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Abstract 

Discrete-event simulation is an effective tool to evaluate manufacturing systems and 

support the development of improvement plans.  However, the use of simulation alone 

to optimize all forms of inventory in addition to throughput can result in a highly 

complicated, cumbersome model. In order to effectively analyze the contributing 

factors easier, a combined methodology that concurrently applies mathematical 

equations and discrete-event simulation is developed. The approach permits inventory 

within the system to be an additional parameter of improvement since its evaluation 

can be conducted with a greater level of accuracy.  A cost per piece breakdown formed 

the basis of the objective function, where improvements were analyzed through 

discrete-event simulation in the attempt to achieve a minimized unit cost.   

Keywords: 

Manufacturing system optimization, Discrete-event simulation, WIP reduction, Unit 

cost reduction 

 

1. Introduction

The need to minimize the cost to manufacture products is very important, especially at a time of 

global challenges to the U.S. manufacturing sector.  However, to reduce the unit cost 

effectively, the ability to analyze and test action plans that  

provide improved performance in a thorough and systematic approach is required.  Also, since 

many manufacturing systems are moving toward an agile and flexible method of production, 

such an approach must be able to focus on multi-part manufacturing processes. 

The objective of this applied research is to investigate the development of a structured 

methodology to minimize the unit cost for a multi-part manufacturing system.  To most 

effectively reduce the unit cost, both throughput and inventory are the primary focus of 

improvement.   

In this paper, the concepts will be applied to the optimization of a multi-part engine block 

machining system, described in detail in section 4.1: Building the Simulation Model.  

 

2. Literature Review 

It is known that many manufacturing systems are far too complex for analytical calculation. The 

stochastic and dynamic nature of these systems requires numerical based methods in order to 

provide effective evaluations that yield more accurate solutions. Over the past thirty years, a 
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significant amount of research has been published in nearly every aspect of its use.  Therefore, 

only those studies that demonstrate an approach outlining the improvement of inventory and 

throughput were investigated. 

The use of simulation for inventory analysis is a powerful tool, but it is one that must be 

thoroughly understood, since it has specific advantages and disadvantages.  The major 

disadvantages are its complexity of model building and the large amount of data required to 

obtain a valid model.  As Fu [1] points out, a major determinant for a simulation model is its 

computational cost, e.g. the number of simulation replications needed to estimate the resulting 

impact for each variable in the system.  Fu further states that differences in the simulation 

methods which separate academic research from practical applications where the need for 

complete confidence in optimality versus rough and ready solution that do not guarantee a 

global optimum solution.  To increase the likelihood of finding an optimum solution, 

experimental design can be employed in conjunction with simulation.  This facilitates the 

development of uniquely designed tests to observe the effects of multiple factors, such as cycle 

time and machine variability to increase modeling efficiency.   

Practical examples using simulation based methods, Montevechi [2] used simulation on an 

automotive process to improve the performance of simulation and avoid trial and error 

solutions.  Trocine and Malone [3] discussed and showed how factorial designs can help reach 

an optimum solution via simulation. Kyle [4] addressed the use of discrete-event simulation to 

determine scheduling and batch size runs for the furniture industry.  Faget [5] applied 

experimental design to simulation to determine the areas of constraint on an automotive 

production system.   

Hurley and Whybark [6] explored the trade-offs between inventory and throughput capacity in a 

manufacturing system, with focus on an engine block machining system that supplies an engine 

assembly line.  They used simulation models to evaluate the effect of push and pull methods of 

production on the effects on buffering, capacity utilization, throughput time and output rate.  

The push system was modeled by “pushing” a pre-determined production schedule into the 

block manufacturing system, whereas the “pulling” system was model by using both JIT and 

DBR approaches. It was concluded that each method provided conflicting benefits.  The “push” 

method showed promising capacity increases, and the “pull” method created a reduction in 

inventory. 

