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Abstract— In this paper analyzed the APT with lagged, Value-at-Risk and asset allocations by using economic approach. It is 

assumed that stocks were analyzed following the model of Arbitrage Pricing Theory (APT) with lagged. Where the factor risk 

premium in the past affects the present changes in stock return. The return of factor is assumed to have non constant volatility and 

there is effect of long memory. Long memory effects are estimated using the rescaled range method (R/S) or Geweke and Porter-

Hudak (GPH) method. The mean and non constant volatility is estimated using ARFIMA-GARCH models. The portfolio risk level 

is measured by the Value-at-Risk (VaR). Asset allocation problem solving carried out using the Lagrangian multiplier technique and 

the Kuhn-Tucker method. The purpose of this research forms the efficient portfolio and determines optimal portfolio weights. As a 

numerical illustration, we analyze some stocks traded on the capital market in Indonesia. 

Keywords— APT, ARFIMA, GARCH, Value-at-Risk, Asset Allocation. 

I. INTRODUCTION 

Formulation of Arbitrage Pricing Theory (APT) has important implications in determining stock prices [3]. It’s stated that 
the return of a stock (or portfolio) will be affected by one or several explanatory variables (factor index). However, APT does 
not mention (explicitly) what variables affect the stock return. To determine the factors that influence the degree of sensitivity 
and magnitude of asset returns to each factor, is to set a number of factors that allegedly had an influence on stock return [7; 11]. 
These factors include the industrial variables (egg market index, alternative products, etc.) and economic variables (egg inflation, 
interest rates, etc.) [9; 17]. 

APT applies the law of one price, in equilibrium, the relationship between risk and stock return occurs in one area (if there 
is more than one factor). This situation can be achieved through a process of arbitrage. Arbitrators will cause all the portfolio is 
located in one and the same area [19; 11]. The location of each portfolio will be determined by the proportion (weight) of funds 
invested in the establishment of a portfolio [9; 3]. Determination of the proportion (weight) portfolio is a problem that should be 
sought the solution. To determine the proportion (weight) can be conducted using a portfolio optimization [10; 13]. The 
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composition obtained proportions will affect the return expectations and risk portfolio [17; 15]. Highly popular portfolio risk is 
measured using a Value-at-Risk (VaR) [1; 4; 5]. 

In this paper, the formulation of APT as a means of determining the stock price will be expanded by considering the factors 
of lagged. Where the factors of the last period is assumed influence the formulation of APT. The return of factors in APT is 
assumed to have non constant volatility and there is an effect of long memory. Non constant volatility and long memory effect 
will be analyzed using ARFIMA-GARCH models [22]. The mean and variance of returns of stocks estimated based on the APT 
with the lagged, which has non constant volatility and long memory effects. Using the mean estimator and the variance will be 
arranged the problem of Asset allocation. Asset allocation is based on the mean-VaR approach [18]. The settlement of asset 
allocation problem is based on Lagrangian multiplier technique and the Kuhn-Tucker methods [17]. Thus the analysis could be 
performed, because many stocks have characteristics such as the discussion here. The aim is to establish an efficient portfolio 
and determine the proportion (weight) portfolio optimally. The empirical research carried out on a few stocks that are traded at 
the capital markets in Indonesia. 

II. METHODOLOGIES 

Determining stocks return. Let i tP  and i tr  denote the prices and the returns of stock i  ( 1, ...,i N and N is the number of 

stocks that are analyzed), respectively, at the time t  ( 1, ...,t T , T  denotes the period of data observation). Stocks return i tr  

is calculated using the formula 1ln ( / )i t i t i tr P P  . Let j tF  and j tr  respectively denote the price and the return of factor index 

j  ( 1, ...,j M  and M is the number of factors index in the APT), at the time t , 1, ...,t T . In the same way to calculate i tr , 

the factors index return j tr  are calculated by 1ln ( / )j t j t j tr F F  [22; 8]. 

