
Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

 Scheduling multi-objective unrelated parallel machines

using hybrid reference-point based NSGA-II algorithm

Mohammad Komaki and Behnam Malakooti

Electrical Engineering and Computer Science Department

Case Western Reserve University

Cleveland, OH 44106, USA

gxk152@case.edu, bxm4@case.edu

Abstract
This paper addresses the multi-objective unrelated parallel machines to minimize makespan, total weighted

completion times, and total weighted tardiness simultaneously. To tackle this problem, a hybrid algorithm

based on reference-based many objective NSGA-II is proposed that the initial population is generated based

on an exact algorithm and multi-directional local search algorithm. Minimizing makespan of the problem

using relaxed mathematical model can be solved in an affordable computational time. Then, the multi-

directional local search algorithm uses the high quality solution of the exact method to generate the non-

dominate solutions by performing greedy search algorithms which is specifically designed for each

objective of the addressed problem. The generated high quality solutions are used as the initial solution of

the reference-based many objective NSGA-II. The performance of the algorithm is tested based on the well-

known benchmark test problems and performance of the proposed algorithm is compared to the-state-of-

the-art.

Keywords

Reference-based many objective NSGA-II, multi-directional local search, unrelated parallel machines, total weighted

tardiness, makespan, total weighted completion time

1. Introduction
In most of the real world optimization problems, there are multiple conflicting objectives that need to be

mathematically modeled as objective functions, and then, optimized through a multi-objective optimization problem.

There is much research in the optimization literature that mathematically modeled a real industry problem as a multi-

objective problem. For example, since there are multiple objectives in designing a control chart, Mobin et al. (2015)

and Tavana et al. (2016) proposed a multi-objective model for this problem and solved it using enhanced evolutionary

algorithms. As another multi-objective case problem, Li et al. (2016) proposed a multi-objective optimization of

reliability growth planning that considered all objectives of reliability growth including reliability, time, and cost.

Similar to the mentioned real case multi-objective problems, the multiple conflicting objectives in scheduling

problems necessitate a model that considers all objective functions at the same time optimize them concurrently. These

objectives represent concerns of manufacturer as well as customers. The concerns are mainly makespan, equivalent

to maximizing machine utilization, total tardiness which is equivalent to customer satisfaction and delivering order(s)

on time, and total completion time, maximizing throughput of the factory. This paper addresses multi-objective

unrelated parallel machines scheduling problem to minimize the above mentioned objectives. In this problem, the

speeds of the machines don’t have fixed relationship with the processing time of jobs. This problem using three-field

notation of Graham et al. (1979) 0can be presented as Rm||Cmax,∑wjTj, ∑wjCj. It is assumed that all jobs are available

at time zero, and all machines are available thorough scheduling period. Preemption is not allowed, and each job has

its own weight, processing time, and due date which are known in advance. Processing times of the jobs depend on

the processing machine. Several real-world problems can be modeled as the problem at hand. For instance,

semiconductor manufacturing, pharmaceutical, and so on.

Since most problems associated with unrelated parallel machines are NP-Hard (Pfund et al., 2004), exact methods

such as dynamic programming and Branch and Bound algorithms are ineffective in term of computational time.

Therefore, heuristic and metaheuristic algorithms are gaining much attention. For detailed survey of application of

evolutionary algorithms on the scheduling problems, readers are referred to Mokotoff (2001) and Pfund et al. (2004)0.

612

mailto:gxk152@case.edu
mailto:bxm4@case.edu

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

Single objective unrelated parallel machines have been investigated considerably but surprisingly, multi-objective

unrelated parallel machines have been studied by few researchers. For instance, single objective unrelated parallel

machines, Li and Yang (2009) investigated different mathematical modeling of non-identical parallel machines and

provided detailed review and solutions for different objective functions.

To tackle multi-objective problems there are several methods. For instance, one may consider additive function of

objective such Rashidi et al. (2010), however, finding weight of each objective is extremely difficult. Therefore, most

researchers use methods that directly can find solution of the problem. For the multi-objective unrelated parallel

machines problem, Cochran et al. (2003) proposed a multi-population genetic algorithm. Lin et al. (2013) addressed

Rm||Cmax,∑wjTj, ∑wjCj and proposed heuristic algorithms and Genetic algorithm. Lately, Lin and Ying (2015) addressed

the same problem and proposed a multi-point simulated annealing (MOMSA). 0 Recently, Lin et al. (2015) for the

same problem proposed an algorithm based on iterated Pareto greedy algorithm using a tabu list (TIPG). Based on

extensive experiments, they showed that TIPG clearly outperforms the other algorithms.

In this paper, we address the multiple objective unrelated parallel machines scheduling problem. For this problem, we

propose a hybrid NSGA-III algorithm. NSGA-III, developed by Deb and Jain (2014), is almost the same as NSGA-II

(Deb et al., 2002) except in the selection mechanism where NSGA-II utilities crowding distance but NSGA-III uses

the predefined reference points in the selection mechanism. NSGA-III has been successfully applied to several

problems including multi-objective X-bar control chart (Tavana et al., 2016). In the developed hybrid NSGA-III

algorithm, the initial solution is generated using hybrid of exact and metaheuristic algorithm called Multi-directional

local search algorithm (MDLS) (Tricoire, 2012). We solve the simplified version of the problem using exact model

for makespan, then we use MDLS to generate solutions by applying its operators, ruin and recreate operators. After

applying the operators of MDLS, the obtained solutions are compared, if they are efficient (non-dominated), they are

kept, otherwise they are discarded. Indeed, the output of MDLS which is non-dominated solutions is considered as

the initial population of NSGA-III. Also, to enhance the search ability of NSGA-III, we apply limited version of

MDLS algorithm.

