
Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 
Detroit, Michigan, USA, September 23-25, 2016 

An ILP Model for Healthcare Facility Location Problem 
with Long Term Demand 

 
Ruilin Ouyang  

 Department of Mathematics  
Northeastern University 

360 Huntington Ave, Boston, MA 02115, USA 
ouyang.ru@husky.neu.edu 

  
Tasnim Ibn Faiz and Md Noor-E-Alam 

Department of Mechanical and Industrial Engineering  
Northeastern University 

360 Huntington Ave, Boston, MA 02115, USA 
faiz.t@husky.neu.edu, mnalam@neu.edu 

 
Abstract 

 
Facility location decisions is one of the most crucial commitments that manufacturing and service 
industries face to impacts their interaction with the end users or customers. This is a long term decision 
and recourse option is very difficult once the decision has been implemented. By optimally placing the 
facilities considering the probable future expansion in the market, a business entity can gain the 
dominance over its competitors. In the face of rapid urbanization and increasing demand, making facility 
location decision based only on existing demand is not optimal; taking into account possible realization of 
future demand would result in more robust decisions. The present study focuses on developing a 
mathematical model for making optimal decisions regarding healthcare facilities taking into account long 
term demand. It utilizes the concept of grid-based location problems to divide the area of interest into 
discrete cells. The model provides the optimal locations for facilities to be built at present time and the 
potential location of facilities in the future. Finally, the model is programmed with a standard modeling 
language AMPL and solved with the CPLEX solver. Results show that the model is efficient in solving 
small to moderate sized problems. The developed approach can be used by government or relevant 
agencies to make optimal location decisions for healthcare or other service facilities. 
 
Keywords  
Healthcare facility location, Grid-based location problem, Long term location decision. 
 
1. Introduction 
Numerous studies have addressed the facility location problem for both manufacturing and service sectors; many 
algorithms have been developed for determining the optimal numbers and locations for facilities to be built. The 
survey done by Brandeau el al. (1989) provides an overview of the studies focusing on location decision problems 
conducted in the earlier part of the twentieth century. According to the survey, one of the most important inputs for 
the location problem is the demand for the products or services that the facility will provide. But very few of these 
studies have taken into account the future demand of customers or end users, in addition to current or existing 
requirements. In one of these studies, done by Brancolini et al. (2006), asymptotical location problem was 
considered; the authors compared long term and short-term strategies and their effects on location decisions. Their 
study suggested that considering long term demand in making location decisions is beneficial. In a slightly similar 
manner, Fernández at el. (2007) considered a location problem and the price setting in order to maximize profit, in 
which the authors considered long term competition on prices and showed the effect of it on location decisions. 
Chou (2009) proposed an integrated short-term and long term MCDM (multiple-criteria decision-making) Model for 
location problems. It showed the importance of integrating the short and long term evaluation method with 
examples. Kim and Kim (2010) studied long term healthcare facilities problem, which can balance the numbers of 
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patients assigned to each facility; although cost was not considered in the model, which is a limitation of this study. 
Marić et al. (2015) used Hybrid metaheuristic method for long term health-care facility problem that focused on 
minimizing the maximum number of patients assigned to established facilities. Carlo et al. (2012) discussed and 
proposed several approaches for the long term location problem with the objective of minimizing the total cost of 
interacting with a set of existing facilities. Öhman and Lämås (2003) studied the effect of long term location 
planning on harvest activities. In considering the long term demand, a few studies have been done that strived to 
make the optimal location decisions in presence of demand uncertainty. Hosseini and MirHassani (2015) proposed a 
2-stage stochastic location model for refueling station under uncertainty. But the model is too complicated to be 
solved by available solvers. Albareda-Sambola et al. (2013) presented a compact binary formulation for the 
deterministic equivalent model of the problem under uncertainty. Temur (2016) presented a multi-attribute decision 
making approach for location decision under high uncertainty. It showed that location decision is very sensitive to 
the uncertainty. Bai and Liu (2014) examined the influence of uncertain transportation costs and customers’ 
demands on the location decisions.  