A. Mean Modeling  
 

 In the next stage we identify the existence of long memory effect in the data return of factor index using the rescale 

range method (R/S) or Geweke and Porter-Hudak (GPH) method. The parameter estimation of fractional difference index jd , 

1, ...,j M , is performed using the maximum likelihood method [22; 21]. The confidence interval (1 )1 0 0 %c  for jd  is 

/ 2 .
j

j c d jd z d    / 2 .
j

j c dd z  where jd  denotes estimator of jd , and cz  denotes the percentile of standard normal 

distribution at the significance level c . Let 
j

d   and  
j

d  respectively denote the mean and standard deviation of jd . We 

can test the null hypothesis 0 : 0jH d   against 1 : 0jH d   using statistic   ( ) /
j j j

d j d dz d    . We reject 0H  if the 

value / 2
j

d cz z  or 1 / 2
j

d cz z   [14; 16]. 

 Fractional difference process is defined as: 

 (1 )
jd

jt j tB r a  , 0 .5 0 .5jd   ;                                       (1) 

where { }j ta  is the error component which is the white noise process, and B  denotes the backshift operator? If the sequence 

of fractional difference (1 )
jd

jtB r  is following the model of ARMA( ,p q ), then we call j tr  autoregressive fractionally 

integrated moving average degree p , d  and q  process, or ARFIMA( , ,p d q ) [22; 16].  The ARMA( ,p q ) follows the 

following form 

    
p

g

q

h hjtjhjtgjtjgjjt aarr
1 10  ,                      (2) 

with 0j  constant and jg  ( 1, ..., )g p  and j h  ( 1, ..., )h q  the parameter coefficients of mean model of factors 

index return j , 1, ...,j M . We assume that { }j ta  is the error sequence of white noise process with mean zero and variance  

2

ja
  [20; 22]. 

 Stages of mean modeling process include: (i) Identification of the model, (ii) parameters estimation, (iii) diagnostic 
tests, and (iv) Prediction  [22]. 
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B.  Non Constant Volatility Modeling  
  

 The non constant volatility of the returns of factor index is modeled using generalized autoregressive conditional 

heteroscedastic (GARCH) models. Suppose j t  and 
2
j t  respectively denote the mean and non constant volatility of return of 

factor index j  ( 1, ...,j M and M  denotes the number of factors index in the APT), at the time t  ( 1, ...,t T  and T is the 

period of data observation). The error j ta  can be calculated  as j t j t j ta r    [22; 23]. The non constant volatility 
2
j t will 

follow the GARCH model of degree m  and n  or GARCH( ,m n ), if 

j t j t j ta   ,
2 2 2

0 1 1

m n

jt j jk j l j tj t k j t lk l
a     

  
     .               (3) 

where 0j  is a constant and j k ( 1, ..., )k m  and j l  ( 1, ..., )l n  denote the parameter coefficients of non constant 

volatility model of factor index return j  ( 1, ...,j M ). Here we assume { }j t is the sequence independent and identically 

distribution (iid) random variable with mean zero and variance 1, 0 0j  , 0jk  , 0j l  , and 

m ax ( , )

1
( ) 1

m n

jk jkk
 


   [20; 22].  

 The stages of non constant volatility modeling include: (i) The estimation of mean model, (ii) Testing the effect of 
ARCH, (iii) Model identification, (iv) Non constant volatility model estimation, (v) Diagnostic test, and (vi) Prediction.  

 We further use the mean model (2) and the non constant volatility model (3), to calculate (1)j t jTr   
2 2

(1)j t jT
 

, i.e. the 1-step ahead prediction after time period  T of the mean and the variance [22]. 

 

C.  Modeling of Stock Return under APT with Lagged 
  

 In this section expand the APT to APT model with lagged. It is known that i tr  the return of stock i  at the time t , and  

j tr  returns the index factor j  at the time t . Suppose tr  is the risk free asset return at the time t  ( 1, ...,t T and T  the period 

of data observation). APT regression model with lagged expressed as equation 

...)
~

ˆ(...)
~

ˆ()
~

ˆ()
~

ˆ(
~

1122212111111100   LtLtLittittittiitit rrrrrrrrrr 
 

...)
~

ˆ(...)
~

ˆ()
~

ˆ()
~

ˆ( 222222211221220   LtLtLittittitti rrrrrrrr 
 

,)
~

ˆ(...)
~

ˆ()
~

ˆ()
~

ˆ( 2221110 itLtLMtiMLtMtiMtMtiMtMtiM urrrrrrrr   
 

or it can be written into 

 0

1 0

( )

M L

it t i i j l j t t i t

j

r r r r u 



   

 

      .                            (4) 