Buffers are a term used to signify a general compilation of WIP, and do not generally add value 

to the product.  However, as Battini [7] explained, buffers play an important multi-functional 

role.  He indicated that buffers serve are part material transport mechanisms and to decouple 

operations from downtimes.  Carrying and loading parts to the machines within the 

manufacturing system. His paper also suggested that they act as “compensation cushions”, used 

primarily to alleviate difference in cycle times, shifts and maintenance activities. Finally, he 

stated that quality control area and product re-sequencing zones are additional functions of 

buffers.  He also noted that although buffers are required in the optimal operation of a 

manufacturing system, care must be taken not to incur inventory costs by having too much 

buffer capacity.   

Spedding [8] used this idea of buffers to optimize a keyboard assembly cell.  In his research, he 

analyzed three buffer locations in an assembly process in addition to having a variable number 

of pallets.  He used a simulation analysis coupled with DOE to determine that increasing a 

single buffer size, along with adding more pallets to the system can yield significant gains in 

throughput. 

As indicated earlier, a buffer is a generic term.  Many manufacturing systems have too much 

buffer, or they are often established in the wrong location, providing little or no benefit.  

Therefore, buffers must be further analyze in detail to find which components of WIP are 

important and how much. However, very few studies were found in literature survey that 
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specifically describe and/or mention the various reasons of inventory accumulation within RMI, 

FGI and WIP, and only two studies have been found that outline a rough sub-categorization of 

inventory.  Hopp and Spearman [9] summarized the reasons for parts accumulation within the 

three primary classifications of inventory: RMI, FGI and WIP.  Their conclusions are shown in 

Table I.   

Bai and Gershwin [10] focused on WIP in their study, and concluded that the reasons for 

accumulation are operational independence, breakdown impact absorption, setup changes and 

spatial decomposition. 

 

Table 1: Components of Inventory [9] 

RMI FGI WIP

Batching Customer Responsiveness Queuing

Variability Batched Production Processing

Obsolesence Forecasting Errors Waiting for Batch

Production Variability Moving

Seasonality Waiting for Match
 

 

3. Problem Formulation 

3.1 Developing an Objective Function 

The objective function resulting from the stated intent for this research is to minimize the unit 

cost, which is a function of inventory and throughput.  The unit cost objective function is a 

variation of the Cost of Ownership (CoO) formula.  The semiconductor industry developed the 

CoO model ($/piece), shown by Nanez [11] in equation 1, to evaluate different manufacturing 

systems based on the total lifetime cost.  

 

𝐶𝑜𝑂 =
(𝐹𝐶 + 𝑅𝐶 + 𝑌𝐶)

𝐿 ∗ 𝐶𝑌 ∗ 𝑈
                                                                                                                          (1) 

 

Where FC is the fixed costs, RC is the recurring costs, YC is the yield costs, L is the remaining 

life of the system in years, CY is the composite yield and U is the utilization. 

The CoO concept is utilized for developing the unit cost where evaluating different process 

improvement alternatives can be compared.  The modified CoO is shown in equation 2, and will 

be used as the objective function in this research: 

 

𝐶 =
(𝐹𝐶 + 𝑅𝐶 + 𝐼𝐶 + 𝑌𝐶)

(𝐿 ∗ 𝑇𝐻)
                                                                                                                     (2) 

 

Where TH is the total number of good parts produced per year. 

 

3.2 Identification and Collection of Relevant Data 

There are a number of general variables that need to be collected and investigated in detail in 

order to build a credible model.  Variables such as cycle time, downtime, scrap rate, buffer sizes 

and changeover time are commonly used in most simulation studies and were determined from 

the literature review.  

In addition to the model building variables, other specific system variables are important in the 

determination of the deterministic inventory capacity. These items are: 
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• Rate and location of the bottleneck 

• Difference in production hours within the system 

• Index time and number of spaces on the conveyors 

• Customer demand and frequency 

• Supplier delivery and frequency 

• Number of stations within the system 

• Transit time to move parts within the system 

• Number of parts per container or pallet 

The method of collection for each of the variables can utilize a number of available resources 

found within a manufacturing  plant.  Some of these sources of information are line-side 

computerized data collection systems, MES systems and maintenance management databases.  