Healthcare facility location decision has a significant impact on the effectiveness of a facility to provide reliable and 
safe services to the patients in the long run. Once such decisions have been made and implemented, it is extremely 
difficult and costly to take recourse actions. Therefore, in deriving an optimal solution for the facility location 
problem, considering future demand is required in addition to current demand. To the best of our knowledge, a little 
effort has been made to incorporate future demand in determining optimal healthcare facility locations. Our 
objective of this study is to develop a new integer linear programming (ILP) model for a long term healthcare 
facility location problem. This model will consider both, the present and future demand, i.e. total number of patients 
requires treatment at present and additional number of patients that would require treatment in the future. Therefore, 
for both the present time and the future time horizon, two types of decision variables will be considered. The first 
type of decision variables will provide the optimal locations of facilities to be built, while the second type will 
determine the optimal allocation of patients to the facilities. The objective of the model is to minimize the total cost 
of building and maintaining all the facilities in the considered time horizon, while meeting all the demands. 
 
2. Problem description 
 
In order to formulate a mathematical model for the long term healthcare location problem, a region is considered, 
where the patients are known to be present. The total number of patients can be treated as the demand and their 
locations as the demand location for services. The region of interest can be divided into two-dimensional grids to 
consider the problem as grid-based location problems (Noor-E-Alam et al., 2012), where each cell with the same 
dimension; patients located at a particular grid can be represented by the coordinates of a cell. Cell coordinates (𝑖𝑖, 𝑗𝑗) 
serve as the demand locations, and number of patients present at each cell determines the demand. For each cell 
(𝑖𝑖, 𝑗𝑗), demand is 𝑎𝑎𝑖𝑖𝑖𝑖  during the time interval beginning from time point 𝑎𝑎 to time point 𝑏𝑏, and during the time 
interval 𝑇𝑇′ (beginning from time point 𝑏𝑏 to the end of planning time horizon),  demand is 𝑏𝑏𝑖𝑖𝑖𝑖 . These demands are 
assumed to be determined and will be considered as parameters in our model. To serve the patients, healthcare 
facilities need to be built, for which fixed costs of building facilities (𝑐𝑐) and maintenance cost per unit time (𝑐𝑐′) will 
be incurred. Each facility is capacitated (maximum capacity is 𝐿𝐿), and patients from each cell can only go to the 
facility that is nearest to them. For the facility locations, the same region is considered, divided into two-dimensional 
grids, where cells are indicated by a different set of coordinates (𝑥𝑥,𝑦𝑦). If a facility is to be built at (𝑥𝑥, 𝑦𝑦) at time 
point 𝑎𝑎, the binary variable associated with this decision 𝜌𝜌𝑥𝑥𝑥𝑥 takes a value of 1, and if a patient located at (𝑖𝑖, 𝑗𝑗) goes 
to facility located at (𝑥𝑥,𝑦𝑦) during the time interval beginning from time point 𝑎𝑎 to time point 𝑏𝑏, then the binary 
decision variable 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  takes a value of 1. The corresponding binary decision variables for time point 𝑏𝑏 and time 
interval 𝑇𝑇′, i.e. 𝜌𝜌𝑥𝑥𝑥𝑥′  and γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′  follow the same logic. While making these decisions, capacity restrictions of facilities 
and conditions for allocation of patients to the nearest facilities must be met. The problem is to decide optimal 
numbers and locations for facilities to be built now and in the future, and allocate patients to their nearest facilities. 
The objective is to keep the total cost of building and maintaining the facilities at the minimum level. 
 
3. Location model 
In the following subsections, the assumptions, parameters and variables included in the model are described. Figure 
1 shows the time horizon considered in developing the model. Following that, objective function and the constraints 
of the developed model are presented and explained in detail. 

