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Abstract 

Parameters values of evolutionary algorithms have significant effect on the performance of algorithms. 

The process of parameter setting is important and this subject has been investigated in the optimization 

literature using different design of experiment methods, such as the Taguchi method, the full factorial 

design of experiment, the surface response methodology, etc. All mentioned approaches considered only 

the individual response variable, i.e., a performance metric for evaluating algorithm, in finding the 

optimal setting for the parameters. However, there are multiple performance metrics that should be taken 

into consideration when tuning a parameter. In this research, a new approach to tune evolutionary 

algorithms parameters is proposed which simultaneously optimizes all performance metrics of the 

algorithm and provides the optimal setting for the parameters of the algorithm. To show the application of 

the proposed approach, a case study is developed based on a multi-objective optimization problem. The 

developed problem is solved using multi-objective particle swarm optimization algorithm (MOPSO) 

which considers different setting of algorithm parameters, i.e., scenario, using full factorial design of 

experiment. In each scenario, different performance metrics are calculated as response variables. Then, 

the desirability function approaches are applied to provide the optimal setting of the parameters when all 

response variables are optimized.    

 

Keywords 
Algorithm parameter tuning, Desirability function approach, MOPSO, Multi-objective single machine 

 

1. Introduction 

One of the challenging, yet not appropriately investigated, questions in developing an evolutionary algorithm is to 

find the optimal setting of the parameters of the algorithm. This process, which is known as parameter tuning in the 

evolutionary algorithm literature, has always been a challenge in developing a new algorithm as well as application 

of developed algorithm in different optimization problems.  

Evolutionary algorithms or metaheuristic algorithms which mimic the natural processes in the world are general 

framework that can be applied to all optimization problems while other algorithms such as heuristic algorithms are 

problem specific. Each evolutionary algorithm starts with a group of initial solution (or an individual solution) and 

iterates several operations on the solutions until stopping condition is met. Some of the well-known metaheuristic 

algorithms are Genetic Algorithm (Goldberg, 1989), Simulated Annealing (Kirkpatrick et al., 1983), Particle Swarm 

Optimization (Eberhart and Kennedy, 1995), etc. Each of these algorithms are inspired from behavior different 
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phenomena and each of them have its own parameters which needs to be set. For instance, Genetic algorithm and 

Particle Swarm Optimization are population based algorithms, therefore, one needs to set the population size to 

solve the problem at hand. Note that the performance of one algorithm highly depends on the parameters which one 

setting for a problem may not be a proper setting for another problem. Therefore, the parameter tuning should be 

problem specific.  

In the literature, there are few approaches to tune the parameters of different evolutionary algorithms for a single 

objective problems. Akay and Karaboga (2009) investigate the performance of the artificial bee colony algorithm by 

analyzing the effect of control parameters. A comparison of parameter tuning methods for evolutionary algorithm is 

presented by Smit and Eiben (2009) and Eiben et al. (2011). Crawford et al. (2013) applied a particle swarm 

optimization to tune the parameter of a choice function based hyper-heuristic. Simt et al. (2010) applied the 

relevance estimation and value calibration method, called REVAC, to find the good evolutionary algorithm 

parameter values. Iwasaki et al. (2006) proposed a dynamic parameter tuning for the particle swarm optimization 

algorithm. The feasibility and advantages of their proposed adaptive PSO algorithm are verified through numerical 

simulations using some typical global optimization problems. Most of studies heavily rely on the parameter tuning 

of other studies. For instance, Rashidi et al. (2016) proposed Simulated Annealing algorithm to solve locating 

sidewalks and crosswalks in transportation network and used the parameter values suggested by other researchers 

for their algorithm. Therefore, tuning parameters is very important.   

In addition to the parameter tuning of the evolutionary algorithm, different approaches have been also applied in the 

literature to tune the parameter of the machine learning methods. Some can be mentioned as Imbault and Lebart 

(2004), Arcuri and Fraser (2011), Gold et al. (2005), He and Ounis (2003), Kulkarni et al. (2004), and Wang et al. 