Another important method can include interviews with personnel knowledgeable in specific 

areas on the system such as, supply chain management, production supervisors, maintenance 

staff, engineers and operators. 

In this case study, three months of data were collected and reviewed for each data set.  Since all 

of the operations in this system are automated CNC machines, the cycle time variability is 

assumed to be minimal, thus a constant value is used in the model, as stated by Taraman [12]. 

The important factor of downtime, namely MCBF and MTTR, are fit with the best 

representative distribution using Best-Fit data analysis software, along with the distribution 

parameters. 

The average daily throughput of the real system was taken from the industry engineering 

records database during the same three months as the machine data collection. It was found that 

the average throughput of the engine block machining system over the three month period was 

61.1 JPH. 

The casting supplier is responsible to provide the machining system with 3,550 raw block 

castings per week.  This is 50 pieces more than the end customer requirement to cover the losses 

due to scrap and other miscellaneous rejects.  A three month review the shipping logs help to 

determine the supplier in providing raw castings.  Upon review of the logs, it has been 

determined that the supplier has delivered all 3,550 parts every week for the three month period 

in a timely manner. As a result, no distribution was used, and the delivery of raw castings was 

held at a constant 3,550 pieces, being delivered once per week in the simulation model. 

 

3.3 Understanding the Assumptions 

Assumptions are an important aspect of any simulation analysis.  This research has a number of 

general assumptions that pertain to almost any system, and a set of specific ones that outline the 

uniqueness of the system under study were made. 

The primary assumptions for this research are the exclusion of the variables and influences 

exogenous (outside) of the system of interest.  It is assumed that these factors lie outside the 

bounds of direct influence of the objective, and can be safely ignored.  Items specifically 

exogenous in this case are fork truck routes within the plant, employee attendance and behavior, 

stock of perishable tooling and general maintenance items and supply of line-side items for 

assembly. 

It was also assumed that endogenous (inside) parameters are constant, such that tool life and 

quality is uniform, and part to part variation is negligible.  Furthermore, the research did not 

take into account other general factors such as ambient temperature and lighting conditions 

within the plant, efficiency of manual offload hoists, condition of the machining coolant and 

system air/hydraulic pressure fluctuations. 

In addition to the general assumptions, the model has the following system specific 

assumptions: 
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 Dunnage is always available to offload parts. 

 Operators are considered 100% efficient and always available. 

 All offline buffers of the real system are managed by either robots or operators.  However, 

because of the difficulty in programming human behavior into the model, the analysis 

assumed that the loading and unloading of parts of the offline buffer is done in an 

instantaneous and a 100% efficient manner. This assumption is often called “perfect” 

buffering. 

 Since all the operations in this systems are CNC based machines, the cycle times are 

considered constant since the variation is very small for automated machines, as indicated 

by Taraman [12]. 

 All automation (robots, conveyors, fork trucks and RGVs) are considered to have 

negligible downtime. 

 Online part repairs are completed within takt time, and do not affect the operation of the 

system. 

 

4. Current-State Analysis 

4.1 Building the Simulation Model 

The process under study has a total of 30 CNC machines, utilizing a process flow that contains 

both parallel and serial operations.  This system produces two distinct part types, labelled as 

“A” and “B” in this research. 

The first part type, “A”, is the primary product style required by the customer. This type will be 

produced by the manufacturing system more than any other, and is often called the “high 

runner” or highest running type.  This part type is processed at 17 CNC operations, each 

connected in series by powered conveyors that move at a rate of four seconds per block 

position.  All of these operations are located directly on the main line. 

The second part type, “B”, is the second product style required by the customer. This part type 

will be produced the least in the manufacturing system, and is often called the “low runner” or 

least running type.  This type is processed through all but one of the CNC operations on the 

main line (the same operations that process part type “A”), in addition to one more processing 

step that is completed on another leg of the process flow, and in an “annex” processing location, 

located in another area of the plant.  Movement for part type “B” is done via the same powered 

conveyor that the “A” type uses, in addition to a batched move to the “annex” location.  This 

batched move is done using a fork truck with full pallets of 18 blocks at a time.  On average, it 

takes three minutes to move a single batch of blocks to and from the annex area. 

