Study of Inhibitory Efficacy of Natural Extract of Opuntia Ficus Indica as Green Inhibitor for Corrosion of Mild Steel in Drilling Water

Oulabbas Amel¹², Meddah Soumaya¹, Achouri Sihem¹, Tlili Samira¹, Ramoul Chems Eddine¹, Remichi Nasser¹

¹ Research Center In industrial technologies CRTI P.O.Box 64, Cheraga 16014 Algiers, Algeria
²University Badji Mokhtar Bp 12-2300, Laboratory of surface engineering (L.I.S), Annaba, Algeria
ameloulabbas@hotmail.com
a.oulabbas@crti.dz

Abstract

The purpose of this study is to evaluate the anti-corrosive effect of natural extract of Opuntia Ficus Indica (O.F.I) for X60 mild steel in drilling water environment used in petroleum engineering. Experimental work has been achieved by weight loss, potentiodynamic polarization and EIS measurement, as well as SEM surface characterization. Among the results obtained, we can mention an inhibitory efficiency of 90% by gravimetric method and 80% by electrochemical method at 20% (v/v) of O.F.I. Moreover, The O.F.I extract acts as a mixed inhibitor; however, adsorption free enthalpy indicates a physisorption. The adsorption obeys the Langmuir isotherm model. These results have been improved by SEM micrographs.

Keywords:
Corrosion, mild steel, green inhibitor, Opuntia Ficus Indica and Electrochemical Impedance spectroscopy.

Biographies

Oulabbas Amel Research master, actually in research center of industrial technologies, Algiers, Algeria. She obtained her engineering degree, her Master's degree and her Ph.D. in physic-chemical and materials at Badji Mokhtar University, Annaba, Algeria. His research focuses on the corrosion science and electrochemical study of materials.

Meddah Soumaya is a research master in the physical metallurgy team, Material Properties Division, at research center of industrial technologies, Algiers, Algeria. She obtained her engineering degree, her Master's degree and her Ph.D. in metallurgy and materials engineering at Badji Mokhtar University, Annaba, Algeria. His research focuses on the characterization of materials (ferrous and nonferrous), tribology (friction, lubrication and wear), and corrosion of materials.