The reminder of the paper is organized as follows. Section 2 is devoted to the problem description, and in section 3,

the proposed NSGA-III and its operators as well as multi-directional local search algorithm are discussed. In Section

4, the experimental results are presented and Section 5 is devoted to the conclusion.

2. Problem Description
In the addressed problem, Rm||Cmax,∑wjTj, ∑wjCj , there is a set of jobs N = {1,…, n}, and a set of unrelated parallel

machines M = {R1,…,Rm}. Jobs have to be processed on one of the parallel machines where each job j ∈ N has a

distinct due date dj and an importance weight wj. Also, the processing time of job j on each machine k ∈ M is pkj. All

machines are available through scheduling horizon and never break down. Preemption is not allowed, that is, after

starting processing a job, its process cannot be interrupted before its completion. All jobs are available at time zero

and setup times are included in the processing time of jobs. Each machine can process a job at a time and each job can

be processed by only one machine at a time.

Table 1. Processing time, due date, and weight of jobs

Job 1 2 3 4 5 6 7 8 9 10

p1,j 66 6 69 36 85 32 81 59 68 51

p2,j 42 97 72 18 86 11 18 47 25 37

wj 2 4 1 9 8 2 5 3 1 4

dj 117 68 0 135 0 75 92 77 48 72

Let Π=(π1, π2,…,πk,…,πm) be a complete schedule where πk represents the sequence of jobs allocated to the machine

k, and πk(1) represents the first job in πk, and nk is the total number of jobs allocated to the machine k. Then, each of

the objectives can be computed as follows.

𝐶𝜋𝑘(𝑖) = ∑ 𝑝𝑘,𝜋𝑘(𝑟)
𝑖
𝑟=1 for k =1,…,m and i = 1,…, nk (1)

𝑇𝜋𝑘(𝑖) = max⁡{𝐶𝜋𝑘(𝑖) − 𝑑𝜋𝑘(𝑖), 0} for k =1,…,m and i = 1,…, nk (2)

Cmax =max{𝐶𝜋𝑘(𝑛𝑘)} for k =1,…,m (3)

Eq. (1) and (2) compute the completion time and tardiness of each job and Eq. (3) represents the makespan of the

schedule Π. Total weighted tardiness and total weight completion times can be present as 𝑇𝑊𝑇 =
∑ ∑ 𝑤𝜋𝑘(𝑖)

𝑇𝜋𝑘(𝑖)
𝑛𝑘
𝑖=1

𝑚
𝑘=1 and 𝑇𝑊𝐶 = ∑ ∑ 𝑤𝜋𝑘(𝑖)

𝐶𝜋𝑘(𝑖)
𝑛𝑘
𝑖=1

𝑚
𝑘=1 , respectively.

613

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

The goal is finding Π, i.e., allocating the jobs to the machines and finding their sequences, such that makespan (Cmax),

total weighted tardiness (TWT), and total weighted completion times (TWC) simultaneously are minimized.

In the following, a numerical example for 10 jobs and two machines is presented where their processing times, weight

and due date of jobs are presented in Table 1.

Assume π1={2,5,6,3} and π2 ={4,7,10,8,1} as presented in Fig. 1, therefore, Cmax= 192, TWT=1378, and

TWC=2695.

Figure 1. Solution of the numerical example

3. Proposed NSGA-III
As pointed out in Sections 1 and 2, the addressed problem is NP-Hard, therefore, heuristic and metaheuristic

algorithms are effective tools to tackle the problem at hand. However, they may not be able to find the optimal solution,

but they are able to find relatively high quality solutions within affordable computational time. Several algorithms

have been proposed to tackle multi-objective algorithms. For detailed survey, see Konak et al. (2006) and Giagkiozis

et al. (2015).

Pt

Qt

F1

F2

F3

F1

F2

Reject

Pt+1

F3

Non-dominated

Sorting

F3

F3
Reject

Reference

points

Rt

Figure 1. NSGA-III procedure (Pt: population at iteration t and Qt: offspring at iteration t)

In this section, we develop a metaheuristic algorithm based on reference-point based many-objective NSGA-II (called

NSGA-III, Deb and Jain, 2014). Also, in order to increase the efficiency of the proposed NSGA-III, a local search

algorithm based on multi-directional local search (MDLS) (Tricoire, 2012Error! Reference source not found.) is

embedded in the proposed NSGA-III.

In next subsections, first the basic structure of NSGA-III and its difference from NSGA-II are discussed in detail.

Then, the proposed NSGA-III and its operators, as well as MDLS for the addressed problem, are proposed.

3.1 Introduction to NSGA-III

Reference-point based multi-objective NSGA-II (NSGA-III) is the evolved version of NSGA-II. All steps of NSGA-

III are the same as NSGA-II except the selection mechanism, as in Figure 1. The purpose of the selection mechanism

is keeping the diversity of the population by adding the dominated solution to the next generation. In NSGA-II, the

selection mechanism is based on crowding distance which identifying the neighbors is computationally expensive and

has been criticized for uneven distribution of population convergence and having poor performance in its global search

power. Due to these critiques, in the evolved version of NSGA-II, NSGA-III, the selection mechanism is defined

based on reference points where they are either known in advance or can be generated using a predefined method.

614

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

In the following, the brief summary of NSGA-III is presented. Like NSGA-II, NSGA-III starts with initial population

P0 with the size of NPop, and generates offspring using crossover operators and then applies mutation operator on them.

