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 Abstract 

 
In this paper, an alternative approach is proposed to deal with the inventory positioning problem in a supply chain 
network. In particular, the problem is modelled as a mixed integer programming model. In this model, the locations 
and amount of stock at each location are decision variables, while the total holding inventory cost is the objective 
function. The optimal solution for such a model can be obtained by using a commercial. The applicability of the 
proposed method, especially the mathematical model, is validated by a few numerical experiments. The results 
indicates that our approach is suitable for various types of supply chain networks and the optimal solutions for these 
networks are easily obtained via a commercial solver. 
 
Keywords  
Inventory placement; base stock policy; stochastic demand; mixed-integer programming. 
 
1. Introduction 
In a highly competitive market of today, matching supply with demand is of great concern for supply chain 
managers/practioners. Since uncertainty always exists in both demand and supply, mismatches between them are 
unavoidable. Therefore, the management often relies on inventory, especially safety stock, as a buffer for these 
mismatches. With the supply chain network growing more complex, optimizing safety inventory at a location in the 
network become an ineffective practice. As a result, modern supply chain management is interested in effectively 
managing the safety inventory at not one location but across multiple locations in a supply chain network. This 
management issue is known as the inventory positioning (IP) problem and is a main research topic for many researchers. 

According to Simchi-Levi et al. (2008), a typical IP problem is concerned with the stocking locations and the amount 
of safety inventory at each location within a supply chain network. These concerns are initially addressed in the study 
of Simpson (1958). The author develops a model, from which the level of safety stocks in a serial supply chain are 
analytically determined. As a result, Simpson’s (1958) model becomes the foundation, based on which several models 
are developed to deal with IP problem under various supply chain settings. For instance, Graves (1988) incorporates 
multiple products and production flexibility in an analytical model for a single-stage supply chain. Following Simpson 
(1958) and Graves (1988), Graves and Willems (2000) construct a safety stock placement model for a spanning tree 
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supply chain network. Since the model is a non-linear optimization, the authors provide a solution algorithm based on 
dynamic programing. The model of Graves and Willems (2000) is extended to accommodate different aspect in supply 
chain network, e.g., new products (Graves & Willems, 2005), clusters of commonalities (Humair & Willems, 2006), 
adaptive inventory policy (Bossert & Willems, 2007), nonstationary demand (Graves & Willems, 2008; Neale, & 
Willems, 2009), dual sourcing (Klosterhalfen et al., 2014), and capacity constraints (Graves & Schoenmeyr, 2016).  

From the literature, it is observed that IP problems are extensively explored in many research articles. However, most 
of these studies often employs non-linear modelling approach. This results in a non-linear optimization model. To solve 
such a model, a dynamic programming algorithm, developed by Graves and Willems (2000), are adopted. However, 
this algorithm is quite computational extensive. In addition, the solution obtained from the algorithm is not guaranteed 
to be optimal as elaborated in the study of Magnanti et al. (2006). In fact, the authors demonstrates that by including a 
set of redundant constraints and repetitively refining the approximation of the total cost function, a medium-size IP 
problems can be solved to optimality. Inspired by the study of Magnanti et al. (2006), this research proposes an 
alternative approach to model an IP problem as a mixed-integer linear programming (MIP) model. The solution for this 
MIP model can be easily obtained by using a commercial solver. The applicability of our approach, particularly the 
MIP model, is demonstrated via a numerical experiment. 

The remainder of this paper is organized as follows. The problem statement is provided in Section 2. The problem 
modeling is presented in Section 3. Numerical experiments for validation are illustrated and discussed in Section 4. 
Conclusions are made in Section 5. 
 
2. Problem Statement 
In this reaserch, a supply chain network is modeled as a graph, including vertices and arcs. Each vertex (or node) 
represents a stage (or facility) while each arc represents the flow of materials (raw material, component, work-in-process 
or subassembly, and finished goods) from one stage to another. An example graph for a supply chain network is 
illustrated in the following figure. 
   