Nine off-line buffers, having a total maximum capacity of over 500 blocks, are present 

throughout the line to hold additional parts. The intention of these buffers is to protect the 

system against maintenance downtime and changeovers.  At these locations, parts are 

downloaded and uploaded by robots, and are considered 100% efficient. Both in-line and off-

line buffer types can hold either type of part, and functions on a First In First Out (FIFO) basis.   

Since this system is responsible for the production of two part types, a number of machines 

must undergo a program sequence changeover before production of the new part type can begin.  

Specifically, five machines must undergo fixture and program changes before production of a 

new part type.  These machines are: OP20, OP60, OP90, OP110 and OP150.  

The current batch size of part type “A” to “B” is a 2:1 ratio, having a batched sequence of 2,325 

blocks for part type “A”, followed by a batched sequence of 1,175 blocks for part type “B”. The 

raw blocks castings are delivered weekly to the receiving dock in batch sizes of 2,350 part type 

“A” and 1,200 part type “B”, where they are stored until needed by the machining line. When 
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required, batches of 18 raw blocks are sent to the loading point at OP05, and are loaded onto the 

line by an operator.   

The finished products are collected into batches of 18 at the end of the line, where they are 

taken to a holding area for the customer (external engine assembly).  The facility operates this 

system 11.5 hours per day, five days per week, and produces approximately 175,950 blocks per 

year. 

Prior to the actual simulation modelling of this system, it was conceptualized to determine 

which parts of the real system are important for representation within the model, and discard all 

other items not important to this analysis. It was determined that all processes before OP10 and 

after OP170, operator inefficiencies and behaviors, and the routing patterns of fork trucks will 

not be included, as they are not of importance to the overall focus of this research.  Once the 

system was conceptualized, it was translated into a generalized discrete-event simulation model 

and ran to “verify” that the actual programming logic represents the real system, before the data 

was entered into the model.  It was verified that only “B” part types were sent to the additional 

operations, and that they correctly returned to the main line after processing.  It was also 

checked to ensure that all parts entering the system were accounted for, and were not skipping 

steps in the model through a possible routing error. 

 

4.2 Model Validation  

The collected data, previously fitted into distributions during the data collection stage, was input 

into the model.  Ten simulation runs at 5,000 minutes of warm-up and 100,000 minutes of 

runtime were conducted with different pseudo-random number seeds (PRN) to generate a 

sampling of the results output from the model.  The data was collected from each run and a 

confidence level of the simulation model was calculated with respect to the real system. 

Once the model’s results have been tabulated, a detailed analysis was conducted to validate the 

model.  For a valid the representation, the model must accurately reproduce results that are 

found in the real system.  One of the measures used to test the validity is the application of the 

two sided Student’s t-Test to compare the average throughput of the real system to the average 

of ten collected simulation results [13].  It tests the null hypothesis, Ho, that both averages are 

equal. The results from the ten simulation runs are outlined in Table 2. 

 

𝐻𝑜: 𝑥̅(𝑛) = µ𝑜 

𝐻1: 𝑥̅(𝑛) ≠ µ𝑜 

 

The calculated value of “t” of the Student’s t-Test distribution can be determined using equation 

3. 

 

𝑡𝑜 =  
(x̅ − )  

𝑆
√𝑛

⁄
                                                                                                                                          (3)    

 

If |to |<t(α/2.n-1), the Ho cannot be rejected and the model is valid.  
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Table 2: Throughput results from ten simulation runs 

Trial
Simulated System 

Throughput (JPH)

1 61.06

2 61.26

3 60.93

4 61.39

5 60.96

6 61.88

7 61.24

8 61.16

9 61.08

10 61.11  

 

The real system throughput average () was 61.1 JPH, and the simulation model yielded an 

average throughput (𝑥̅) of 61.2 JPH and a standard deviation (S) of 0.29 JPH.  The calculated to 

value is 1.09. 