 Assumed that { }i tu  is the white noise of regressions residual [7; 11; 19]. Where 0i  and i j    ( 1, ...,i N

; 1, ...,j M ; 0, ..., L   and L  is length of lagged), respectively declare constants and parameter coefficients of 

regression for the APT with lagged of stock return i  at the time t . To estimate the constant 0i  and parameter 

coefficients i j l  regression of equation (4) can be performed using the least squares method. Length of lagged 

estimated based on the Ad-Hoc method, namely by looking at the consistency changes of parameter coefficients sign, 
positive (+) continue or the negative (-) continued, when lagged extended. Referring Blume (1971), the ability of the 
index factors explain changes in individual stock returns ranging between 25%-51% rate coefficient of determination 
[9]. 
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  As previously described, j t  and 
2

j t  successively states the mean and variance of the index return factor 

j  at the time t . Suppose that t  and 
2
t , in succession states mean and variance of return risk-free asset. Based on the 

equation (4), the mean stock return i  at the time t , which i t  can be estimated using the following equation: 

0

1 0

( ) ( )

M L

it i t t i i j j t t

j

E r   



      

 

      .                        (5) 

It is assumed that ' ' '[ ( ) , ( ) ] 0j t t j t tE r r r r          , where , ' 1, ...,j j M , 'j j  and , ' 0 , ..., L   , ' 

. Stock return variance i  at the time t , that 
2
i t  can be estimated using the equation 

2 2 2 2 2 2

1 0

( ) ( )
i t

M L

it it t i j j t t u

j

V a r r
  



     
 

 

      .                       (6) 

Where 
2

( )
i t

i tu
V a r u  the regressions residual variance of APT with is lagged of stock return i at the time t . Based on the 

assumptions in equation (6), covariance between stock i  with stock 'i , which are stated to 'i i  be estimated with equation 

2 2
' ' '

1 0

( , ) ( )

M L

ii t i t i t i j i j j t t

j

C o v r r    



    
 

 

    ; 'i i .               (7) 

 Estimator mean, variance and covariance of stock return i  ( 1, ...,i N and N the number of stock that were analyzed), 

at the time t  ( 1, ...,t T and T  the period of data observation), then used for the following portfolio formation. 

 

D. Asset Allocation Based on Mean-VaR  
 

 Let tr  denote the return of portfolio at the time t , and iw  ( 1, ...,i N ) weight of stock i . Return of portfolio tr  can 

be determined using the equation [9; 17]: 

1

N

t i iti
r w r


  ; Terms

1
1

N

ii
w


  and 0 1iw   ( 1, ...,i N ).                  (9) 

 Suppose 1(  ... )
T

t it μ , 1, ...,i N  is the mean vector, and 1(  ... )
T

Nw ww  the weight vector of portfolio. 

From equation (9), the weight vector 
T

w follows the property 1
T

e w , where (1 ... 1)
T

e . The mean of portfolio return t  

can be estimated using the equation: 

1

N T
t i iti

w 


  μ w .                                             (10)  

The variance of portfolio return 
2
t  can be estimated using the equation: 

2 2 2
' '1 1 '

;  '
N N N T

t i it i i i ii i i
w w w i i  

 
      w Σw .                       (11) 

where ' '( , )i i i t i tC o v r r   denotes the covariance between stock i  and stock 'i  [17].  

 Value-at-Risk (VaR) of an investment portfolio based on standard normal distribution approach is calculated using the 
equation [18; 4]: 

1/ 2
0 0( ) { ( ) }

T T
t t c t cV aR W z W z      w μ w Σw .                         (12) 

where 0W the number of fund is allocated in the portfolio and z c  is the percentile of standard normal distribution at the 

significance level c . When it is assumed 0 1W   unit, the equation (12) becomes: 
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1/ 2
( ) { ( ) }

T T
t t c t cV a R z z      w μ w Σw .                               (13) 

 A portfolio *w  is called (mean-VaR) efficient if there is no other portfolio w  with t t 


  and t tV a R V a R


  [17]. 