 
 

Figure 1. Illustration of a supply chain 
 

In Figure 1, the supply chain contains three stages, in which there are two internal stages (dark nodes) and one external 
stage (grey node). Internal stages are eligible for holding inventory, while that is not allowed for the external stage. 
There are two types of inventories, i.e., finished goods and raw materials. They are illustrated by dark and gray buckets, 
which are placed before and after a stage, respectively. In addition, it is assumed that each internal manages its inventory 
by using a base stock policy (Simpson, 1958; Grave & Williems, 2000). 
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In such a supply chain, customer orders are received at Stage 1 and immediately sent to other stages, i.e., 2 and 3, 
respectively. Therefore, each stage can determine the demand of its downstream customers. The customer demand (or 
order quantity) experienced by Stage 1 is assumed to be bounded and normally distributed with a mean 𝜇𝜇 and standard 
deviation 𝜎𝜎. The bounded part of the demand is determined by  𝜇𝜇 + 𝑘𝑘𝑘𝑘, where 𝑘𝑘 is the safety factor for a given cycle 
service level (Simpson, 1958). For the unbounded part of the customer demand, it is presumed to be satisfied by 
extraordinary measures, such expediting, subcontracting, or over-time. It is worth to note that 𝑘𝑘𝑘𝑘 is the primary concern 
of an inventory positioning problem because the average demand 𝜇𝜇  is covered by cycle inventory. Therefore, the 
“bounded demand” is simply referred to 𝑘𝑘𝑘𝑘 in the rest of this paper. 
 
For every order received, each stage quotes a service time to its immediate downstream stages/customers. The service 
time from an internal stage can be adjusted while that from an external stage are fixed and given. In addition to service 
time, each stage has a constant processing time, during which an order is prepared.  This processing time is independent 
of the order quantity. Moreover, there occurs a transportation time between two stages if they are in different 
geographical locations. In case that a stage is supplied by multiple upstream stages, it must wait for all items arrive 
before it can start preparing its orders. 
 
3. Mathematical Model 
With a network structure and operational characteristics as described in previous section, the inventory positioning for 
such a supply chain is modelled as a mixed-integer programming model. The following notations are used in the 
development of the model. 
 
Sets:  
𝐼𝐼: set of internal stages in the supply chain network; 

𝐸𝐸: set of external stages in the supply chain network; 

𝑁𝑁: set of nodes that represent supply chain stages, and node 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁; 

𝑀𝑀: set of options for length of net replenishment time, 𝑀𝑀 = {1, 2, 3, … }; 
 
Parameters:  
𝜑𝜑𝑖𝑖: Product value at stage 𝑖𝑖; 

𝐴𝐴𝑖𝑖𝑖𝑖: Binary parameter, which takes a value of 1 if there is an arc that goes from stage 𝑖𝑖 to stage 𝑗𝑗, 0 otherwise; 

𝑇𝑇𝑖𝑖𝑗𝑗: Transit time from stage 𝑖𝑖 to stage j, which can take any values if there is an arc that goes from stage 𝑖𝑖 to stage 𝑗𝑗; 

𝐵𝐵𝑖𝑖: Binary parameter, which takes a value of 1 if stage 𝑖𝑖 is an internal stage, 0 if stage 𝑗𝑗 is an external stage; 

𝑉𝑉𝑖𝑖: Quoted service time of external stage 𝑖𝑖, which takes a value of 0 if stage 𝑖𝑖 is an internal stage; 

𝑃𝑃𝑖𝑖: Processing time of stage 𝑖𝑖, which can take any values if stage 𝑖𝑖 is an external stage; 

𝐻𝐻𝑖𝑖 = ℎ × 𝜑𝜑𝑖𝑖: Inventory holding cost per unit per year of the finished part coming out of stage 𝑖𝑖; 

𝑅𝑅: Service time committed to the end customers; and 

𝑄𝑄𝑚𝑚: Bounded demand during the replenishment time of 𝑚𝑚 periods; 
 
Decision variables: 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖: Incoming service time of stage 𝑖𝑖 ; 

𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜: Outgoing service time of stage 𝑖𝑖; 

𝑥𝑥𝑖𝑖+: Net replenishment time of finished goods at stage 𝑖𝑖; 

𝑥𝑥𝑖𝑖−: Time allowance for processing finished goods at stage 𝑖𝑖; 

𝑥𝑥𝑖𝑖𝑖𝑖: Binary variable, which takes a value of 1 if net replenishment time of finished part at stage 𝑖𝑖 is 𝑚𝑚 periods, or 0 
otherwise. When 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, it means that the finished goods inventory is kept at stage 𝑖𝑖. 
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𝑦𝑦𝑖𝑖𝑖𝑖+: Net replenishment time of finished goods coming out of stage 𝑖𝑖. The finished goods is held as raw material inventory 
for stage 𝑗𝑗; 