2006. There are also some studies such as Taguchi method (Taguchi, 1987) which applied different design of 

experiment methods to tune the parameter of the evolutionary algorithm. Taguchi method has been criticized to be 

inefficient.  

From the reviewed literature, it can be revealed that almost all parameter tuning approaches only consider one 

performance metric of the algorithm and find the optimal setting of the parameters. However, there are multiple 

performance metrics for an evolutionary algorithm to solve a multi-objective optimization problem, such as mean 

ideal distance, spacing, and spread that need to be taken into consideration when the parameters of an algorithm are 

tuning. This necessitates application of multi-response optimization approaches in parameter tuning. In this research, 

we proposed the application of composite desirability function approach, which optimize all performance metrics of 

the algorithm, while providing the optimal setting of the parameters of the algorithm. In this regard, obtaining a 

regression model for each performance metric is required. In the proposed approach, we applied full factorial design 

of experiment to obtain the significant parameters of the algorithm, which play a role in the regression model. 

The rest of this paper is organized as follows. Section 2 is devoted to the developed methodology to find the optimal 

parameters of evolutionary algorithms. Section 3 presents a case study and solving it using Multi-objective Particle 

Swarm Optimization. Also, this section covers the considered performance metrics and parameters of the developed 

evolutionary algorithm. The detail of application of the proposed methodology is covered in this section too. Finally, 

Section 4 presents conclusion and future work.   

2. Proposed methodology 

To obtain the optimal setting of the parameters for the evolutionary algorithm, there are some performance metrics 

for the performance evaluation of the evolutionary algorithm. Each parameter can be considered as a factor, each 

with different predefined levels, and the performance metrics can be considered as response variables. Considering 

all combinations of factor levels, a full factorial design of experiment can be conducted to investigate the effect of 

each factor on response variable, the significant factors, and the approximate regression model for each response 

variable. Details of the full factorial design description and applications can be found in Mobin et al., 2015. Then 

considering each regression model as an objective function, the desirability function approach can be applied to 

optimize all response variables simultaneously, and obtain the optimal setting for all factors. A brief description of 

desirability function approaches is presented as follows.  

Desirability function approach (DFA) is first introduced by Harrington in 1965 and the extended later by Derringer 

and Suich (1980). This method is a search-based optimization method which optimizes multiple response variables, 

individually and simultaneously, to find the optimum input variable settings (Mobin et al., 2016).  

Analysis of multiple response variables includes first creating a mathematical model, known as regression model, 

for each response variable. Then, a set of optimized factors can be obtained which optimizes all responses. Solving 

multi-response optimization problems starts with applying a technique for integrating multiple responses into a 

dimensionless function, called the overall desirability function (D). The approach is to first convert each response 

946



Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 

Detroit, Michigan, USA, September 23-25, 2016 

© IEOM Society International 

(yi) into a dimensionless function, known as individual desirability function (di), that can be between zero and one. 

If the response yi is at its target the most desirable case is obtained (di = 1), otherwise, di = 0 (the least desirable 

case). In the desirability function approach, there is a positive number, known as the weight factor (w), on which the 

shape of the desirability function for each response depends (Mobin et al., 2016). For the sake of simplicity, the 

weights for response variables are considered equal to one.  

The individual desirability functions can be calculated based on the optimization functions, i.e. maximization or 

minimization using Equations (1)-(3). If the target (Ti) for the response yi is a maximum value, the desirability is 

based on Equation (1). If the target is to get the minimum value, the desirability is based on Equation (2). Finally, if 

the target is located between the lower (Li) and upper (Ui) limits, the desirability is based on Equation (3). 

di = {

0                             yi < Li

(
yi−Li

Ti−Li
)
w
             Li ≤ yi ≤ Ti

1                             yi > Ti

  (1) 

di = {

1                             yi < Li

(
Ti−yi

Ti−Li
)
w
             Li ≤ yi ≤ Ti

0                             yi > Ti

  (2) 

di =

{
 
 