To obtain the efficient portfolio, we used the objective function, to maximize {2 }t tV a R  , 0   where   denotes the 

investor risk tolerance factor. For the investor with the risk tolerance 0   therefore we must solve an optimization problem 

[17;  12]: 

1 / 2
M a x im iz e  {2 ( ) }

                  su c h  th a t 1

T T T
c

T

z  



μ w μ w w Σw

e w

.                               (14) 

 Equation (14) is a quadratic concave optimization problem. Its Lagrangian function can be written as

1/ 2
( , ) (2 1) ( ) ( 1)

T T T
cL z      w μ w w Σw e w . Using the Kuhn-Tucker theorem, the optimal solution can be 

obtained using the first derivatives, as follows [18; 6]: 

1/ 2
/ (2 1) / ( ) 0

T
cL z       w μ Σw w Σw e  and / 1 0

T
L     e w .     (15) 

Solving the equation (15) as the function of  , we obtain a quadratic function
2

0A B C    . where
1T

A


 e Σ e , 

1 1
(2 1)( )

T T
B 

 
  μ Σ e e Σ μ  and

2 1 2
(2 1) ( )

T
cC z


  μ Σ μ . The solution can be obtained directly from the solution 

of the quadratic function [18]: 

2 1/ 2
{ ( 4 ) } / 2B B A C A     ; 0  .                                  (16) 

For 0  , we obtain the weight vector w as 

1 1

1 1

( 2 1)

( 2 1)
T T

 

 

 

 

 


 

Σ μ Σ e
w

e Σ μ e Σ e

.                                        (17) 

By substituting the vector w into the equation (10) we obtain the mean value of portfolio return. When vectors w are 

substituted into the equation (13), we obtain the value of the investment portfolio risk level tV a R . The sets of point pairs (

,t tV a R ) form a graph of efficient frontier. Among the efficient frontier, there are optimum portfolios, which have the largest 

ratio /t tV a R  [18]. 

III. RESULTS AND ANALYSIS 
 

A. The Data 
 

 For empirical study, we analyze the following stocks: ASII, TRUB, BBCA, BBRI, HMSP, and TLKM, and are denoted 

as 1S  until 5S . As the factors index, we use Composite Stock Price Index (IHSG), the rate of inflation, exchange rate of the 

rupiah against the euro, the rupiah against the U.S. dollar, and the rupiah against the yen, and are denoted as 1F until 5F . For the 

risk-free asset data, we use a government bond price. The data are obtained from http://www.finance.go.id//. The period of 
observation is January 2, 2011 until December 30, 2015. The empirical analysis is done using the software’s of: MS Excel 2007, 
Eviews 6, Maple 9.5 and R. 

 

B. Empirical Results 
 

 In this study, the factors index used are 1F until 5F , as described above. We first calculate the returns of each factor 

index, then identify the existence of the effects of long memory in the returns, and finally estimated the mean and volatility 
models of the returns. 
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 Identification of long memory effects. To identify the effect of long memory, we estimate the parameters of fractional 

difference 
jd

 ( 1, ..., 5j  ) as in equation (1). The estimation is performed using the rescale range method (R/S) or Geweke and 

Porter-Hudak (GPH) method. The results are summarized in Table-1. 

 

TABLE I.  THE IDENTIFICATION OF THE LONG MEMORY EFFECTS 

Stock d j  
jd  Intervals  

Confidence 
z j  Effect of Long 

Memory 

1F  0.361 0.1462 0.075< 1d <0.648 5.86 Significant 

2F  0.263 0.1323 0.004< 2d <0.522 2.57 Significant 

3F  0.635 0.5853 -0.512< 3d <1.782 1.12 Not Significant 

4F  0.098 0.1731 -0.241< 4d <0.437 2.62 Significant 

5F  0.518 0.6312 -0.719< 5d <1.755 1.51 Not Significant 

  

 To ensure the existence of long memory patterns, we test the hypothesis 0 : 0jH d   against, 1 : 0jH d  , 1, ..., 5j 

. The values of statistic jz  is given in table above, while for the level of significance 0.95c  , from the standard normal 

distribution table values, we obtain 0 .9 5 / 2 1 .9 6Z  . Because of the values 1z , 2z  and 4z  are larger than the value 0 .9 5 / 2Z , it 

is concluded that the test results are significant, the returns of factor index data, 1F , 2F  and 4F  have long memory effects. 

However, in 3F and 5F there are no long memory effects.  

 In the next step, we identify and estimate the best mean and volatility models to difference fractional jd  of the returns 

data 1F , 2F  and 4F , where for 3F  and 5F , the analysis is applied directly to the returns data. 