The offspring at iteration t, Qt, and population at iteration t, Pt, are combined as Rt and non-dominated sorting

procedure (Deb et al., 2002) is applied and grouped into different levels where individuals in the first level (or front),

F1, is not dominated by any other individuals and individuals in the second level, F2, are dominated by only by

solutions in F1 and so on. To create the next generation, Pt+1, the individuals in the first level, F1, are copied to the

Pt+1, and then F2, and so on until the size of Pt+1 reaches to NPop for the first time, let say at Fl. That is, F1 to Fl-1 are

already in the population of the next generation, if their size, total number of individuals in F1 to Fl-1, is equal to NPop,

then algorithm starts the next iteration, otherwise the remaining individuals should be selected from Fl until the size

of the population of the next generation reaches to NPop. In order to select individuals from Fl, objectives are

normalized as will be discussed later in section 3.2.Error! Reference source not found., and each individual in F1 to

Fl will be associated with one of the reference points which has the closest perpendicular distance from the line

connecting the origin to the reference point, see Figure 2 where a sample of reference points distributed on the

normalized hyperplane and reference lines are presented. Section 3.2.4 addresses how the reference points are

generated. The number of associated individuals in Pt+1 for each reference point j is counted and represented by ρj

where ρj = 0 indicates that the reference point j does not have any associated member in Pt+1, and ρj > 0 indicates that

one or more individuals in Pt+1 are associated with the reference point j. The strategy of NSGA-III to have diverse

population is based on selecting individuals from Fl associated with reference points with ρj=0, that is, it selects

individuals from Fl associated with reference point j that no individual in Pt+1 is associated with that reference point.

If such individual in Fl does not exist, then a random individual(s) is added to Pt+1. After adding the new individual to

Pt+1, ρj is increased by one unit. Then, the algorithm repeats this step with another reference point with min
𝑗
{𝜌𝑗} until

size of Pt+1 reaches to NPop. Then, the algorithm restarts with the new population, Pt+1, and repeats the above processes

until the predetermined stopping criterion such as computational time limit or the number of iterations is met.

Figure 2. Reference points and reference lines

2 5 6 3

4 7 10 8 1 9

Figure 3. Solution representation of the numerical example

3.2 Proposed Hybrid NSGA-III (HNSGA-III)

The schematic procedure of NSGA-III is presented in Figure 1, now, in the following subsections, detail of the

proposed NSGA-III for the addressed problem as well as the incorporated improvements including initial solutions

and multi-directional local search are discussed.

3.2.1 Solution representation:

Solution representation has the key role on the performance of metaheuristic algorithms. In this article, we present

each solution as m vector which each vector represents the jobs allocated to each machine and the sequence of jobs

Reference point
Reference line

f1
f2

f3

Origin

615

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

assigned to the machine. The objectives of each solution are computed as described in section 2. As an example,

consider the numerical example presented in section 2 which the present solution in Figure 3 can be presented as

follows.

3.2.2 Initial population:

It is well-established that quality of final solution of metaheuristic algorithms highly depends on the quality of the

initial solution, the higher the quality of the initial solution, the higher the quality of the final solution. Generating the

initial solution randomly which leads to poor performance of the algorithm, however, many studies for example,

Friedrich and Wagner (2015), suggested using sophisticated methods to generate the initial population. In this study,

to have diverse and high quality initial solution, we use a hybrid of an exact method and a metaheuristic algorithm.

That is, the simplified version of the problem using the exact method to minimize the makespan based on the

assignment of the jobs to each machine is solved. Then, the problem reduces to the m single-machine problems which

two well-known heuristic algorithms are applied to generate two relatively high quality solution. Then, we apply

Multi-Directional Local Search (MDLS) algorithm (Tricoire, 2012) on the relatively high quality solutions to generate

non-dominated solutions.

Finding the optimal makespan of the unrelated parallel machine can be simply presented as following mathematical

model (Potts, 1985).

P1. min⁡⁡⁡⁡⁡⁡⁡ 𝐶𝑚𝑎𝑥 (4)

 s.t.

 ∑ 𝑥𝑖𝑗
𝑚
𝑗=1 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 (5)

 ∑ 𝑝𝑖𝑗𝑥𝑖𝑗
𝑛
𝑖=1 ≤ 𝐶𝑚𝑎𝑥 ⁡⁡⁡⁡⁡⁡∀𝑗 (6)

 𝑥𝑖𝑗 ∈ {0,1}

where xij =1, if job j is assigned to machine i, 0 otherwise.

Lin et al. (2011) used the above model by relaxing the binary assignment variables, xij, and refining (rounding) them

to find the assignment of the jobs to the machines. However, the above model for medium size instances, and to some

extend large size instances, can be solved by a commercial software in affordable computational time, therefore, one

can use this model to have a high quality solution.

Steps of the MDLS algorithm

1. Pop1←Solve the Problem P1, and apply WSPT on each m single-machine problem

2. Pop2←Solve the Problem P1, and apply modified Lawler's algorithm on each m single-

machine problem

3. Set NDS ← { Pop1 , Pop2}

4. Set runtime t← 0

5. While t <runMax

6. π ← Select a solution from NDS

7. πꞌ ← Apply the ruin operator on π, and set 𝐽 as the set of selected jobs from π

8. k←1

9. While k ≤ 3

10. If k = 1 % improve πꞌ only based on Cmax

11. S1←Apply Procedure 1 on πꞌ

12. Find TWT(S1) and TWC(S1)

13. Elseif k = 2 % improve πꞌ only based on TWT

14. S2←Apply greedy insert procedure based on TWT on πꞌ

15. Find Cmax(S2) and TWC(S2)

16. Elseif k = 3 % improve πꞌ only based on TWC

17. S3←Apply greedy insert procedure based on TWC on πꞌ

18. Find TWT(S3) and Cmax(S3)

19. End if
20. k← k +1

21. EndWhile

616

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

22. Add S1, S2, and S3 to NDS and then, update NDS using fast non-dominated sorting procedure

23. EndWhile

Figure 4. Steps of multi-directional local search (MDLS) algorithm

Having the solution of the problem P1, the problem reduces to m single-machine problems with given set of assigned

jobs to each single machine. It is well-known that WSPT can optimally solve 1||∑wiCi, therefore, we apply WSPT to

find the sequence of the assigned jobs to each machine and label this solution as Pop1. Similarly, we apply the proposed

modified Lawler's algorithm proposed by Cheng et al. (2005) on the solution of the problem P1 to find the sequence

of jobs on each single machine to minimize TWT. We label this solution as Pop2. Now, we apply MDLS algorithm

on Pop1 and Pop2 which both have the same Cmax and Pop1 is better in term of TWC and Pop2 is better in term of

TWT.

