 Reliability Estimation:  
The numerical values of force due to imbalance are used to compute the additional bending moment in the shaft, 

as explained in sub-section 2.4. The required values of different parameters and additional bending moment are 

substituted in the equations (15, 16) to get the effective stress values. The shear stress (τeff) and the ultimate 

shear strength (𝒯) values obtained after the simulation cycles follow the standard normal distribution. 

Substitution of the normal distribution density functions of stress and strength in the Eq. (18) the following 

reliability expression (19) is obtained [17]. By substituting the parameters of the distributions in equation (19) 

reliability of the shaft is computed. 

 

𝑅 = 1 − 𝛷(𝑧) (19) 

where           𝑧 =  
(𝜇𝒯− 𝜇𝜏𝑒𝑓𝑓

)

√(𝜚𝒯)2+(𝜚𝜏𝑒𝑓𝑓
)2

 
 

 

  

 
(a) 

 
  

(b) 

Figure 5: Vibration response at 25 Hz without imbalance mass (a) Time domain (b) Frequency domain 

 

 

 
 

 
(a) 

 
 

 
(b) 

Figure 6: Vibration response at 25 Hz with imbalance mass 0.004kg (a) Time domain (b) Frequency domain 

 

4.4 Results 
The experiment is repeated by increasing the imbalance mass. The results of the numerical illustration has been 

are presented in the Table 2. Here it is considered that for a given imbalance mass, for shaft reliability of ≥0.99 

is safe. If the reliability is less than 0.99 the shaft is considered as critical. The variations of reliability with 

respect to imbalance mass and the rotational speed are presented in figure 7. The analysis of experimental 

results for the numerical illustration shows that in the experimental setup, the imbalance mass is having 

negligible impact on the reliability up to the speed of around 3110 rpm. The reliability decreases considerably if 

the test setup is operated at higher speeds with the imbalance mass.  
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(b) 

  

(c) 
 

(d) 

  
(e) 

 

(f) 

  

(g) 
 

(h) 

  
(i) 

 

(j) 

Figure 7: (Contd.)  Reliability of the shaft at different speeds with imbalance masses (a) 0.04kg        

(b) 0.05kg (c) 0.06kg (d) 0.08kg (e) 0.10 kg (f) 0.12 kg (g) 0.15 kg (h) 0.175 kg (i) 0.2 kg (j) 0.22 kg 

 
Table 2: Safe and critical RPM for the shaft 

Imbalance mass 

(Kg) 

Safe RPM 

(R ≥ 0.99) 

Unsafe RPM 

(0.95 ≤ R ≤ 0.99) 

Critical RPM 

(R < 0.95) 

0.04 ≤ 7000 7000 - 7100 >7100 

0.05 ≤ 6300 6300 - 6450 >6450 

0.06 ≤ 5750 5750 – 5850 >5850 

0.08 ≤ 4950 4950 – 5050 >5050 

0.10 ≤ 4450 4450 – 4550 >4550 

0.12 ≤ 4030 4030 – 4150 >4150 

0.15 ≤ 3650 3650 – 3700 >3700 

0.175 ≤ 3320 3320 - 3420 >3420 

0.2 ≤ 3110 3110 - 3200 >3200 
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If the imbalance mass can be limited by regular monitoring and correction, then the system can be highly 

reliable and safe to operate at higher speeds. Therefore it is suggested that this system needs periodic monitoring 

and balancing. 

 

5.  Conclusions 
Imbalance in rotating systems results in huge dynamic forces at higher rotational speeds, leading to failure and 

catastrophic accidents. In this research work, a reliability model based on the experimental methodology has 

been presented and illustrated with an example. The model can be effectively used to predict the operational 

reliability of rotor systems with imbalance, by measuring their vibration amplitude. If the reliability target is 

specified, safe ranges of operational speed can be established for an existing or new system using this model. 

The model presented in this research work will have practical application in the areas of safety and reliability in 

the aviation sector, power generating equipment and could even be applied in surface transport and shipping 

where huge propellers and gear boxes are used. As future scope, new reliability models may be developed based 

on experimental methodology for the rotor system faults such as misalignment, and oil whirl. 