Ten sample trials were conducted (n = 10), resulting in nine degrees of freedom (df = 9). The 

two-tailed t-table for (α = 0.05) t0.975,9 is 2.26. 

Since |to |<t0.975.9, we cannot reject Ho at 95% confidence interval.  Therefore, the model is valid 

and the improvement analysis can now be conducted with assurance on result quality. 

Since this research focused on the reduction of unit cost, the unit cost of the current system must 

first be determined.  An interview with the finance department indicated the information, shown 

below: 

 

Cost of Inventory (IC) = $18,340,100 

Cost of Yield Loss (YC) = $1,080,000 

Variable Cost (RC) = $57,141,041 

Fixed Cost (FC) = $100,500,647 

Remaining Life of the system (L) = 5 years 

Baseline yearly throughput (TL) = 175,950 

 

Using the objective function for unit cost determination, it has been found that the cost of each 

block for the current state system is $201.26.  The team agreed that this unit cost is appropriate. 

 

4.3 Calculate the Non-Randomly Influenced Values 

From the information collected from the current system, the deterministic components of 

inventory (system fill, batch move, shift differential and planned downtime) can be determined. 

In this case study for system fill, it is known that each CNC operation can hold one part each.  

Since there are 30 CNC operations and the machines themselves must have a part for 

processing, the system fill will be at least 30 parts.  Additionally, to prevent any machine from a 

starved state after its cycle, one part must be ready and in queue to enter the machine.  

Therefore, there must be at least 30 more parts in this system to be immediately available for 

each machine.  Furthermore, some of the conveyors within this system are longer, and some 

machines are a little faster the others, requiring some conveyors to queue more than one piece. 

The system fill formula shown in Shortt [14], was used to determine which conveyors require 

more pieces than others.  Table 3 shows the breakdown of system fill for each operation.  This 
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system fill is also the critical inventory amount, in that it’s the smallest amount of the inventory 

to maintain steady-state production. 

 

Table 3: System fill results 

Operation # Sta.
Low Net 

(JPH)

Index 

Time (hr)

Conv. 

Cap. (pcs)

Demand 

(JPH)

Transit 

(hr)

System Fill 

(pcs)

OP10 1 75 0.001 20 0 0 3

OP20 1 75 0.001 20 0 0 3

OP30 1 75 0.001 20 0 0 3

OP40 5 75 0.001 20 0 0 7

OP50 1 75 0.001 17 0 0 2

OP60 1 75 0.001 25 0 0 3

OP70 1 75 0.001 30 0 0 4

OP78A 1 75 0.001 4 0 0 1

OP78B 1 75 0.001 3 0 0 1

OP78C 1 75 0.001 3 0 0 1

OP80 1 75 0.001 40 0 0 4

OP90 1 75 0.001 15 0 0 2

OP100 1 75 0.001 13 0 0 2

OP110 1 75 0.001 15 0 0 2

OP120 1 75 0.001 22 0 0 3

OP130 1 75 0.001 24 0 0 3

OP132A 1 75 0.001 5 0 0 1

OP132B 1 75 0.001 5 0 0 1

OP132C 1 75 0.001 5 0 0 1

OP134A 1 75 0.001 5 0 0 1

OP134B 1 75 0.001 5 0 0 1

OP134C 1 75 0.001 5 0 0 1

OP136A 1 75 0.001 10 0 0 2

OP136B 1 75 0.001 10 0 0 2

OP136C 1 75 0.001 10 0 0 2

OP140 1 75 0.001 14 0 0 2

OP142 1 75 0.001 14 0 0 2

OP150 1 75 0.001 10 0 0 2

OP160 8 75 0.001 13 0 0 9

OP170 1 75 0.001 1 0 0 1

Total 75  
 
Next, batched move occurs when a number of blocks are collected before they are moved to the 

next operation.  This system has two batched moves that occur to move the “B” part type to and 

from the “annex” operations.  As indicated in the system description, a fork truck moves 

batches of 18 blocks to and from the “annex” operations and taking 3.5 and 5.5 minutes, 

respectively. 