© IEOM Society International 
841



Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 
Detroit, Michigan, USA, September 23-25, 2016 

3.1 Assumptions 
We have made the following assumptions to simplify our decision problem: 

• All the current patients at each cell go to one facility in the entire planning horizon. 
• All the future  patients estimated at each cell at time point b will also go to a single facility during the time 

interval beginning from time point  𝑏𝑏 to the end of planning time horizon. 
• All the patients will go to the nearest facility for the entire planning time horizon. 
• All the facilities have the same capacity. 
• Cost of maintenance for a facility will remain same in the planning time horizon. 
• Costs of building a facility at time point 𝑎𝑎  is the same as that at time point 𝑏𝑏. 

  

Figure 1: Planning horizon to develop optimization model. 

3.2 Parameters 
𝑇𝑇  total time interval under consideration (from time point 𝑎𝑎 to the end of planning time 

horizon)  
𝑇𝑇′  time interval from time point 𝑏𝑏 to the end of planning time horizon 
𝑎𝑎𝑖𝑖𝑖𝑖   current demand of cell (𝑖𝑖, 𝑗𝑗) (demand during time interval  beginning from time point  𝑎𝑎 

to time point 𝑏𝑏)   
𝑏𝑏𝑖𝑖𝑖𝑖   future demand of cell (𝑖𝑖, 𝑗𝑗)  during time interval 𝑇𝑇′, beginning from time point  𝑏𝑏 to the 

end of planning time horizon 
𝑐𝑐  fixed cost of building a facility 
𝑐𝑐′  cost of maintain one facility per unit time 
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  distance between points (𝑖𝑖, 𝑗𝑗) and (𝑥𝑥, 𝑦𝑦) 
𝐿𝐿  maximum capacity of one facility 
𝑀𝑀  large cost parameter 

3.3 Variables 
𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   if patients from (𝑖𝑖, 𝑗𝑗) go to facility (𝑥𝑥, 𝑦𝑦) during time  interval beginning from time point  𝑎𝑎 

to time point 𝑏𝑏, then 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1, else 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 
𝜌𝜌𝑥𝑥𝑥𝑥    if a facility is built at (𝑥𝑥, 𝑦𝑦) at time point 𝑎𝑎, then 𝜌𝜌𝑥𝑥𝑥𝑥 = 1, else 𝜌𝜌𝑥𝑥𝑥𝑥 = 0 
γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′   if patients from (𝑖𝑖, 𝑗𝑗) go to facility (𝑥𝑥, 𝑦𝑦) during time interval 𝑇𝑇′,then γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′ = 1, else γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′ =

0 
𝜌𝜌𝑥𝑥𝑥𝑥′    if a facility is built at (𝑥𝑥, 𝑦𝑦) at time point 𝑏𝑏, then 𝜌𝜌𝑥𝑥𝑥𝑥′ = 1, else 𝜌𝜌𝑥𝑥𝑥𝑥′ = 0 
 
3.4 ILP model 

With the above assumptions, we have proposed the following ILP model to solve our long term healthcare facility 
location problems: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ��𝜌𝜌𝑥𝑥𝑥𝑥 (𝑐𝑐 + 𝑐𝑐′𝑇𝑇)
𝑦𝑦x

+ ��𝜌𝜌𝑥𝑥𝑥𝑥′  (𝑐𝑐 + 𝑐𝑐′𝑇𝑇′)
𝑦𝑦x

 (1) 

 

𝑻 

𝒂 𝒃 

𝑻′ 
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𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜌𝜌𝑥𝑥𝑥𝑥  (2) 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀(1 − 𝜌𝜌𝑥𝑥𝑥𝑥 )  (3) 

��𝑎𝑎𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝐿𝐿 (4) 

  

��𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑥𝑥

= 1 (5) 

𝜌𝜌𝑥𝑥𝑥𝑥 + 𝜌𝜌𝑥𝑥𝑥𝑥′ ≤ 1  (6) 
γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′ ≤ 𝜌𝜌𝑥𝑥𝑥𝑥 + 𝜌𝜌𝑥𝑥𝑥𝑥′   (7) 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′ ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀(1 − 𝜌𝜌𝑥𝑥𝑥𝑥 −  𝜌𝜌𝑥𝑥𝑥𝑥′ ) (8) 