 Identification and estimation of mean models. Identification of the mean models is done using the sample 
autocorrelation function (ACF) and partial autocorrelation function (PACF). Based on the patterns of ACF and PACF of each 

factor index returns (or the fractional differenced data), we obtain the best models for 1F  until 5F , which also passed the 

standard diagnostic check. The results are summarized in Table 2. 

 Identification and estimation of volatility models. We further identify and estimate of volatility model using 

generalized autoregressive conditional heterscedasticity (GARCH) models. Based on the correlogram of quadratic residual 
2
j ta

, we select the plausible volatility model for the data. Estimation of volatility models of each factors index return is done 
simultaneously with the mean models. The results, obtained for the best model which is also passed the diagnostic checks, are 
given in Tabel-2.  

TABLE II.  THE ESTIMATION RESULTS OF MEAN AND VOLATILITY MODEL OF FACTOR INDEX RETURNS 

Factor 

( jF ) 

Model Mean and Volatility Equations 

1F  ARFIMA(1, 1
ˆ

d ,0)-

GARCH(1,1) 

ttt arr 1111 111341.0    

tttt
a 1

2

11

2

11

2

1
834528.0137021.000000866.0  


 

2F  ARFIMA(1, 2
ˆ

d ,1)-

GARCH(1,1) 

tttt aarr 212122 990698.0993306.0    

tttt
a 2

2

12

2

12

2

2
043462.0447513.0016328.0  


 

3F  AR(1)-

GARCH(1,2) 
ttt arr 3133 070772.0    

ttttt
a 2

2

23

2

13

2

11

2

3
563666.0300641.0140811.0000000853.0  


 

4F  ARFIMA(1, 4
ˆ

d ,0)-

GARCH(2,1) 

ttt arr 4144 078681.0    

ttttt
aa 4

2

14

2

24

2

14

2

4
372516.0478577.038691.000000837.0  


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5F  AR(1)-

TGARCH(2,1) 
ttt arr 5155 09410.0    

ttttt
aa 5

2

14

2

24

2

15

2

5
951865.0234836.0280911.0000000467.0  


 

 
 Estimated regression model of APT with lagged. In this section estimation of APT model with lagged, conducted by 

estimating regression models of each of the five stock return data, against the data of return of the five-factor index. Estimation 
made refers to the equation (4), helped by Eviews 4 software. The return of risk-free asset data (bond) is relatively constant, 

therefore, taken the mean size 0 .0 2 6 4 6 2t   and variance 
2

0t  . To simplify the writing, for example 

0 .0 2 6 4 6 2it itr   , 1, ..., 5i  and the risk premium of factor index with the lagged 0 .0 2 6 4 6 2j t j tI r     (

1, ..., 5j   and 0,1, ..., L  , where L length of is lagged). The Estimation results written covering the regression equation 

with t -statistic values, written in parentheses below each parameter coefficients. Similarly, given coefficient of determination 

of 
2
iR , and Durbin-Watson statistic (D-W) from each of the regression. The regression equation of APT with lagged those given 

in Table-3. 

 

TABLE III.  REGRESSION MODEL ESTIMATION RESULTS OF APT WITH LAGGED 

 
  

 As presented by Blume (1971), the ability of the index factors to explain changes in individual stock returns ranging 
between 25% -51% rate coefficient of determination. Looking at the results in Table-3, it appears that the coefficient of 

determination 
2
iR  of regression models of each stock worth nearly 51%. Means the return of five shares 1S  until  5S  a 

relatively strong correlation with the return of five risk premium of the index factor j tI  ( 1, ..., 5j   and 0,1, ..., L  , 

where L  length of is lagged). Based D-W statistic whose value is also relatively small, showing the five regression models in 

Table-3 is significant. It can also be shown the residuals i tu of each regression model are normally distributed, with zero mean 

and variance 
2

i tu
 . Estimator value 

2

i tu
 of each regression equations are given in Table-4. Regression model is then used to 

estimate the mean and variance of stock return. 