MDLS algorithm (Tricoire, 2012) is a simple but effective metaheuristic algorithm which is based on Pareto local

search (PLS) and uses different neighborhood structure for each objective of the problem. The algorithm, MDLS, has

three simple steps; (1) select a solution (2) perform a local search on each objective of the problem (3) reject or accept

the solutions. Similar to all metaheuristic algorithms, each of these steps should be defined problem specific. The local

search of the algorithm is based on ruin and recreate operators which are similar to destruction and construction

phases of iterated greedy (IG) algorithm, respectively. The ruin operator converts a complete feasible solution of the

problem into a partial solution while the recreate operator finds a complete feasible solution of the problem from the

partial solution based on local search algorithm which is specifically defined for each objective of the problem. Note

that the destruction phase of IG and the ruin operator of the MDLS are conceptually similar, but the construction phase

and the recreate operator completely differ from each other since the recreate operator is defined based on each

objective of the problem while usually the construction phase usually is defined regardless of the objective of the

problem. Furthermore, MDLS creates k solutions (k is the number of objectives of the problem) while IG generates

only one solution at each iteration. After generating k solutions, they are compared to the current non-dominated

solutions. If they are efficient, then they will be added to the Pareto set, otherwise, they will be discarded. The process

continues until the stopping condition is met.

In this study, the MDLS algorithm starts with Pop1 and Pop2 as the set of non-dominated solutions (NDS), and at each

iteration of the algorithm, it selects a solution from the NDS and generates k solutions (k is the number of the objective

functions of the problem, here k =3) by applying the ruin and recreate operators as will be discussed later. The obtained

solutions are compared to the solutions in the NDS and if they are efficient, then will be added to the NDS, otherwise

the dominated solutions will be discarded. Also, after each iteration, the NDS will be updated by removing the

dominated solutions using fast non-dominated sorting procedure (Deb et al., 2002). These processes continue until

stopping condition is met. The steps of the proposed MDLS is presented in Figure 4.

The ruin and recreate operators are as following. The ruin process is defined based on removing x jobs randomly one

at a time from a randomly chosen machine. Let 𝐽 be the set of the selected jobs. Now, the set of jobs in 𝐽 needs to be

inserted in the partial sequence of jobs. To do so, we define three procedures each based on one objective of the

problem at hand. These procedures are greedy based, that is, for each job i∈ 𝐽, all positions are tested and the job is

inserted in the position with the minimum increment of the objective function. Since the position of the jobs for Cmax

does not matter, it can be simplified by inserting the job to the last position of the machine which results in the

minimum increment of the makespan and then WSPT rule can be applied on the selected machine, see Procedure 1 in

Figure 5. In other words, Procedure 1 generates a solution with respect to makespan as well as TWC.

For the TWC and TWT objectives, we apply greedy recreate operators that evaluate every possible position to insert

a job in the current partial sequence and select the best one.

Procedure 1 (Cmax)

1. For each machine j find 𝑟𝑗 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗𝑖∈𝑁\𝐽

2. While 𝐽 ≠{}

3. Select job 𝑖 ∈ 𝐽
4. Append job j to the current sequence of jobs of machine 𝑘∗

 where 𝑗∗ = argmin
𝑗∈{1,..,𝑚}

{𝑟𝑗 + 𝑝𝑖𝑗}⁡

5. Apply WSPT rule on machine 𝑗∗ to reorder the sequence of jobs

6. Update 𝐽 ← 𝐽⁡\⁡𝑖
7. EndWhile

Figure 5. Procedure 1

617

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

Computational time of evolutionary algorithms are the main drawback of the algorithms. Therefore, incorporating the

time-saving strategies can improve the performance of the algorithm. The time-saving strategies highly depend on the

structure of the addressed problem. For flowshop scheduling problems, usually graph representation and its properties

are used to develop the time-saving strategies. For instance, Komaki et al. (2015) have used the properties of the graph

representation of the distributed permutation flowshop to reduce the computational time of their developed algorithm

and they concluded that time-saving strategy tremendously improves the performance of the algorithm.

In order to save the computational time, we use the following timesaving scheme. Inserting a job to the current partial

sequence of one machine does not have any effect on the sequence of jobs on other machines, and consequently one

can focus on the machine where the job has been inserted. Assume Π=(π1, π2,…,πj,…,πm) is the current partial sequence

of jobs, and rj, TWTj and TWCj represent makespan, total weighted tardiness, and total weighted completion times of

machine j, respectively, and |πj| represents the number of jobs assigned to machine j. Note that Cmax(Π)=max{rj},

𝑇𝑊𝑇(Π) = ∑ 𝑇𝑊𝑇𝑗
𝑚
𝑗=1 , and 𝑇𝑊𝐶(Π) = ∑ 𝑇𝑊𝐶𝑗

𝑚
𝑗=1 . Let ξ(πj,i,l) represent inserting job i into position l of πj as

presented in the following figure, and the obtained sequence after applying ξ(πj,i,l) is 𝜋𝑗
𝜉
. In the following, we consider

the change (increment) of the objectives after applying ξ(πj,i,l). Consider Inserting job i into position l of πj

results in 𝝅𝒋
𝝃
Figure 6 where the sequence of jobs on machine j before inserting job i, πj, and after inserting job i, 𝜋𝑗

𝜉
,

are presented.

