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Abstract 

Advanced liver cirrhosis has become life-threatening among the non-communicable diseases nowadays. 
Cirrhosis, the terminal stage of liver diseases in which the liver develops scarring as a result of various 
long-term continuous damages. In this paper, we develop a mathematical model to study the dynamics of 
chronic liver cirrhosis which can be controlled by vaccination as well as treatment. We formulate a five 
compartmental mathematical model of liver cirrhosis in terms of a set of nonlinear ordinary differential 
equations (ODEs) based on the characteristics of disease transmission by introducing two control 
measures. We formulate this model based on the optimal control theory using Pontryagin’s Maximum 
Principle. For this, two types of controls such as vaccination and treatment according to underlying causes 
are employed to control the disease or to prevent people from being infected by liver cirrhosis. Finally, 
Numerical simulations are performed to illustrate the results. We observe that the optimal combination of 
two controls must be taken into consideration in order to reduce the liver cirrhosis transmission among 
the population. 
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1. Introduction

Liver cirrhosis has become a major health problem worldwide as it leads to 1.34 million deaths every year (WHO, 
2017). There is a large body of work to develop mathematical models and optimal control policies of infectious 
diseases. Biswas, 2014 (see also Biswas et al. 2014) investigated and analyzed the treatment of most devastating 
infectious diseases independently in which mathematical modeling and optimal control strategy was the key tool. 
Vaccination and treatment can control hepatitis B (HBV) virus infection which is also presented by formulating a 
mathematical model and applying optimal control strategy (Kamyad et al., 2014). Kumar et al. (2017) also 
presented a mathematical model showing that in a liver cirrhosis patient when hematocrit increases then blood 
pressure drops. In short, hematocrit is inversely proportional to blood pressure drop. Wang et al. (2017) formulated a 
computational model on the basis of hepatic circulation with the help of mathematical modeling to analyze the 
sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis. We refer readers the references within for 
more details on liver cirrhosis and some recent developments on mathematical modeling and control strategy. 

In this paper, we develop a mathematical model to study the dynamics of chronic liver cirrhosis which can be 
controlled by vaccination as well as treatment. We consider two controls for the prevention and minimization of the 
disease. We determine the basic reproduction number and study the existence and stability of the disease free and 
endemic equilibrium points of the model. Finally numerical simulations are performed to show the effectiveness of 
vaccinations and proper treatment to control the chronic liver cirrhosis. The main aim of this work is to minimize the 
infection of liver cirrhosis and also the cost of vaccinations and treatment. 
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2. Mathematical Model of Liver Cirrhosis 
 
In the basic model, we assume that the population size is fixed ( )N t  and the incubation period of the infectious 
agent is slowest. There are five compartments in the fundamental assumption of the compartmental model. The 
individuals who are not affected by infections like hepatitis B virus (HBV), hepatitis C virus (HCV) or by any kind 
of liver diseases. But they are prone to become affected by these infections or diseases. These populations are 
denoted by ( )S t

 
in the model. The disease transmission progress plays an important role in the dynamics of the 

diseases. For most of the non-communicable diseases, there are always different ranges of the incubation period. The 
non-communicable disease liver cirrhosis is developed from long term progression of viral diseases, alcoholic 
disease, fatty liver disease or other liver diseases which were not diagnosed before in the body. These diseases have 
a development period within the liver of the body. This incubation period of the diseases usually ranges from 
approximately 10 to 15 years. So considering this we create another compartment called exposed population denoted 
by ( )E t . Here ( )E t is the number of infected individuals that are not infectious at time t. There are also some 

individuals ( )I t  who are affected by infections (hepatitis B or hepatitis C), having fatty liver/ alcoholic liver or 
affected by any kind of liver diseases and can transmit any time. When these infections and diseases remain 
undiagnosed for a long time, they become horrible. Long-time progression of these infections and diseases leads to 
cause liver cirrhosis. Now we consider the population ( )CL t  who are affected by liver cirrhosis. The populations 

who are recovered and immunized from liver cirrhosis is denoted by ( )R t . Then taking all the situation into 
consideration, the liver cirrhosis model can be formulated by the following system of nonlinear ordinary differential 
equations:  