Notation: 
𝐹𝑖𝑚 : Force due to imbalance 

𝑚 : Imbalance mass 

𝑟 : Distance between imbalance mass and the axis of rotation 

𝜔 : Angular velocity of shaft 

𝐌 : Mass matrix 

𝐂 : Damping matrix 

𝐊 : Stiffness matrix 

𝐱̈0(𝑡) : Acceleration vector of faultless rotor system 

𝐱̇𝑜(𝑡) : Velocity vector of faultless rotor system 

𝐱𝑜(𝑡) : Displacement vector of faultless rotor system 

𝐅𝑜(𝑡) : Force vector of faultless rotor system 

𝐱̈(𝑡) : Acceleration vector of faulty rotor system 

𝐱̇(𝑡) : Velocity vector of faulty rotor system 

𝐱(𝑡) : Displacement vector of faulty rotor system 

∆𝐅(𝑡) : Equivalent load vector 

𝑛 : Measurable degrees of freedom 

𝑁 : Degrees of freedom 

∆𝐱𝑛(𝑡) : Measured residual vector 

𝐓̃ : Transformation matrix 

∆𝐱(𝑡) : Residual displacement vector 

∆𝐱̇(𝑡) : Residual velocity vector 

∆𝐱̈(𝑡) : Residual acceleration vector 

𝛟̂ : Reduced modal matrix 

𝐗̂1, 𝐗̂2, . . . 𝐗̂𝑘 : Mode shapes 

∆𝐪(𝑡) : Modal coordinate vector 

𝑅 : Reliability 

𝑆𝑡𝑠 : Stress in the shaft 

𝑆𝑇𝐻 : Strength of the shaft 

𝑓𝑆𝑡𝑠
(𝑆𝑡𝑠) : Probability density function of stress 

𝑓𝑆𝑇𝐻
(𝑆𝑇𝐻) : Probability density function of strength 

τmax : Maximum shear stress 

Mb  Bending moment 

T : Torque 

d : Cross sectional diameter of shaft 

𝜎max : Maximum bending stress 

τeff : Effective shear stress 

Mim : Bending moment due to imbalance force 

𝜎eff : Effective bending stress 

𝒯 : Ultimate shear strength 

ς : Ultimate normal strength 

𝑓𝜍(𝜍) : Density function of ultimate normal strength 

𝑓𝒯(𝒯) : Density function of ultimate shear strength 

𝑓𝜏𝑒𝑓𝑓
(𝜏𝑒𝑓𝑓) : Density function of effective shear stress 
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𝑓𝜎𝑒𝑓𝑓
(𝜎𝑒𝑓𝑓) : Density function of effective normal stress 

𝛷(𝑧) : Standard cumulative normal distribution function 

𝜇𝒯 : Mean of ultimate shear strength 

𝜚𝒯  : Standard distribution of ultimate shear strength 

𝜇𝜏𝑒𝑓𝑓
 : Mean of effective shear strength 

𝜚𝜏𝑒𝑓𝑓
 : Standard distribution of effective shear strength 

[ ]𝑇 : Transpose 
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Appendix I 
Modeling of test setup: 

 

The FEM formulation of Nelson and McVaugh [20] is used to model the rotor system to get the system matrices 

(M, C, and K). Here the equation of motion for the interconnected rotor, shaft and bearing has been presented; it 

is considered here that, four degrees of freedom, two translation motions in horizontal (W) and vertical (V) 

directions, and two rotational motions about horizontal (𝜃𝑊 ) and vertical (𝜃𝑉) axes, respectively at each node. 

The shaft is divided into nine elements, using the finite element method and using the Lagrangian formulation, 

the equation of motion for the shaft element presented by Nelson et al [20]. The Lagrangian equation of motion 

of the finite shaft element with the constant rotational speed is given by 

(𝐌𝑇
𝑒 + 𝐌𝑅

𝑒 )𝐱̈𝑒 − Ω𝐆𝑒𝐱̇𝑒 + (𝐊𝐵
𝑒 + 𝐊𝐴

𝑒)𝐱𝑒 = 𝐅𝑒 

                                              where     {𝐱}𝑇 = [𝑊 𝑉 𝜃𝑊 𝜃𝑉] 
(A.1) 

The force vector {𝐅𝑒} include mass imbalance, interconnection forces and other element external effects. In 

appendix the individual element matrices are listed. 

The Lagrangian equation of motion of the rigid disk with four DOF as discussed for the shaft element, with 

the constant rotational speed (Ω) is given by Nelson et al [20] 

(𝐌𝑇
𝑑 + 𝐌𝑅

𝑑)𝐱̈𝑑 − Ω𝐆𝑑𝐱̇𝑑 = 𝐅𝑑 (A.2) 

The vector 𝐅𝑑 represents the force which includes the mass imbalance, interconnection forces and other external 

forces on the rotor. In appendix the individual rotor matrices are listed. 

In this test set up the anti-friction bearings are used and the general equation of motion for the bearings is 

given by 

𝐂𝑏𝐱̇𝑏 + 𝐊𝑏𝐱𝑏 = 𝐅𝑏  

where                   𝐱𝑏 = {
𝑊
𝑉

}, 𝐊𝑏 = [
𝑘𝑊𝑊

𝑏 𝑘𝑊𝑉
𝑏

𝑘𝑉𝑊
𝑏 𝑘𝑉𝑉

𝑏 ], 𝐂𝑏 = [
𝑐𝑊𝑊

𝑏 𝑐𝑊𝑉
𝑏

𝑐𝑉𝑊
𝑏 𝑐𝑉𝑉

𝑏 ] 

(A.3) 

and {𝐅𝑏} is the external force vector on the bearings given by [20]. 

For the isotropic bearings which are used in this present study represented by the following equation, 

𝑐[𝐈]𝐱̇𝑅
𝑏 + 𝑘[𝐈]𝐱𝑅

𝑏 = 𝐅 ́𝑏 (A.4) 

Where c and k are the isotropic bearing damping and stiffness coefficient respectively, and 𝐅 ́𝑏 and 𝐱𝑅
𝑏  are the 

external force vector relative to the rotational reference frame [20]. For further detailed study on the modeling of 

rotor bearing system based on finite elements [20] can be referred.  

The final assembled equation of motion of the rotor system of the test rig will be given in the following 

equation as, 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 = 𝐅 (A.5) 

Where the M is the mass matrix and it consist of translational and rotor mass matrices of shaft elements and the 

rotor, C includes gyroscopic moments and damping of bearings, and K is the stiffness matrix and it includes 

shaft element stiffness and bearing stiffness. The force matrix F includes the weight of the disk, force due to 

imbalance at constant rotational speed, bearing force, and other external force if any. For the elemental matrices 

of the rotor system [8, 10, 20] can be referred. 
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