1 2 l l+1 |πk|

i

l-1

1 2 l l+1 |πk|l-1

Figure 6. Inserting job i into position l of πj results in 𝝅𝒋
𝝃

The change of makespan can be easily represented as rj (𝜋𝑗
𝜉
) = rj (πj) + pij, that is, inserting job i to any position of πj

increases the makespan by processing time of the inserted job i.

In 𝜋𝑗
𝜉
, the completion time and tardiness of jobs in positions 1 to l-1 remains unchanged while the completion time of

the jobs in positions l to |πj| increases by pij, therefore, TWC of 𝜋𝑗
𝜉
 can be obtained as following.

TWCj (𝜋𝑗
𝜉
)=TWCj (πj) + wj(∑ 𝑝𝑡𝑗

𝑙−1
𝑡=1 + 𝑝𝑖𝑗)+pij ∑ 𝑤𝑡

|𝜋𝑗|

𝑡=𝑙 (7)

where TWCj (πj) is total weighted completion times of πj before inserting job i, wj(∑ 𝑝𝑡𝑗
𝑙−1
𝑡=1 + 𝑝𝑖𝑗) represents the

weighted completion time of job i and pij ∑ 𝑤𝑡

|𝜋𝑗|

𝑡=𝑙 represents the weighted increase of the completion times of jobs in

positions l to |πj |.

The change of TWT is not straightforward, but it can be derived as followsg. Let vi=Ci-di represent the deviation of

completion time of job i from its due date and Ti=max(vi,0) is tardiness of the job i. Since the completion time of the

jobs in positions 1 to l-1 of 𝜋𝑗
𝜉
remains unchanged, their tardiness remains unchanged. Therefore, to find the TWT of

𝜋𝑗
𝜉
, one needs to focus on job i and the jobs in positions l to |πj|.

TWCj (𝜋𝑗
𝜉
)=TWCj (πj)+ wi max(∑ 𝑝𝑡𝑗

𝑙−1
𝑡=1 + 𝑝𝑖𝑗 − 𝑑𝑖,0)+∑ 𝑤𝑡

|𝜋𝑗|

𝑡=𝑙
⁡(𝑚𝑎 𝑥(𝑣𝑡 + 𝑝𝑖𝑗 , 0) − max(𝑣𝑡 , 0)) (8)

where TWCj (πj) is total weighted tardiness of πj before inserting job i, wi max(∑ 𝑝𝑡𝑗
𝑙−1
𝑡=1 + 𝑝𝑖𝑗 − 𝑑𝑖,0) represents the

weighted tardiness of job i, and ∑ 𝑤𝑡

|𝜋𝑗|

𝑡=𝑙 ⁡(max(𝑣𝑡 + 𝑝𝑖𝑗 , 0) − max(𝑣𝑡 , 0)) represents the weighted increase of

tardiness of jobs in positions l to |πj|.

As indicated earlier, the purpose of the MDLS algorithm is to generate initial population where all of the individuals

are non-dominated. Since the executing the algorithm is limited to iterate runMax times, it may not be able to find NPop

non-dominated solution. In this case, that is, the number of the solution in the NDS is less than size of the initial

solution, NPop, the rest of the solutions is generated by Apparent Tardiness Cost (ATC)-bi algorithm (Lin et al., 2013).

𝜋𝑗
𝜉

πj

618

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

In this algorithm, the job with maximum index
𝑤𝑗

𝑝𝑖∗𝑗
exp⁡(−

max⁡(𝑑𝑗−𝑝𝑖∗𝑗−𝑡𝑖∗ ,0)

𝐾𝑝𝑖∗𝑗
) is assigned to the machine i* with the

minimum total processing time where K is scaling parameter, for more detail see Lin et al. (2013). Note that usually

ATC-bi generates repeated (identical) solutions, so, after generating all solutions, the repeated ones are removed and

only unique ones are kept in the initial solutions, then the rest of the solutions are generated randomly until the size of

the initial solutions is reached to the determined size, NPop.

3.2.3 Genetic operators:

So far the initial population of the algorithm is generated. The next step is applying genetic operators, crossover and

mutation, on the current population. The crossover operator combines two individuals and by exchanging their

segments creates two new solutions which are called offspring. In this study, we use one-point crossover operator

which simple and effective crossover operator and it has been used by many researchers, for example, Vallada and

Ruiz (2011). In this operator, the crossing point for each machine is randomly chosen and jobs before the crossing

points are directly copied to offspring. Then, for offspring 1, the jobs after the crossing point of the parent 2 which are

not available in the current partial solution of the offspring 1 is inserted on the corresponding machine. A Similar

process is repeated for the offspring 2.

Another operator of GA is mutation operator that improve the diversification of the algorithm. In this study, we use

multiple reinsertion where several jobs are randomly are selected from the current offspring and they are inserted in

random position.