0( )c
dS r I L S S
dt

α σ µ= − + −
         

( )1a
 

0( )c
dE I L S E E
dt

α σ µ β= + − −
         

( )1b
 

0 ( )dI E I I
dt

β µ µ γ= − − +
          

( )1c
 

( )0
c

c
dL

I p I L
dt

µ γ µ δ ε= + − + +
         

( )1d
 

0c
dR L I R p I
dt

δ γ µ γ= + − −          ( )1e  

with the boundary conditions 
 
( ) ( ) ( ) ( ) ( )0 0 0 0 00 0, 0 0, 0 0, 0 0, 0 0c cS S E I I I L L R R= ≥ = ≥ = ≥ = ≥ = ≥ . 

 
3. Analysis of the Model 
 
The nonlinear system of equations (1) has qualitatively analyzed in this section so as to find the stability of a disease 
free equilibrium point and endemic equilibrium point. At first we find the positivity of the solutions then stability of 
the equilibrium points and basic reproduction number 0R . The basic reproduction ratio is important because it tells 
us if a disease will persist or extinct. 
 
3.1. Positivity of the Solutions 
 
We will show that the entire variables in the model (1) are positive. 
Lemma 1: If ( ) 0,S t > ( ) 0,E t ≥ ( ) 0,I t ≥ ( ) 0,CL t ≥ and ( ) 0R t ≥ , then the solutions ( ) ( )( ), , ( ), , ( )CS t E t I t L t R t  of 
the model (1) are all positive. 
 
Proof: To prove the Lemma 1, we have used the model (1).  
From equation (1a), we get 
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0( )c
dS r I L S S
dt

α σ µ= − + −          ( )2  

To find the positivity of equation (2), we have                                           

0
dS S r
dt

µ⇒ + ≥            ( )3  

The integrating factor of (3)  
0 0.
dt tI F e e

µ µ∫= =    
Multiplying 0teµ on both sides of (3), we get 

0 0( )t td Se re
dt

µ µ⇒ ≥           ( )4  

Integrating (4), we get                                                                              
0

0

0

t
t reSe c

µ
µ

µ
≥ +                                                                                              

0

0

trS ce µ

µ
−∴ ≥ +    ( )5  

where c   is an integrating constant. Then putting the value of c into (5), we get 

0

0 0

(0) tr rS S e µ

µ µ
− 

≥ + − 
 

 

Hence 0S >  at 0t =  and t →∞ . Therefore 0S >  for all 0t ≥  
Similarly we can find the positivity of ,E , CI L and R  under the initial conditions. 
Therefore, it is proved that ( )( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0CS t E t I t L t R t t> ≥ ≥ ≥ ≥ ∀ ≥

 
 
3.2. Equilibria (Disease Free and Endemic Equilibrium Point) Analysis 
 
An equilibrium point of a system with no infections or diseases is called disease free equilibrium point. For the 

disease free equilibrium point of the model (1), we have to solve 0cdLdS dE dI dR
dt dt dt dt dt

∗∗ ∗ ∗ ∗

= = = = = . Now the 

model (1) takes the following form 
0( ) 0cr I L S Sα σ µ∗ ∗ ∗ ∗− + − =      ( )6  

0( ) 0cI L S E Eα σ µ β∗ ∗ ∗ ∗ ∗+ − − =  ( )7  

0 ( ) 0E I Iβ µ µ γ∗ ∗ ∗− − + =  ( )8  

( )0 0cI p I Lµ γ µ δ ε∗ ∗ ∗+ − + + =  ( )9  

0 0cL I R p Iδ γ µ γ∗ ∗ ∗ ∗+ − − =  ( )10  
For disease free equilibrium, we obtain 