 The estimated mean and variance values of stocks return. The values of constants, coefficient of parameters and 

regression of residual variance 
2

i tu
  in Table-3, and the mean value estimator (1)jT jTr   and variance 

2 2
(1)

jT jT
  , 

then used to estimate the mean and variance values of stock return 1S  until 5S . The mean value estimated using equation (6), 

while the variance value is estimated based on equation (7). The estimation results are given in Table-4. 
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TABLE IV.   THE ESTIMATION RESULTS OF MEAN AND VARIANCE OF STOCKS RETURN  

Stocks 

( iS ) 
2

ˆ
itu

  it̂  2ˆ
it  

1S  0.000788 0.001876 0.001278 

2S  0.000536 0.002328 0.000732 

3S  0.000705 0.001835 0.001132 

4S  0.000852 0.000231 0.000929 

5S  0.000456 0.000797 0.000634 

 

 In this study assumed that the covariance between stock return i  and 'i  at the time t , ' 0i i t   ( , ' 1, ..., 5i i  and 

'i i ), because its values are also very small close to zero. This means that between stock return i  and 'i  at the time t  where 

the cross correlation does not occur. The values of the mean estimator i t and the variance 
2
i t  will be used for the following 

portfolio optimization process. 

 Portfolio optimization. Portfolio optimization in this case is based on the mean-VaR model, using the Maple 9.5. 

software. First, the values of the mean estimator in Table-4 column i t is formed into a vector mean of 

 0 .0 0 1 8 6 7 0 .0 0 2 3 2 8 0 .0 0 1 8 3 5 0 .0 0 0 2 3 1 0 .0 0 0 7 9 7
T

μ . Second, referring to the number of shares to be analyzed as much 

as five, mean vector defined identity is  1 1 1 1 1
T

e . Third, the values of the variance estimator in Table-4 a column of 

2
i t , is formed into the covariance matrix and determined inverse, as follows: 

 



































000634.00000

000093.0000

0000113.000

00000073.00

000000128.0

Σ  and 




































29.15770000

043.1076000

0039.88300

00012.13660

000047.782

1
Σ  

 

 Risk tolerance   in this study are determined by simulation. Tolerance values together 
T

μ and 
T

e vectors and 
1

Σ

matrix, when substituted into equation (15) will be obtained multiplier value as  . Where then substituted into equation (16) 

will be obtained by portfolio weight vector w . Weight vector w , then used to calculate the mean value of portfolios using 

equation (10), and calculate the risk level of VaR using equation (13). For the values of risk tolerance 0 7.377  some 

calculation results are given in Table-5. 

TABLE V.  RISK TOLERANCE, WEIGHT, MEAN AND PORTFOLIO RISK 

  
Weight 

t  tV a R  
t

tV a R


 

1w  2w  3w  4w  5w  

0.00 0.14083 0.25086 0.15870 0.17945 0.27015 0.001396 0.0204341 0.06832617 

0.50 0.14405 0.26148 0.16205 0.16954 0.26287 0.001425 0.0204485 0.06968778 

1.00 0.14730 0.27220 0.16542 0.15956 0.25552 0.001454 0.0204922 0.07095751 

1.50 0.15059 0.28304 0.16883 0.14945 0.24809 0.001483 0.0205657 0.07213373 

2.00 0.15393 0.29406 0.17230 0.13918 0.24053 0.001513 0.0206704 0.07321444 

2.50 0.15734 0.30531 0.17584 0.12869 0.23282 0.001544 0.0208077 0.07419726 

3.00 0.16084 0.31683 0.17947 0.11795 0.22491 0.001575 0.0209798 0.07507931 

3.50 0.16444 0.32871 0.18321 0.10688 0.21677 0.001607 0.0211892 0.07585733 

4.00 0.16817 0.34100 0.18707 0.09542 0.20834 0.001641 0.0214394 0.07652736 

4.50 0.17204 0.35379 0.19110 0.08349 0.19957 0.001702 0.0234100 0.07271306 

5.00 0.17610 0.36718 0.19531 0.07101 0.19039 0.001712 0.0220795 0.07752462 

5.50 0.18038 0.38127 0.19975 0.05787 0.18073 0.001750 0.0224812 0.07784036 
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6.00 0.18491 0.39622 0.20446 0.43936 0.17048 0.001790 0.0229477 0.07802487 

6.404 0.18880 0.40903 0.20849 0.03199 0.16169 0.001825 0.0233789 0.07807227 

6.50 0.18975 0.41219 0.20948 0.29050 0.15953 0.001834 0.0234893 0.07806955 

7.00 0.19497 0.42939 0.21490 0.01301 0.14773 0.001880 0.0241196 0.07796420 

7.377 0.19920 0.44335 0.21929 0.000003 0.13816 0.001918 0.0246640 0.07777817 

 
For values of risk tolerance  7.377  is no longer feasible, because the portfolio weight does not qualify. 