3.2.4 Fast non-dominated sorting procedure:

Deb et al. (2002) 0 developed fast non-dominated sorting procedure with complexity O(k.NPop
2) where k is the number

of objectives of the problem. In this procedure, for each solution two entities are calculated: (1) ni which is domination

counter is the number of solutions that dominate solution i and (2) Si the set of solutions that the solution i dominates

them. Solutions with ni =0 create the first non-dominated frontier. Then, for each solution i in the first non-dominated

frontier, the domination counter of the solutions in the set Si is reduced by one unit. Then, solutions with ni =0 create

the second non-dominated frontier. Now, for each solution i in the second non-dominated frontier, the domination

counter of solution in the set Si is reduced by one unit and the solutions with ni =0 create the third non-dominated

frontier. This process continues until all frontiers are identified.

Also, in order to increase the search ability of NSGA-III, we apply MDLS for a limited number of iterations, runFS on

the first frontier.

3.2.5 Selection mechanism

The main difference of NSGA-II and NSGA-III is the selection mechanism which in the former one is based on

crowding distance and the latter one is based on reference points. The reference points can be known in advance or

can be generated by a systematic method. Since the structure of optimal Pareto front of the problem is not known, we

use the proposed method by Das and Dennis (1998) to generate the reference points where points are located on the

normalized hyper-plane, see Figure 2, where points are equally distributed. The number of the reference points

depends on the number of objectives (i.e., the dimension of the hyper-plane is determined by the k, the number of

objectives), and the distance of them from each other, s. Das and Dennis (1998) proposed a procedure to create equally

distributed points on the hyper-plane which the number of points is (
𝑘 + 𝑠 − 1
𝑘 − 1

). In Fig. 5, k =3 and s = 4, therefore,

there are 15 reference points.

Because the scale of the objectives is different, converting them to the normalized value eases the process of assigning

solutions to the reference points. Each objective is normalized as follows.
m in

m ax m in

i i

i

i i

f z
f

z z


 


 (9)

where fi represents i-th objective function, 𝑧𝑖
𝑚𝑎𝑥 and 𝑧𝑖

𝑚𝑖𝑛 represent the max and min of the objective fi, respectively.

After normalization of the objectives, each individual (solution) is assigned to a reference point which has the least

distance form reference line, the line that connects the origin to the reference point. Then, for each reference point j,

ρj the number of associated points from F1, F2,…, Fl-1 is counted. As indicated earlier, ρj=0 indicates that the reference

point j does not have any associated member in the next population of the algorithm, Pt+1. Therefore, such reference

points with no associated members have the higher priority. That is, if any solution in Fl is associated with such a

point, then one of them should be in Pt+1. In a case that the reference point j has several associated members in Fl one

of them should be selected randomly. If no point is associated with the reference point j from Fl, then the closet

619

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

solution to the reference point should be selected. After adding a solution to the Pt+1 based on the reference point j,

then ρj is increased by one unit. The process is restarted with the next reference point with the lowest ρj until the

number of solutions in Pt+1 reaches to NPop.

3.2.6 Stopping criterion

Steps 3.2.3-5 are repeated until the stopping condition is met. We consider the number of iterations of the algorithm

as the stopping criterion, Itmax.

a. Result of the benchmark problem 2M12N_01 b. Comparison of the algorithms for benchmark 4M20N_03

Figure 8. A sample of result of the proposed hybrid NSGA-III for benchmark problems

Table 2. Number of non-dominated solutions of each algorithm

Instance
HNSGA-

III
TIPG MOMSA Instance

HNSGA-

III
TIPG MOMSA Instance

HNSGA-

III
TIPG MOMSA

2M12N_01 24 24 22 4M20N_01 61 79 2 10M100N_01 87 51 9
2M12N_02 12 12 12 4M20N_02 38 26 7 10M100N_02 107 59 28
2M12N_03 4 4 4 4M20N_03 58 62 27 10M100N_03 77 24 12
2M12N_04 18 18 18 4M20N_04 29 17 7 10M100N_04 93 2 23
2M12N_05 26 26 26 4M20N_05 125 120 1 10M100N_05 65 48 21
2M12N_06 17 17 17 4M20N_06 42 42 25 10M100N_06 57 43 47
2M12N_07 12 12 12 4M20N_07 94 119 26 10M100N_07 79 7 21
2M12N_08 24 24 20 4M20N_08 75 63 14 10M100N_08 81 92 9
2M12N_09 24 24 20 4M20N_09 84 46 15 10M100N_09 25 8 42
2M12N_10 19 19 18 4M20N_10 93 163 32 10M100N_10 92 120 59
2M12N_11 75 77 48 4M20N_11 89 82 16 10M100N_11 77 63 13
2M12N_12 13 13 11 4M20N_12 81 72 18 10M100N_12 67 4 13
2M12N_13 16 16 16 4M20N_13 88 96 20 10M100N_13 102 110 9
2M12N_14 16 17 14 4M20N_14 120 111 18 10M100N_14 59 30 43
2M12N_15 19 19 18 4M20N_15 71 64 12 10M100N_15 85 81 11
2M12N_16 16 16 10 4M20N_16 133 128 20 10M100N_16 48 15 54
2M12N_17 13 13 5 4M20N_17 75 48 19 10M100N_17 32 0 31
2M12N_18 22 22 18 4M20N_18 102 133 40 10M100N_18 27 14 3
2M12N_19 13 13 12 4M20N_19 127 115 21 10M100N_19 38 22 42
2M12N_20 34 34 27 4M20N_20 98 82 26 10M100N_20 61 0 36
Average 20.85 21 17.4 Average 84.15 83.4 18.3 Average 67.95 39.65 26.3

4. Experimental results
The developed algorithm is coded in Matlab 2014Ra and run on a PC with an Intel® Core i5 CPU with 3.20GHz and

4GB RAM. The parameters of the proposed hybrid NSGA-III is set as following; Number of population NPop= 150;

Number of iterations of the NSGA-III; Itmax= 150; Number of iterations of MDLS: runMax= 100; Number of iterations

of MDLS on the Pareto frontier runFS= 20, mutation probability pm = 0.1; and crossover probability pc= 0.2, distance

of points on the hyperplane s = 13.