 
 

0                            yi < Li

(
yi−Li

Ti−Li
)
w
             Li ≤ yi ≤ Ti

(
Ui−yi

Ui−Li
)
w
             Ti ≤ yi ≤ Ui

0                             yi > Ui

  (3) 

Next, the individual desirability functions can be integrated as overall (composite or aggregated) desirability (D), 

which can be between between 0 and 1. It is the weighted geometric mean of all the previously defined desirability 

functions, calculated by Equation (4), where wi is a comparative scale for weighing each of the resulting di assigned 

to the ith response, and n is the number of responses. The optimal settings are determined to maximize overall 

desirability (D), by applying a reduced gradient algorithm with multiple starting points.  

D = (d1
w1 × d2

w2 × d3
w3 ×…× dn

wn)
1

(w1+w2+w3+⋯+wn) = ∏ di
win

i−1

1

∑ wi
n
i=1   (4) 

More details about the desirability function approach and its applications are presented in (Mobin et al., 2016) in 

which they applied desirability function approach to optimize the multi-response cavitation process.  

3. Application of the proposed approach in a case study  

3.1. Case study description 

In this section, we study tri-objective single machine to minimize makespan, total completion times and total 

tardiness times. In this problem, there is a single machine and N jobs available at time 0 such that all jobs should be 

processed by the machine one at a time. Each job j∈{1,2,…,N} has processing time pj, due date dj and importance 

weight wj. Also, there is a sequence dependent set up time between jobs. Let 𝜋 be sequence of jobs where 𝜋(1) 
represents the job in the first position, then the objectives of sequence 𝜋 can be computed as following. 

C(𝜋(𝑖)) = ∑ (𝑝𝜋(𝑘) +
𝑖
𝑘=1 𝑆𝜋(𝑘),𝜋(𝑘−1))        for    i =1,2,….,N (5) 

T(𝜋(𝑖))=max{ 𝐶(𝜋(𝑖)) − 𝑑(𝜋(𝑖)), 0}        for    i =1,2,….,N (6) 

Eqs. (5) and (6) compute the completion time and tardiness of job in position i of the sequence 𝜋, respectively. Note 

that 𝑆𝜋(𝑘),𝜋(𝑘−1) represents the set up time required to process job 𝜋(𝑘) immediately after job  𝜋(𝑘 − 1). Then, 

makespan of the sequence 𝜋 is: 

𝐶𝑚𝑎𝑥 = 𝐶(𝜋(𝑁)) (7) 

The total weighted completion time (TWC) of the sequence 𝜋 is as following.  

𝑇𝑊𝐶 = ∑ 𝑤𝜋(𝑖)𝐶(𝜋(𝑖))
𝑁
𝑖=1   (8) 

Total weighted tardiness (TWT) of the sequence 𝜋 is as following.  
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𝑇𝑊𝑇 = ∑ 𝑤𝜋(𝑖)𝑇(𝜋(𝑖))
𝑁
𝑖=1   (9) 

Using three-field problem classification α|β|γ of Graham et al. (1979), the addressed problem can be presented as 

1|d,S|(Cmax,TWT,TWC) and it has been that each of the considered objective, for example 1|d,S|TWT, is strongly 

NP-hard, see Lawler (1977). 

3.2 Evolutionary algorithm to solve the case problem 

There are sevral MOEAs to solve the described problem in the periviouse section. MOPSO ,NSGA-II,and NSGA-III 

are the most commenly used algorithm that have been used to solve the MOEAs algorithm (Mobin et al., 2015; Li et 

al., 2016: Tavana et al., 2016). For example, Mobin et al. 2015 applied NSGA-II to optimize themulti-objective X-

bar control chat design. Li et al. (2016) applied NSGA-II to optimize the multi-objective reliability growth plan 

problem. Tavana et al. (2016) applied NSGA-III and MOPSOS to optimize the multi-objective design of economical 

statistical control chart problem. In this research, we apply MOPSO (Coello et al., 2004) to find the Pareto optimal 

frontier. MOPSO is a population-based metahesuristic algorithm inspired from social behaviour of birds. Each bird 