��𝑏𝑏𝑖𝑖𝑖𝑖γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′

𝑗𝑗𝑖𝑖

≤ 𝐿𝐿 (9) 

��γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′

𝑦𝑦𝑥𝑥

= 1 (10) 

 
The objective function (1) is a cost minimization function that aims to minimize the total cost of building and 
maintaining the facilities. It is assumed that the building cost 𝑐𝑐 is the same at time points 𝑎𝑎 and time 𝑏𝑏. The term 𝑐𝑐′𝑇𝑇 
indicates the maintenance cost of one facilities built at time point 𝑎𝑎  for time length 𝑇𝑇 , whereas the term 𝑐𝑐′𝑇𝑇′ 
indicates the maintenance cost of one facilities setting at time point 𝑏𝑏 for time length 𝑇𝑇′. Constraint (2) describe the 
relation between the variables 𝛾𝛾𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗  and 𝜌𝜌𝑥𝑥𝑥𝑥 , that is a patient from (𝑖𝑖, 𝑗𝑗)  can go to (𝑥𝑥,𝑦𝑦)  during time interval 
beginning from time point  𝑎𝑎 to time point 𝑏𝑏 for service only if a facility is located at (𝑥𝑥, 𝑦𝑦). Constraint (7) specify 
the same relation during time point 𝑏𝑏 to the end of planning horizon between the variables γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′  and 𝜌𝜌𝑥𝑥𝑥𝑥′ . Constraint 
(3) restricts the patients to go only to the nearest facility built at time point 𝑎𝑎. As Figure 2 indicates if there is a 
facility built at (𝑥𝑥,𝑦𝑦) at time point 𝑎𝑎, then for any other point (𝑚𝑚,𝑛𝑛), 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1 if and only if distance 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 
Constraint (8) represents the same relation for facilities and patients for time point 𝑏𝑏. Constraint (4) restricts the total 
number of patients that can go to a facility to the maximum facility capacity for the current time period and 
constraint (9) does the same for future time period. Constraints (5) and (10) restrict the number of facilities that 
patients at each grid cell can visit to one. Constraint (6) specify that at any location there can be at most one facility, 
i.e. if a facility is built at (𝑥𝑥,𝑦𝑦) at time point 𝑎𝑎, then no facility can be built at the same location at time point 𝑏𝑏.  
 
 

 
 

Figure 2: Geometry of distance for three points. 

4. Computational results 
The model is solved on a computer with Intel(R) Core(TM) i5 CPU running at 3.19 GHz with 4 GB memory and a 
64-bit operating system. For implementation, AMPL programming language is used, and CPLEX 12.6.3 solver is 
utilized to solve. Three different instances are solved using the model, e.g. 5 × 5 Grid (Shown in Fig. 3), 5 × 8 Grid 

(𝑖𝑖, 𝑗𝑗) 

(𝑚𝑚,𝑛𝑛) 

(𝑥𝑥, 𝑦𝑦) 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
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(Shown in Fig. 4) and 10 × 10 (Shown in Fig. 5) Grid. In these instances, other parameter are assumed as follows: 
𝑐𝑐 = 𝑐𝑐′ = 10, 𝑇𝑇 = 20, 𝑇𝑇′ = 10, 𝐿𝐿 = 10 and 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �(𝑖𝑖 − 𝑥𝑥)2 + (𝑗𝑗 − 𝑦𝑦)2. For 𝑎𝑎𝑖𝑖𝑖𝑖 , values were randomly generated 
ranging from 0 to 5 and for 𝑏𝑏𝑖𝑖𝑖𝑖 , random values range from 0 to 8. In Figures 3-5, the numbers in each cell before the 
sign ‘/’ specify the demand at time 𝑎𝑎, and the number after the sign ‘/’ indicate the demand at time 𝑏𝑏. The grey grid 
cells represent facilities are built at those locations at time 𝑎𝑎 , while the black grid cells represent building of 
facilities at time 𝑏𝑏. The white gird cells indicate that no facility is required at those locations. 
 