620

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

The performance of the proposed hybrid NSGA-III is compared to TIPG (Lin et al., 2015) and MOMSA (Lin and

Ying, 2015) which are the state-of-the-art. The parameters values are based on suggestion of the authors. The testbed

is based on the well-known benchmark test problems of Lin and Yang (2014) and its expansion by Lin et al. (2013)

which is widely used in the literature. This benchmark set has problem sets; two machines with 12 jobs (2M12N),

four machines with 20 jobs (4M20N), and ten machines with 100 jobs (10M100N), and each set has 20 problems. The

processing times are uniformly distributed over [1,100] and the jobs weights are uniformly distributed over [1,10].

The due dates are also uniformly distributed over [P(1-T-R/2), P(1-T+R/2)] where P is average processing times and

T is tardiness factor and R is relative range of due dates where 𝑇 = 0.8⁡and 𝑅 = {0.4, 0.8}.
Fig. 8a represents the result of the HNSGA-III for the benchmark problem with two machines and 12 jobs, 2M12N_01

and Fig. 8b represents the Pareto frontier of the algorithms for benchmark 4M20N_03.

In this section, we report the result of the experiment on the set of 4M20N and 10M100N. The non-dominated solutions

obtained from all algorithms are combined and then the dominated solutions are discarded. Then, the number of

remaining non-dominated solution of each algorithm is reported in Table 2. The last row of the table represents the

average number of the non-dominated solutions of each algorithm. The average number of the non-dominated

solutions is an indication of the performance of the algorithms. For the small benchmark instance, two machines with

12 jobs, TIPG has the best performance following by HNSGA_III, and MOMSA has the worst performance. As size

of the problems increases, HNSGA_III outperforms TIPG. The average number of the non-dominated solutions of the

HNSGA_III is 84.15 comparing to the average number of non-dominated solutions of TIPG which is 83.4. For the

large size instances, 10M100N, HNSGA_III clearly outperforms the other two algorithms.

The final Pareto frontier can be enhanced with the multi-criteria decision making (MCDM) techniques to provide the

manageable number of optimal solutions for the decision-maker. MCDM techniques have been used in the literature

to rank a set of multiple alternatives considering some specific criteria. Different applications of MCDM tools are

provided in Mobin et al. (2015), Saeedpoor et al. (2015), and Skeete et al. (2015). For example, the application of

the MCDM tools in ranking the Pareto fronier can be mentioned as follows: Mobin et al. (2015) and Li et al. (2016)

applied data envelopment analysis (DEA) to reduce the optimal solutions obtained by NSGA-II to a workable size of

the efficient optimal solutions. Tavana et al. (2016) combined the optimal solutions obtained by NSGA-III and

MOPSO algorithm, obtained the efficient optimal solutions using the DEA, and then ranked the efficient optimal

solutions using TOPSIS technique.

5. Conclusion
This paper addressed multi-objective unrelated parallel machines to minimize makespan, total weighted completion

times and total weighted tardiness simultaneously. To tackle this problem, a hybrid algorithm based on reference-

point based NSGA-II developed where the initial population is generated by a hybrid of an exact algorithm and multi-

directional local search algorithm. The exact method is based on relaxation of the problem to minimize makespan of

the problem, then, the problem reduces to m single machines whose sequence of jobs is obtained by applying heuristic

algorithms to minimize total weighted completion times and total weighted tardiness. Having two high quality

solutions, a multi-directional local search algorithm is applied on these solutions. The mechanism of the multi-

directional local search algorithm is based on destroying and recreating a solution. In the destroying process, jobs are

randomly selected and removed from current solution, and in the recreation process, jobs are inserted in the partial

sequence based on greedy search specifically designed for each objective function. That is, for each destroying

process, three new solutions are generated. The multi-directional local search algorithm provides high quality initial

population. Then, reference-points based NSGA-II (NSGA-III) is applied on the initial population. The NSGA-III is

the evolved version of NSGA-II that its selection process is defined based on the reference points. The experiments

showed that the proposed algorithm outperformed other state-of-the-art algorithms in term of quality.

References
Cheng, T. E., Ng, C. T., Yuan, J. J., and Liu, Z. H. Single machine scheduling to minimize total weighted

tardiness. European Journal of Operational Research, vol. 165, no. 2, pp. 423-443, 2005.

Cochran, J. K., Horng, S. M., and Fowler, J. W. A multi-population genetic algorithm to solve multi-objective

scheduling problems for parallel machines. Computers & Operations Research, vol. 30, no. 7, pp. 1087-1102,

2003.

Das, I., and Dennis, J. E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear

multicriteria optimization problems. SIAM Journal on Optimization, vol. 8, no. 3, pp. 631-657, 1998.

621

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

Deb, K., and Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based

nondominated sorting approach, part I: solving problems with box constraints. Evolutionary Computation, IEEE

Transactions on, vol. 18, no. 4, pp. 577-601, 2014.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A. M. T. A fast and elitist multiobjective genetic algorithm:

NSGA-II. Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182-197, 2002.

Friedrich, T., and Wagner, M. Seeding the initial population of multi-objective evolutionary algorithms: A

computational study. Applied Soft Computing, vol. 33, pp. 223-230, 2015.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. Optimization and approximation in deterministic

sequencing and scheduling: a survey. Annals of discrete mathematics, vol. 5, pp. 287-326.1979.

Komaki, G., Mobin M., S., Teymourian, E., and Sheikh, S. A general variable neighborhood search algorithm to

minimize makespan of the distributed Permutation flowshop scheduling problem. World Academy of Science,

Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and

Industrial Engineering, vol. 9, no. 8, pp. 2576-2583. 2015.