(or particle) represents a solution of the problem. The algorithm starts with initial population of particles which is 

randomly generated. The number of particles (solutions) 𝑁𝑝𝑜𝑝 is one parameter that needs to be set. MOPSO is an 

iterative algorithm, that is, it iterates 𝐼𝑡𝑚𝑎𝑥  times by performing same operations at each iteration.  The location of 

each particle b at each iteration t of the alogrithm is presented by 𝑠𝑏
𝑡  and its velocity is represented by 𝑣𝑏

𝑡 . In this 

paper, the initial position and velocity of each particle 𝑏 = 1,2, … , 𝑁𝑝𝑜𝑝 is generated randomly and then the largest 

rule is applied on the 𝑠𝑏
𝑡  to find the sequnce of jobs.   

Each solution is evaluated based on its objective functions and a set of non-dominated solutions is generated. This 

set is called REP (Coello et al., 2004). The REP has two components; an archive controller and grid. The archive 

controller determines whether a solution can be added to the REP or not, a solution can be added to the REP if it is a 

non-dominated solution compared to the solutions in the REP. The grid controls the well-distribution of the Pareto 

frontier and it is a set of connected hypercubes where each hypercube has some non-dominated solutions.    

In each iteration of the algorithm, each particle moves toward the best location identified so far by itself or toward 

the best position found so far by the swarm. The best position found by the particle itself upto iteration t is presented 

by 𝑝𝐵𝑒𝑠𝑡𝑏
𝑡  and the best position found by the swarm is presented by 𝑔𝐵𝑒𝑠𝑡𝑡 . Usually, 𝑔𝐵𝑒𝑠𝑡𝑡 is randomly selected 

by using a roulette-wheel selection mechanism from a hypercube in the REP with the fewest members.   

The velocity of each particle helps it to move toward the 𝑝𝐵𝑒𝑠𝑡𝑏
𝑡  and 𝑔𝐵𝑒𝑠𝑡𝑡. At each iteration t of the algorithm, 

the velocity of the particle b is updated as following. 

𝑣𝑏
𝑡 = 𝑤𝑡 ∗ 𝑣𝑏

𝑡−1 + 𝐶1 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑏
𝑡 − 𝑠𝑏

𝑡−1) + 𝐶2 ∗ 𝑟2 ∗ (𝑔𝐵𝑒𝑠𝑡
𝑡 − 𝑠𝑏

𝑡−1) (10)  

where 𝑟1 and 𝑟2 random numbers between 0 and 1, and 𝐶1 and 𝐶2 are constants to control the effects of 𝑝𝐵𝑒𝑠𝑡𝑏
𝑡  and 

𝑔𝐵𝑒𝑠𝑡𝑡, respectively. Note that 𝑤𝑡  in Eq. (11), called the inertia weight of the particle 𝑏, controls the effect of the 

particles velocity at the pervious iteration. Shi and Eberhart (1999) and Naka et al. (2001) suggested using linearly 

decreasing weight as presented below.  

𝑤𝑡 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝐼𝑡𝑚𝑎𝑥
∗ 𝑡 (11) 

where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 represent the lower and upper bounds of 𝑤𝑡 . The suggested values for these parameters are 

𝑤𝑚𝑖𝑛 = 0.4 and 𝑤𝑚𝑎𝑥 = 0.9. After updating the velocity of the particle, the new position of the particle is as 

follows. 
𝑠𝑏
𝑡 = 𝑠𝑏

𝑡−1 + 𝑣𝑏
𝑡  (12) 

 

3.3. Performance measurements of the algorithm 

In order to evaluate the performace of MOPSO, several metrics can be used to measure variouse features of the 

algorithm (Tavana et al., 2016). In this study, we consider widely used metrics which are mean ideal distance, 

spacing, and spread.  