  A collection of points ( t , tV a R ) to form the surface efficiently (efficient frontier), as shown in Figure-1. 

Ratio between t  toward tV a R  the values given in last column of Table-5 while the graph is given in Figure-2. 

 

  
Fig. 1. Efficient Frontier of Portfolio Fig. 2. Mean and VaR Ratio of Portfolio 

 

C. Discussion 
 

 Based on the calculation results given in Table-5, can be seen that with the risk tolerance of 0.00 obtained VaR portfolio 
composition that produces a minimum, that is equal to 0.020434 with the expected return of portfolio amounted to 0.001396. 
The amount of risk tolerance can still be improved but with the condition that the resulting values of weighted portfolio of real 

0 1iw   ( 1, ..., 5i  ) and qualify
5

1
1ii

w


 . In this case the value will be at most risk tolerance as 7.377  . Where the 

resulting composition of the portfolio with the highest expected return of portfolio that is equal to 0.0019183 with VaR at 
0.024664. Any increase in the value of risk tolerance will cause the increase in expected return portfolio which is also 
accompanied by an increase in the Value-at-Risk portfolio. 

 Efficient portfolios lie along the line with risk tolerance of 0 7.377  , as given by the graph of the surface 

efficiently (efficient frontier) in Figure-1. Along that line of investors eligible to invest in a portfolio consisting of stocks 1S until

2S . Of course, each investor should choose one based on preference or risk tolerance level that is believed. For the avoidance 

of risk investors will usually sets the risk tolerance is small, while for investors challenger will risk taking a big risk tolerance. 
Large-size specified risk tolerance, of course, will affect the large-size of portfolio expected return obtained. 

 Having obtained a series of efficient portfolios, the next step is determining the optimum portfolio composition. Every 
investor wants a portfolio of investment that can yield big returns, but accompanied by a small degree of risk. If it is assumed 
that investor’s preferences based only on expected return and risk of the portfolio. Selection of the optimum portfolio can be 
determined based on the composition of the efficient portfolios that generate expected return and the Value-at-Risk of portfolio 
with the largest ratio. 

 Based on the calculation results given in the last column of Table-5, shows that the ratio of expected return and VaR 
the largest portfolio is 0.07807227, or obtained when risk tolerance reaches 6404. The ratio of expected return and VaR continues 

to increase at intervals of risk tolerance 0 6.404  and decreased in the interval 6.404 7.377  . Up-and-downs of these 

ratios can be seen graph given in Figure-2. Based on the values in Table-5, obtained the results that based on the model of asset 

allocation mean-VaR, the optimum portfolio composition prepared from the stock 1S  until 5S  the portfolio composition with 

the weight vector T
w  (0.1888 0.4090 0.2085 0.0320 0.1617). Where is the optimum portfolio composition to generate the 

expected return of 0.001825 with Value-at-Risk of 0.0233789. 
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IV. CONCLUSION 
 

 Mathematical of Arbitrage Pricing Theory (APT) model can be expanded into APT with lagged. Based on it the 

estimators of mean, variance and covariance of stock return are formulated. The empirical research conducted on five stock 1S

until 5S , and five index factor of 1F until 5F . Where return of the index factors in the APT with lagged analyzed using 

ARFIMA-GARCH model approach. Based on the analysis that the three index return factor, namely 1F ,  2F  and 4F  there are 

significant effects of long memory. Parameters estimator of mean, variance and covariance, then used for the analysis of asset 
allocation problem based on the mean-VaR model. Based on the results of optimization, efficient portfolios are formed for the 

values of risk tolerance 0 7.377  . An optimum occurs in the value of portfolio risk tolerance 6.404  . Optimum 

portfolio has composition allocation weight of  0 .1 8 8 8 0 .4 0 9 0 0 .2 0 8 5 0 .0 3 2 0 0 .1 6 1 7
T

w , with a mean portfolio return of 

0.001825 and Value-at-Risk of 0.0233789. 
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