Li, K., and Yang, S. L. Non-identical parallel-machine scheduling research with minimizing total weighted completion

times: Models, relaxations and algorithms. Applied mathematical modelling, vol. 33, no. 4, pp. 2145-2158, 2009.

Li, Z., Mobin, M., and Keyser, T., Multi-objective and multi-stage reliability growth planning in early product-

development stage, IEEE Transaction on Reliability, vol. 65, no. 2, pp. 769-781, 2016.

Lin, C. W., Lin, Y. K., and Hsieh, H. T., Ant colony optimization for unrelated parallel machine scheduling. The

International Journal of Advanced Manufacturing Technology, vol. 67, no. 1-4, pp. 35-45, 2013.

Lin, S. W., and Ying, K. C. A multi-point simulated annealing heuristic for solving multiple objective unrelated

parallel machine scheduling problems. International Journal of Production Research, vol. 53, no. 4, pp. 1065-

1076, 2015.

Lin, S. W., and Ying, K. C. ABC-based Manufacturing Scheduling for Unrelated Parallel Machines with Machine-

Dependent and Job Sequence-dependent Setup times. Computers & Operations Research, vol. 51, no. 1, pp. 172–

181, 2014.

Lin, S. W., Ying, K. C., Wu, W. J., and Chiang, Y. I. Multi-objective unrelated parallel machine scheduling: a Tabu-

enhanced iterated Pareto greedy algorithm. International Journal of Production Research,

DOI:10.1080/00207543.2015.1047981, 2015.

Mobin M. Roshani A., Saeedpoor M., Mozaffari M., Integrating FAHP with COPRAS-G Method for Supplier

Selection (Case Study: an Iranian Manufacturing Company), Proceedings of the 2015 American Society of

Engineering Management Conference (ASEM2015), Indiana, USA.

Mobin, M., Li, Z., and Massahikhoraskani M. Multi-objective X-bar control chart design by integrating NSGA-II and

data envelopment analysis. In Proceedings of the 2015 Industrial and Systems Engineering Research

Conference, Tennessee, USA, 2015.

Mokotoff, E. Parallel machine scheduling problems: a survey. Asia-Pacific Journal of Operational Research, vol. 18,

no. 2, pp. 193-242, 2001.

Pfund, M., Fowler, J. W., and Gupta, J. N. A survey of algorithms for single and multi-objective unrelated parallel-

machine deterministic scheduling problems. Journal of the Chinese Institute of Industrial Engineers, vol. 21, no.

3, pp. 230-241, 2004.

Potts, C. N. Analysis of a linear programming heuristic for scheduling unrelated parallel machines. Discrete Applied

Mathematics, vol. 10, no. 2, pp. 155-164, 1985.

Rashidi, E., Jahandar, M., and Zandieh, M. An improved hybrid multi-objective parallel genetic algorithm for hybrid

flow shop scheduling with unrelated parallel machines. The International Journal of Advanced Manufacturing

Technology, vol. 49, no. 9-12, pp. 1129-1139, 2010.

Saeedpoor M., Vafadarnikjoo A., Mobin M., Rastegari A., A SERVQUAL Model Approach Integrated with Fuzzy

AHP and Fuzzy TOPSIS Methodologies to Rank Insurance Firms, Proceedings of the 2015 American Society of

Engineering Management Conference (ASEM2015), Indiana, USA.

Skeete A., Mobin M., Aviation Technical Publication Content Management System Selection Using Integrated Fuzzy-

Grey MCDM Method, Proceedings of the 2015 Industrial and Systems Engineering Research Conference

(ISERC2015), Tennessee, USA.

Tavana, M., Li, Z., Mobin, M., Komaki, M., and Teymourian, E. Multi-objective control chart design optimization

using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, vol. 50, pp.

17-39, 2016

Tricoire, F. Multi-directional local search. Computers & operations research, vol. 39, no. 12, pp. 3089-3101, 2012.

Vallada, E., and Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence

dependent setup times. European Journal of Operational Research, vol. 211, no. 3, pp. 612-622, 2011.

622

Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management

Detroit, Michigan, USA, September 23-25, 2016

© IEOM Society International

Biography
Mohammad Komaki is accomplished B.Sc. in Industrial Engineering at Sharif University of Technology, Tehran,

Iran (2001–2006) and M.Sc. in Industrial Engineering at Mazandaran University of Science & Technology, Babol,

Iran (2007–2010). He is currently studying System Engineering at Case Western Reserve University, Cleveland, USA.

His research interests include optimization and multi-criteria decision making.

Behnam Malakooti obtained his PhD in 1982 from Purdue University. He has consulted for numerous industries and

corporations, including General Electric, Parker Hannifin, and B.F. Goodrich. He has published over 100 papers in

technical journals. In his work, systems architectures, space networks, optimization, multiple criteria & intelligent

decision making, trait analysis of biological systems, adaptive artificial neural networks, and artificial intelligence

theories and techniques are developed and applied to solve a variety of problems. His current research is on design

and protocols analysis for NASA space-based networks. Recently Professor Malakooti developed a four-dimensional

approach for decision-making process typology and risk analysis. Decision-making typology accurately identifies the

four types of decision makers’ behavior: Information processing, creativity, risk, and decisiveness approach. It also

provides a basis for developing the next generation of intelligent robots. See http://car.cwru.edu/decision/ for

computerized survey. He has made contributions to manufacturing systems developing computer aided approaches

for manufacturing/production design, planning, operations, facility layout, assembly systems, scheduling, MEMS, and

machine set-up, tool design, and machinability.

623