The mean ideal distance (MID), proposed by Zitzler (1999), measures the closseness of each solution in the Pareto 

frontier to the ideal point which in this study is (0,0,0). This measure is presented in Eq. (9) where n is the number of 

non-dominated solutions in the Pareto frontier and 𝑓1𝑖, 𝑓2𝑖, and 𝑓3𝑖 represent the first, second, and third objective 

values of the 𝑖th non-dominated solution, respectively: 

𝑀𝐼𝐷 =
1

𝑛
∑ (√𝑓1𝑖 + 𝑓2𝑖 + 𝑓3𝑖)

𝑛

𝑖=1
 

(13) 
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The next perfromance metric, spacing, represents the relative distances of consecutive solutions in the Pareto 

frontier (Akhavan Niaki et al., 2011). Eq. (14) represents this metric where 𝑑𝑖𝑠𝑡𝑖 = min
𝑘∈𝐸Λ𝑘≠𝑖

∑ |𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|𝑀
𝑚=1  and 

𝑑𝑖𝑠𝑡̅̅ ̅̅ ̅ = ∑
𝑑𝑖𝑠𝑡𝑖

𝑛

|𝑛|
𝑖=1 .  

𝑠𝑝 = √
1

|𝑛|
∑ (𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡̅̅ ̅̅ ̅)2
|𝑛|
𝑖=1   

(14) 

Note that If all solutions in the Pareto frontier are equally spread, then the spacing metric wold be equl to zerro. 

The next metric, spread, is proposed by Deb et al. (2002) and mesures the spread of the solutions in the Pareto 

frontier as presented in Eq. (15). 

∆=
∑ 𝑑𝑖𝑠𝑡𝑚

𝑒 +∑ |𝑑𝑖𝑠𝑡𝑖 − 𝑑𝑖𝑠𝑡̅̅ ̅̅ ̅|
|𝐸|
𝑖=1

𝑀
𝑚=1

∑ 𝑑𝑖𝑠𝑡𝑚
𝑒 + |𝐸|𝑑𝑖𝑠𝑡̅̅ ̅̅ ̅𝑀

𝑚=1

 
(15) 

where 𝑑𝑖𝑠𝑡𝑖 is the distance between neighbour solutions,  𝑑𝑖𝑠𝑡̅̅ ̅̅ ̅ is the average distance, 𝑑𝑖𝑠𝑡𝑚
𝑒  is the distance between 

the extrme solution of the problems and and 𝐸 corresponding to the 𝑚th objective function. When the solutions are 

ideally distributed, the spread metric will be zero.  

In this reseach, the described performance metrics for the evalotionary algorithm are considered as response 

variables, which need to be optimized. Table 1 summaries the properties of each response variable.  

Table 1: The response variables (performance evaluation) for the MOPSO parameter tuning experiment 

 R1: MID R2:𝑠𝑝 R3:∆ 

Goal Minimization Minimization Minimization 

Target 0 0 0 

 

3.4. Parameters of the evolutionary algorithm 

As mentioned in Section 3.2, MOPSO has several parameters that need to be set at their optimal level, before the 

MOPSO utilized to solve the multi-objective optimization problem. In this research, we only investigate four 

parameters as presented in Table 2. For the sake of simplicity, we only consider two levels for each factor.  

 

Table 2: The factors (MOPSO parameter) for the MOPSO parameter tuning experiment 

Factors Title Low level High level 

A 𝑁𝑝𝑜𝑝: Number of population 100 200 

B 𝐼𝑡𝑚𝑎𝑥 : Max. iteration of algorithm 100 200 

C 𝐶1: Control parameter of  𝑝𝐵𝑒𝑠𝑡𝑏
𝑡  1 2 

D 𝐶2: Control parameter of  𝑔𝐵𝑒𝑠𝑡𝑏
𝑡  1 2 

 