Knowing the pieces per load size, pieces per unload size and the move time via fork truck, the 

equation shown in Shortt [14] can be used to determine the number of parts required at a 

minimum to keep the “annex” operations in a busy state.  Table 4 shows the inventory 

requirements for this movement. 

 

Table 4: Batched move results 

From To
Load Size 

(pcs)

Unload Size 

(pcs)

Demand Rate 

(JPH)

Transit 

Time (hr) 

Batch    

Move (pcs)

OP130 OP132 18 18 60.2 0.058 22

OP142 OP150 18 18 60.2 0.092 24

Total 45  

 

Inventory due to having different shift schedules is also present in this system.  The finish 

machining operations (OP90 to OP170) run on average four hours longer than the rough 

machining operations (OP10 to OP80). The hours of shift differential, the bottleneck’s 

throughput rate and the frequency in which this shift difference occurs, were used in equation 

described by Shortt [14] to calculate an average inventory build-up due to shift difference. The 

result indicated that this operational procedure caused a net accumulation of 150 parts held 

between OP80 and OP90. 
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The inventory held in the system to protect the production rate from planned downtime, shown 

later in Table 6, can be determined from reviewing the scheduled preventive maintenance tasks 

outlined in the maintenance management database. 

This plant uses MAXIMO as the preventive maintenance task scheduler.  Critical information 

such as the number of cycles between maintenance tasks, and the average duration to complete 

these tasks is recorded in the database.  With this information known, the equation outlined in 

Shortt [14] can be used to determine the amount of inventory required to buffer the system from 

the downtime associated with completing planned maintenance. 

In this system, the planned downtime associated with tool changes is considered negligible 

since most of the tools reside in a tool “magazine” within the CNC, and can be replaced while 

the machine is in operation. 

 

4.4 Statistically Analyze the Randomly Influenced Values 

The categorization of stochastic inventory is difficult to determine in the real system due to the 

combined accumulation of highly variable causes. Therefore, the simulation model must be 

used to dissect the accumulation of inventory resulting from quality control, unplanned 

downtime and customer/supplier variation.  

Parts held for quality control were differentiated from other causes by the application of an 

attribute indicator placed on these parts.  The indicator was statistically monitored by the 

simulation model, and the results showing the quality control related inventory are outlined later 

in Table 6. 

Unplanned downtime is very often the largest contributor of inventory in many manufacturing 

systems.  It is extremely difficult to actively manage this accumulation due to its highly variable 

nature, changing consistently over time.  Large concentrations on one area one day, may not 

necessarily describe the behavior of the entire system over time.  Therefore, simulation will 

used to provide insight in regard to unplanned downtime by running the model over a large 

period of time. 

The unplanned downtime in this system can accumulate parts at nine locations only.  These 

areas have an offline buffer used primarily for throughput protection.  A highly reliable robot 

manages the unloading and loading of these parts, and is considered to have a negligible cycle 

time. Table 5 shows the average accumulation based upon the results of the simulation runs. 

 
Table 5: Average unplanned accumulation results 

Name

Avg. Size 

(pcs)

Buffer_OP10 12

Buffer_OP20 48

Buffer_OP50 41

Buffer_OP80 113

Buffer_OP100 36

Buffer_OP110 12

Buffer_OP120 17

Buffer_OP140 2

Buffer_OP142 10

Total Unplanned Inventory 291  

The inventory profile due to interaction between the weekly supplier delivery and the 

manufacturing system pull is shown in Figure 1.  The “saw tooth” pattern shows that the parts 

were delivered from the supplier at the beginning of the week, and the manufacturing system 

slowly depletes the raw stock to nearly zero. 
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Figure 1: Supplier delivery profile chart 

 

The single-run histogram, shown in Figure 4, indicates that the “saw tooth” profile has an 

average weekly inventory of 1,380 parts. And the high runner, part type “A”, having the larger 

fluctuation with respect to part type “B”.  This makes sense since the average of a full 3,550 

delivery of raw stock on Monday morning to a zero stock condition on Friday afternoon is 

approximately 1,775 parts. 