, 00, 0, 0c RE I L == = =  because there is no infections. Now putting the values in equation (6), we get 

0

rS
µ

∗ =  

The disease free equilibrium point of the model (1) is 
0

( , , , , ) ,0,0,0,0c
rE S E I L R E
µ

∗ ∗ ∗ ∗ ∗  
=  

    
 

and the endemic equilibrium point is * * *( , , , , )cS E I L R∗ ∗ . 
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where 1 3 4

3 1 2

S
ϕ ϕ ϕ

αβϕ αβϕ ϕ σ
∗ =

+
, 1 3

0
4 3 1 2

rE
ϕ ϕ

µ
ϕ αβϕ αβϕ ϕ σ

∗  
= −  + 

, 1 3
0

1 4 3 1 2

rI
ϕ ϕβ µ

ϕ ϕ αβϕ αβϕ ϕ σ
∗    = −  +   

, 

1 32
0

1 3 4 3 1 2
c

rL
ϕ ϕβϕ

µ
ϕ ϕ ϕ αβϕ αβϕ ϕ σ

∗    = −  +   
and 2 3 3 1 3

0
0 1 3 4 3 1 2

1 p rR
βδϕ µβϕ γβϕ ϕ ϕ

µ
µ ϕ ϕ ϕ αβϕ αβϕ ϕ σ

∗     + −  = −    +     
. 

 
 
3.3. Basic Reproduction Ratio 0R  
 
The basic reproduction number is defined as the secondary infections produced by one primary infection in a wholly 
susceptible population. It is a key epidemiological quantity, because it determines the size and duration of 
epidemics. Here the iF  is the gains to infectious compartments, V  is the losses from infectious compartments. 
The associated matrix is given by 

0
0 0 0
0 0 0

S S
F

α ασ 
 =  
 
 

 and 
4

1

2 3

0 0
0

0
V

ϕ
β ϕ

ϕ ϕ

 
 = − 
 − 

 

At the disease free equilibrium point we have, 

0 0

0

0 0 0
0 0 0

r r

F

α ασ
µ µ

 
 
 
 =
 
 
 
 

 

Therefore, ( )1 1V Adj V
V

− = ×  

1 3
1

3 4 3
1 3 4

2 4 2 1 4

0 0
1 0V

ϕ ϕ
βϕ ϕ ϕ

ϕ ϕ ϕ
βϕ ϕ ϕ ϕ ϕ

−

 
 =  
  

 

        
2

4 1 0 1 3 4 1 0 1 3 0 3 0
1 0 0 0

0 0 0

r r r r

G FV

αβσϕαβ α ασβ ασ
ϕ ϕ µ ϕ ϕ ϕ ϕ µ ϕ ϕ µ ϕ µ

−

 + + 
 
 = =
 
 
         

( )11

 
The characteristic equation is 0G Iλ− =  

2

4 1 0 1 3 4 1 0 1 3 0 3 0

22

4 1 0 1 3 4 0

0 0 0
0 0

0

r r r r

r

αβσϕαβ α ασβ ασλ
ϕ ϕ µ ϕ ϕ ϕ ϕ µ ϕ ϕ µ ϕ µ

λ
λ

αβσϕαβ λ λ
ϕ ϕ µ ϕ ϕ ϕ µ

 + − + 
 
 − =
 − 
  

 
⇒ + − = 

 

 

2

4 1 0 1 3 4

, 0, 0r αβσϕαβλ
ϕ ϕ µ ϕ ϕ ϕ

∴ = +          ( )12  
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Equation (12) follows that the basic reproduction number which is given by the largest eigen value for the model 

system of equations (1) is 2
0

4 1 0 1 3 4

rR αβσϕαβ
ϕ ϕ µ ϕ ϕ ϕ

= +
 

 
3.4. Stability Analysis at Disease Free and Endemic Equilibrium Point 
 
We perform stability analysis at disease free and endemic equilibrium point by establishing Theorem 1 and Theorem 
2. 
Theorem 1: The disease free equilibrium point is locally asymptotically stable if 0 1R <  and unstable if 0 1R > . 