3.3. Experimental design and results 

In order to investigate the best parameter setting of MOPSO algorithm, we conducted a full factorial design of 

experiment presented by Mobin et al. (2015) and Aboutaleb et al. (2016). Considering 4 factors each with two 

levels, there are 16 treatment combinations in this experiment. The MOPSO is coded in Matlab 2014Ra and run for 

a problem with 50 jobs which is considerably large size instances and it is convincing that if the performance of the 

algorithm is good in this configuration, it will perform well in other problems with different sizes. It should be 

mentioned that in the future investigation of the proposed tuning approach, the developed case problems can be 

solved using other evolutionary algorithms such as NSGA-II (Li et al., 2016), NSGA-III (Tavana et al. 2016), ant 

colony algorithm (Vafadarnikjoo et al., 2015), imperialist competitive algorithm (Borghei et al., 2015), and general 

variable neighborhood search algorithm (Komaki et al, 2015).   

The following table presents the metrics for each parameter setting. Note that for each parameter setting, MOPSO is 

run 30 times and average of each metric is presented in the Table 3.    
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Table 3: Factors combinations and response variables 

 Factors (algorithm parameters)  Response variables 

 A B C D  R1 R2 R3 

Run 1 100 100 1 1  929.6198 130.4420 0.427543 

Run 2 200 100 1 1  947.9585 195.2630 0.349748 

Run 3 100 200 1 1  870.1583 129.1685 0.408271 

Run 4 100 100 2 1  872.9819 0.103935 0.406325 

Run 5 100 100 1 2  1042.207 278.8177 0.326788 

Run 6 200 200 1 1  724.0536 172.4374 0.478954 

Run 7 200 100 2 1  880.3909 156.6711 0.495372 

Run 8 200 100 1 2  863.4142 307.2580 0.523566 

Run 9 100 200 1 2  977.3852 332.8447 0.504895 

Run 10 100 200 2 1  1039.147 70.12113 0.354510 

Run 11 100 100 2 2  1023.136 235.6880 0.284067 

Run 12 200 200 2 1  802.6965 145.6140 0.413133 

Run 13 200 200 1 2  855.5707 303.4513 0.455522 

Run 14 200 100 2 2  958.9864 300.2676 0.371968 

Run 15 100 200 2 2  1015.849 184.0285 0.341144 

Run 16 200 200 2 2  893.6353 322.6226 0.378348 

  

3.4. Application of the proposed parameter tuning method in the case study problem 

3.4.1. Full factorial design of experiment to investigate the significant factors 

In this section. First full factorial design of experiment is conducted to see which factors are significant, and if they 

are significant, how they affect the response variable. The other objective of applying full factorial design of 

experiment is to find the estimated regression model for each response variable. In this regard, the effect of factors 

on each response variable is investigated individually. The results are summarized as follows. 

First, the first response variable is investigated. Among all factors and their interactions, only factor A, B, C, D, and 

the AB interaction are obtained to be significant using full factorial design of experiment. The regression model for 

R1 is presented as: R1 = 753 + 0.480 A + 1.110 B + 34.6 C + 70.4 D - 0.01023 A*B. The main and interaction plots 

are presented as Figure 1 (a and b). According to Figure 1 (a), all main factors are significant; while Figure 1 (b) 

represents that only the interaction between factor A and B is significant. 

 

 
1(a): The main effect plots for R1 1(b): The interaction plots for R1 

Figure 1: The main and interaction plots for the first response variable 
 

As it is presented in Figure 2, investigating the effect of factors on the second response variable reveals that only 

factor A, C, D, and AC are significant. The regression model for R2 which only includes the significant factor is 

obtained as: R2 = 131.2 - 0.552 A - 177.4 C + 158.1 D + 0.820 A*C. The main effect and interaction plots for the 

second response variable are presented in Figure 2. It should be mentioned that for the sake of simplicity, only 

significant factors and interactions are considered in creating plots in Figure 2. 
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2(a): The main effect plots for R2 2(b): The interaction plots for R2 

Figure 2: The main and interaction plots for the second response variable 

 

According to Figure 3, considering the third response variable as the response variable in the full factorial design of 

experiment shows that only main factors are significant. In this case, the regression model for R3 only includes 

factors A, B, C, and D. The regression model for R3 is presented as: 3 = 0.410 + 0.000516 A + 0.000187 B - 0.0538 

C - 0.0184 D. Since there is no significant interactions, only main factors are significant which are presented in 

Figure 3. 