 

 

Figure 3: Demand distribution and result for 5×5 grid. 

 

 

Figure 4: Demand distribution and result for 5×8 grid. 

 

4/6 0/6 1/7 1/4 3/4 

5/6 1/0 5/6 2/3 0/4 

1/3 3/2 5/3 5/6 4/5 

5/5 5/0 2/8 4/6 5/6 

3/1 5/1 4/0 5/1 3/6 

 

4/1 1/4 3/1 4/3 2/7 1/3 4/6 4/2 

5/6 5/1 0/8 0/7 2/5 3/0 1/3 1/3 

1/2 5/2 4/0 1/1 4/3 3/7 3/2 4/7 

5/4 2/7 5/6 0/2 4/4 1/8 3/3 1/0 

3/1 4/1 3/7 0/1 1/3 1/4 4/1 5/0 
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Figure 5: Demand distribution and result for 10×10 grid. 

 
 

Table 1: Runtime statistics. 
Grid 
size 

Number of 
facilities at 

time 𝑎𝑎 

Number of 
facilities at 

time 𝑏𝑏 

CPU time 
(seconds) 

Simplex 
iterations 

Branch and 
bound nodes 

MIP 
Gap 

5×5 9 4 5.834 38360 1388 0.001 
5×8 11 5 281.005 865350 6091 0.001 

10×10 27 16 >36338.577 21005880 27202 0.05 
 
 

Table 1 summarizes the runtimes and other measures that were obtained through solving for these three instances 
using the developed model. From our preliminary experiment we see that our proposed model is capable to identify 
the optimum healthcare facility locations and assigned facilities for the patients located in each grid for a long-term 
planning horizon within a reasonable runtime at least for 5x5 and 5X8 grids. However, when we try to solve larger 
grids, it takes very long time to reach the optimality (after running a 10x10 grid for more than 10 hours, we saw that 
the mipgap was 5%). Therefore, we future plan is to reformulate the problem such that it will be scalable and 
capable to solve large-scale instances. 

 
5. Conclusion 
In this paper, a grid-based integer linear programming model is developed for identifying optimal location of 
healthcare facilities to be built now and in the future. It takes into consideration the long term, i.e. future demand 
realizations in addition to the existing demand. Although this study focuses on the healthcare facilities, this model 
can also be used for a variety of service sectors, for example parks and recreational centers, as well as in placing 
retail stores. The model is scalable up to a degree, but for solving the large instances it takes longer time than we 
expect. To rectify this limitation, future extensions would consider relaxation of some constraints and addition of 
some logical constraints. Furthermore, another extension of the model will consider multiple periods and demands 
as functions of time periods, which will make the model more robust. 

4/1 1/4 3/1 4/3 2/7 1/3 4/6 4/2 2/4 0/7 

5/6 5/1 0/8 0/7 2/5 3/0 1/3 1/3 4/2 0/6 

1/2 5/2 4/0 1/1 4/3 3/7 3/2 4/7 3/6 3/4 

5/4 2/7 5/6 0/2 4/4 1/8 3/3 1/0 3/2 4/3 

3/1 4/1 3/7 0/1 1/3 1/4 4/1 5/0 5/5 5/4 

0/5 1/7 4/7 4/1 2/1 2/4 5/1 2/1 1/1 1/2 

1/2 2/4 4/1 3/7 2/2 5/3 3/8 1/5 4/3 3/4 

3/5 5/8 2/3 2/5 3/1 2/7 1/8 1/6 4/5 2/4 

5/6 5/1 1/2 0/4 4/1 1/3 1/5 2/5 3/6 0/7 

5/6 5/4 1/6 0/1 4/2 1/1 1/0 2/4 3/1 2/6 
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