In order to model the customer pull variation correctly, a random number generator was used in 

the customer entity to allow for a randomized pull of either “A” and “B” parts. The customer 

demands 3,500 total blocks per week in a 2:1 proportion of “A” type blocks to “B” type blocks.  

This equates to 2,325 type “A” and 1,175 type “B” blocks per week. From reviewing historical 

shipping records, it has been determined that the customer pulls weekly, at a normally 

distributed rate having an average of 61.1 blocks per hour and a standard deviation of 4.3.   

Figure 2 shows the customer pull profile for a given simulation run.  Note that part type “A” 

shows a larger range of inventory due to the fact that it is the produced in a greater quantity the 

“B” part type.  The total inventory due to customer/supplier variation is documented in Table 6. 

 

 

Figure 2: Customer pull profile chart 

 

A summary total inventory broken down into each component for the current state system is 

shown in Table 6. 

 

Table 6: Total system inventory 

System Fill 75

Batch Move 45

Shift Pattern 150

Planned Downtime 379

Total Deterministic Inventory 649

Customer/Supplier Average 1530

Unplanned Downtime 291

Quality Control 80

Total Stochastic Inventory 1901

Total System Inventory 2550  
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5. Application of Structured Improvement Process to Engine Block System 

5.1 Action Plan Development 

Once a model is created and validated, outputs of the baseline model are analyzed to identify 

the system’s bottleneck operations and areas of inventory accumulation. A list of  

quantitative improvement action plans in terms of the model’s input variables such as MTTR, 

MCBF, cycle time, scrap rate, changeover time, buffer capacity and batch size are generated.   

These process improvement plans will be individually tested in the simulation model using the 

estimated improvement parameters to determine their effect on the system’s throughput, 

inventory, and unit cost.  All improvement iterations are to be recorded onto a table for 

comparison.  For each improvement plan, Ai = 1,2,3…N, the unit cost will be compared to the 

base model’s unit cost, Co, using a two sided confidence interval for Co – Ci, given by equation 

4 [13]: 

 

(Yo
̅̅ ̅ − Yi̅) ± tα/2,ν,∗ Se(Yo

̅̅ ̅ − Yi̅)                                                                                                       (4)       

 

Where 𝑌𝑜̅ is the sample mean of the baseline system, 𝑌𝑖̅ is the sample mean for ith action, ν is the 

degree of freedom, tα/2,ν is the 100(1-α)% of the standard distribution and Se is the standard error 

for Co-Ci 

If the confidence interval for Co-Ci is completely to the left of zero, then there is strong evidence 

for the hypothesis that: 

 

Co-Ci < 0   Or,   Ci > Co 

 

i.e. the action plan will not reduce the unit cost. 

If the confidence interval for Co-Ci is completely to the right of zero, then there is strong 

evidence for the hypothesis that: 

 

Co-Ci > 0   Or,   Ci < Co 

 

i.e. the action plan will significantly reduce the unit cost. 

If the confidence interval Co-Ci contains zero, then there is no strong evidence that the action 

will reduce the unit cost. 

The action plans which will significantly reduce the unit cost must also satisfy the following 

three constraints to be selected: 

1. Throughput of the improvement must meet or exceed required throughput: T≥Tr 

2. Inventory of the improvement must meet or exceed “critical” inventory: WIP≥WIPC 

3. Fixed cost of the improvement must be less than the budget constraint: CF< B 

Let the improvement plans that significantly reduce the unit cost and meet all the constraints be 

“K” out of “N”. These “K” plans will be documented on the comparison table and sorted in 

ascending order according to unit cost, such that C1< C2< C3…CK. 