 
Figure 3: The main effect plot for the third response variable 

 

It should be mentioned that in all investigations, the assumption of full factorial design of experiment are tested and 

the results show no violation of the assumptions.   

The summary of result obtained from the full factorial design of experiment is presented in Table 4. 

Table 4: Summary of FFT results considering response variable individually 

Responses 

Factors 
Significant 

factors 
Recommended level 

A B C D 

R1 200 200 1 1 A, B, C, D, A*B 

R2 100 - 2 1 A, C, D, A*C 

R3 100 100 2 2 A, B, C, D 

 

3.4.2. Desirability function approach to find the optimal setting of the factors 

Considering the regression model obtained from full factorial design of experiment as the objective function, the 

individual and composite desirability function approaches are used to find the optimal setting of each factor. First, 

individual desirability function approach is used and each response variable is optimized individually. The result are 

presented in Figure 4, in which the optimal setting of the factors are presented considering the optimal response 

variables. The summary of results obtained from individual desirability function approach is presented in Table 5. 

 
4(a): considering first response variable as objective function 
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4(b): considering second response variable as objective function 

 
4(c): considering third response variable as objective function 

Figure 4: Individual desirability function results for optimizing each response 

 

Table 5: Results of individual desirability function  

Response 
Optimal Solution Predicted 

Response 

desirability 

value A B C D 

R1 200 200 1 1 724.054 0.3052 

R2 100 - 2 1 43.4131 0.8695 

R3 100 100 2 2 0.33623 0.3578 

  

After considering each response variable as an objective function individually, all response variables are optimized 

using desirability function approach, when three response variables are considered as objective functions 

simultaneously. Results are presented in Figure 5, in which the optimal settings of the factors are presented while all 

response variables are optimized simultaneously.  

As it is presented in Tables 4, 5, and 6, comparing the results obtained from the full factorial design of experiment, 

individual desirability function approach, and composite desirability function approach shows that although 

optimizing each response variable individually will provide the better result for each response variable, but the 

optimal parameter setting would be different when each response variable is optimized individually. For example, 

considering the first response variable as objective function the optimal setting for factors A, B, C, and D are 

obtained as 200, 200, 1, and 1, respectively; but when response variable 3 is considered as a response variable, the 

optimal settings are different. Considering all response variable as objective functions simultaneously in the 

composite desirability function method, will generate one general setting for all parameters of the algorithm and will 

lead to an optimal value of all response variables.    
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Figure 4: Composite desirability function approach for multi responses optimization results 

  

The summary of result obtained from the composite desirability function approach is presented in Table 6. 

Table 6: Results of composite desirability function 

 Factors   

A B C D Predicted 

Response 

Desirability 

value 

R1 

100 100 2 1 

872.982 

0.68842 R2 43.4131 

R3 0.354677 

 

4. Conclusion 
The paper proposed a methodology to tune the parameters of the multi-objective evolutionary algorithms based on 

desirability function. To validate the proposed methodology, it is applied on a case study which was a tri-objective 

single machine scheduling to minimize makespan, total weighted tardiness, and total weighted completion times. 

Multi-objective particle swarm optimization applied to solve the problem. In order to tune the parameters of the 

algorithm, the proposed methodology applied.  First, a full factorial design of experiment is applied to find the 

approximate regression model for each response variable. The regression model only includes the significant 

parameters of the algorithm which affect the performance of the algorithm. Then, using the regression model as 

objective function, the composite desirability function approach is utilized to find the optimal setting of the 

parameters of the algorithm, while all response variables, i.e., performance metrics of the algorithm, are optimized. 

For future research, the proposed method can be applied in different multi-objective optimization problem, when 

different evolutionary algorithms are applied. In addition, considering weights for each performance metric of the 

algorithm can be considered as another interesting extension to this research.   
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