Proof: The Jacobian matrix of model (1) at the disease free equilibrium point 
0

,0,0,0,0rE
µ

 
 
 

 

is given by 

( )

0
0 0

4
0 0

1

2 3

0

0 0

0 0

0 0 0
0 0 0
0 0 1 0

r r

r r
J

p

α ασµ
µ µ
α ασϕ
µ µ

β ϕ
ϕ ϕ

γ µ

 − − − 
 
 

− 
=  
 −
 

− 
 − −          

( )13

 
The matrix is 5 5×  matrix and the characteristic equation for eigenvalue λ  is given by 0J Iλ− =  

( )

0
0 0

4
0 0

1

2 3

0

0 0

0 0
0

0 0 0
0 0 0
0 0 0

r r

r r

p

α ασµ λ
µ µ
α ασϕ λ
µ µ

β ϕ λ
ϕ ϕ λ
µ γ µ λ

 − − − − 
 
 

− − 
= 

 − −
 

− − 
 − − −        

( )14

 
 

( )( )( ){ }2
0 4 1 0 1 2 0b b bµ λ ϕ λ ϕ λ λ λ⇒ + + + + + =  

where 0 1 0b = >  

          
1

0

3 2
2 3 0 0

3

0

(1 )

rb

r
b R

α β
µ

αβ ϕ αβσϕ
ϕ β µ

ϕ

= >

 +
= − +  

 

 

The three eigen values are ( ) ( )1 2 3 0 1 4, , , ,λ λ λ µ ϕ ϕ= − − −  
Using Routh-Hurwitz criterion we see that the disease free equilibrium point is locally asymptotically stable if 

0 1R <  and unstable if 0 1R > . 
 
Theorem 2: The endemic equilibrium point is locally asymptotically stable if 0 1R >  and unstable if 0 1R < . 
 
Proof: In the similar way we prove that the endemic equilibrium point is locally asymptotically stable if 0 1R >  and 
unstable if 0 1R < . 
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4. Mathematical Model of Liver Cirrhosis with Optimal Control

We consider two controls in the previous model as vaccination ( )1u and antiviral treatment control ( )2u . Then the
optimal control becomes the following form 

( ) ( ) ( ) ( )2 2
1 2 1 2

0

Minimize ( , )
2 2

T

c
A BJ u u S t L t u t u t dt = + + + 

 ∫ ( )15  

where A and B are the weight parameters. These constants A and B respectively represent the costs associated with 
vaccination of susceptible and treatment of liver cirrhosis populations.  
Subject to  

( ) 0 1c
dS r I L S S u S
dt

α σ µ= − + − − ( )16a

( ) 0c
dE I L S E E
dt

α σ µ β= + − −  ( )16b  

( )0
dI E I I
dt

β µ µ γ= − − + ( )16c  

( )0 2
c

c
dL

I p I L u S
dt

µ γ µ δ ε= + − + + − ( )16d

0 1 2c
dR L R I p I u S u S
dt

δ µ γ γ= − + − + + ( )16e

with the conditions, ( ) ( ) ( ) ( ) ( )0 0 0 0 00 0, 0 , 0 0, 0, 0 0c cS S E E I I L t L R R= ≥ = = ≥ = ≥ = ≥  
The Hamiltonian of the optimal control model is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
51 2 2, , , , , , ,1 22 1

H t S t E t I t L t R t S t L t Au Bu g t x t u tc c i ii
λ= + + + + ∑

=
( )17

The optimality conditions are 1 1 5
1

0H Au S S
u

λ λ∂
= − + =

∂
 and 2 5 4

2
0c c

H Bu L L
u

λ λ∂
= + − =

∂
 

Applying Pontryagin’s Maximum Principle we have the following theorem and proving Theorem 3, we show the 
existence of controls. 
Theorem 3:  There exists optimal control ( )1 2,u u∗ ∗  that minimizes the objective function J   over Ω  given by 

( )1 5
1 max 0,min 1,

S
u

A
λ λ ∗

∗
  −  =      

and ( )4 5
2 max 0, min 1, cL

u
B

λ λ ∗
∗

  −  =      
. 