In this case study,  action plans were simulated for a total of ten replications each, so that a 

confidence level for each can be calculated.  To determine which action plans are acceptable, 

Co-Ci must be a positive value in accordance to equation 4.  Additionally, in order to be an 

acceptable action plan, it must also not decrease the system’s net throughput to be less than the 

customer demand rate and not reduce the inventory below the critical level and must be within 

the budget allowance. In this research project, the improvement budget was set at $50,000 
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5.2 Action Plan Combination 

Individual plans that have been identified and proven to satisfy all the constraints, each plan 

(A1, A2, A3…AK) on the action list will be tested in combination, such that A1+A2, A1+A2+A3, 

A1+A2+A3…+ AK.  This process will continue until all possible combinations have been tested 

in order to achieve the greatest improvement result, as long as the total improvement cost does 

not exceed the allowed budget.   

Once the best combination of action plans that minimizes the unit cost and yet satisfying the 

given constraints has been found, the team is tasked with the implementation of these items to 

the manufacturing system.  Monitoring of the progressive and final result by the team is 

required to determine the effectiveness of the simulation study. 

Six acceptable action plans were selected based upon the significant level of unit cost 

improvement with $500 left in the budget for an additional low cost improvement.  The idea list 

was reviewed, and a single $370 plan was discovered that allowed for a small, but valuable 

decrease in unit cost. 

After the action plans have been developed and selected to achieve the most savings, the team 

was tasked to implement these plans on the current state system. 

 

6. Calculate the Improved Unit Cost 

After the implementation of the process improvements, the output of the system was observed 

for three months, and the output was documented in order to develop the final unit cost of the 

improved system.  It was found that the system achieves a new net throughput of 64.8 JPH. This 

improvement, which focused on the constraining locations, also slightly reduced the inventory 

found in the system, primarily relating to the improvement of downtime.  As a result, the yield 

losses have somewhat improved since finding quality defects affecting a large stock of parts are 

faintly reduced. 

Variable costs have also decreased to some extent due to this research.  The throughput of the 

original system only allowed for a single mid-week changeover on second shift. Now that the 

throughput is significantly greater, changeovers can now occur during the first shift, saving the 

additional costs of a second shift mid-week changeover.  

The improved results were sent to the finance department, to determine the estimated financial 

impact of the improvements. 

 

Cost of Inventory (IC) = $18,000,000* 

Cost of Yield Loss (YC) = $1,075,000* 

Variable Cost (RC) = $55,000,000* 

Fixed Cost (FC) = $100,500,647 

Remaining Life of the system (L) = 5 years 

Baseline yearly throughput (TL) = 183,149 

*Projected yearly estimates 

 

Using the unit cost formula, shown in equation 3, the improved cost per piece due to 

improvements in throughput and inventory is $190.64. 
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7. Conclusions 

A structured simulation methodology to optimize unit cost on a multi-part manufacturing 

system (engine block) was developed.  The developed methodology contains two distinct 

phases in which the minimization of unit cost can be achieved.  The first phase is the collection 

of pertinent data and the creation of a valid simulation model of the existing system.  The 

second phase was the development, testing and selection of the best combination of process 

improvement plans which most minimize the unit cost without violating the system’s 

constraints, and still being within the budget allotment. 

The current state system yielded a net system throughput of 61.1 JPH and had an average of 

2,550 blocks in the inventory.  As a result, the unit cost for each block using equation 3 was 

$201.26/block 

The use of this structured methodology provided a throughput of 64.8 blocks per hour 

improving the net throughput of the original system by 3.8 NJPH, a 6.1% improvement.  

The CoO calculation indicated a unit cost of the improved system was reduced to 

$190.64/block, or a savings of $10.62 per block.  This produces a total yearly savings of 

$1,945,042/year. 

Much of the inventory held in this system is a direct result of supplier and customer variation.  

Future work will focus on the improvement of these areas of inventory, since most of it is 

needlessly kept, increasing the inventory holding costs, and ultimately keeping the unit costs 

high. 
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