5. Numerical Analysis

In this section, we have performed numerical simulations of liver cirrhosis transmission model (1) which has 
discussed in the previous section. We use a set of logical parameter values presented in Table 1.  

The model system has been simulated using ODE45 solvers written in MATLAB programming language. We have 
again performed numerical simulations of the optimal control model (16) to observe the optimal behaviours of the 
model. Graphical results are displayed using the following values: 5.54, 0.835, 0.5,S E I= = = 0.65,cL = 0.2R = . 
In Table 1 we present a description of all the parameters with their estimated values used in all our simulations. The 
results obtained from the equations (1) using the values in Table 1 are presented in Figures 1, 2 and 3. We also 
perform numerical simulations of the optimal control model (16) and the simulations are presented in Figure 4. 
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Table 1. Parameter specifications of model (1) and (16) 
Descriptions Parameters Values 

Source term of susceptible population r  0.0121 
Natural death rate of population 

0µ  0.95 

Transmission rate α  0.16 
Infectiousness of liver cirrhosis relative to acute infections σ  0.00693 

Rate of moving from exposed to acute β  
6 (per year) 

Disease induced death rate ε  0.3 
Rate of moving from infections to recover µ  0.25 

Rate of moving from infection to liver cirrhosis γ  4 (per year) 

Recovered rate from liver cirrhosis δ  0.03 
Rate of moving from recover to liver cirrhosis carriers p  0.25 

 

 
Figure 1. Variation of the infected population for different values of β . 

 

 
Figure 2. Variation of the liver cirrhosis population for different values of .α  
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Figure 1 shows the variation of the infected population with time 20 years for different parameter values of the 
model (1). Here we observe that the infected population decreases more rapidly than before as the infection rate β  
increases. Figure 2 shows the variation of the cirrhotic population with time 20 years for different parameter values 
of the model (1). Here we observe that the liver cirrhosis population increases as the transmission rate α  increases.  
 

 
Figure 3. Variation of recovered populations for different values of acute infection rate β . 

 
Figure 3 shows the variation of the recovered populations with time 20 years for different parameter values of the 
model (1). Here we observe that the liver cirrhosis population increases as the transmission rate β  increases.  

 

 
Figure 4. The dynamic behavior of populations using vaccination ( )1u and treatment ( )2u  as optimal control measures. 
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From Figure 4, we observe the effects of control measure (vaccination and treatment) on the susceptible, infected, 
liver cirrhosis and recovered population for 20 years timeline. It has been noticed that, the control measure slightly 
influences the susceptible population, but significantly controls the infected, liver cirrhosis and recovered 
population. As expected, both the infected and liver cirrhosis population has increased in the absence of vaccination 
and treatment than the population with having the control measure. On the contrary, the number of recovered 
population increases when vaccination and treatment control is applied compared to the population without optimal 
control.    

6. Conclusions

Liver cirrhosis is a major cause of illness and death worldwide. It affects millions of patients all over the world. 
Liver cirrhosis occurs throughout the world irrespective of age, sex, region and race. It is time to get rid of this fatal 
disease. Investigating the model (1) and optimal control model (16), we can conclude that the combination of 
vaccination and treatment control for the population will be more effective way of controlling liver cirrhosis. 
Finally, our model help to identify the causes of liver cirrhosis and control them accordingly and thus can contribute 
to the public health worldwide. 
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