𝑦𝑦𝑖𝑖𝑖𝑖−: Time allowance for replenishing finished goods coming from stage 𝑖𝑖. The finished goods is held as raw material 
inventory for stage 𝑗𝑗; 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖: Binary variable, which takes a value of 1 if net replenishment time of finished goods, coming from stage 𝑖𝑖 and 
held as raw material inventory at stage 𝑗𝑗, is 𝑚𝑚 periods, or  0  otherwise. 
 
Objective Function of the Model: 
In this model, the total inventory cost, including holding cost of raw material and finished goods, are considered as the 
objective function. It is formulated as follows. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = � 𝐻𝐻𝑖𝑖 � 𝑥𝑥𝑖𝑖𝑖𝑖𝑄𝑄𝑚𝑚
𝑚𝑚∈𝑀𝑀𝑖𝑖∈𝑁𝑁:𝐵𝐵𝑖𝑖=1

 + � 𝐻𝐻𝑖𝑖
𝑖𝑖,𝑗𝑗∈𝑁𝑁:𝐴𝐴𝑖𝑖𝑖𝑖=1

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑄𝑄𝑚𝑚
𝑚𝑚∈𝑀𝑀

   

 
Constraints: 
Sets of constraints are presented as follows: 

• Incoming service time: All internal stages without predecessor must have a zero incoming service time.  
 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 0     for 𝑖𝑖 ∈ 𝑁𝑁, 𝐵𝐵𝑖𝑖 = 1, and ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 = 0𝑗𝑗∈𝑁𝑁   

• Outgoing service time: Each stage must have an outgoing service time that is above its corresponding quoted 
service time.   

𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝑉𝑉𝑖𝑖   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ∈ 𝑁𝑁  

• Net replenishment time and time allowance for having raw material kept as inventory. 
𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖+ − 𝑦𝑦𝑖𝑖𝑖𝑖−    for 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 1  

• Net replenishment time and time allowance for having finished goods kept as inventory.  
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑖𝑖+ − 𝑥𝑥𝑖𝑖−   for 𝑖𝑖 ∈ 𝑁𝑁, and 𝐵𝐵𝑖𝑖 = 1  

• Outgoing service time for customer: service time chosen by the stage receiving customer orders must not 
exceed the service time committed to them.  

𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑅𝑅     for 𝑖𝑖 ∈ 𝑁𝑁, and ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 = 0𝑗𝑗∈𝑁𝑁   

• Correspondence between net replenishment time and the option of net replenishment time that is selected. 
𝑥𝑥𝑖𝑖𝑖𝑖+ = ∑ 𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚∈𝑀𝑀        for 𝑖𝑖 ∈ 𝑁𝑁, and 𝐵𝐵𝑖𝑖 = 1  

𝑦𝑦𝑖𝑖𝑖𝑖+ = ∑ 𝑚𝑚𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∈𝑀𝑀       for 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 1  

• One option of net replenishment time is selected for each inventory type at a stage. 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚∈𝑀𝑀 ≤ 1            for 𝑖𝑖 ∈ 𝑁𝑁, and 𝐵𝐵𝑖𝑖 = 1   

∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚∈𝑀𝑀  ≤   1        for 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 1  

• Non-negativity 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜, 𝑥𝑥𝑖𝑖+, 𝑥𝑥𝑖𝑖− ≥ 0      for 𝑖𝑖 ∈ 𝑁𝑁                  

𝑦𝑦𝑖𝑖𝑖𝑖+, 𝑦𝑦𝑖𝑖𝑖𝑖− ≥ 0      for 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 1  
            

4. Numerical experiments 
In this section, the applicability of the model developed in the previous section is validated by using two supply chain 
networks. They are illustrated in Figures 2 and 3, respectively. Most of the important information of the supply chain 
networks, i.e., transportation time 𝑇𝑇𝑖𝑖𝑖𝑖(the value on an arc), product value 𝜑𝜑𝑖𝑖(the value in parenthesis under a stage’s 
name), processing time 𝑃𝑃𝑖𝑖(the value under each retangular shape representing a stage), service time quoted by a stage 
𝑉𝑉𝑖𝑖 or 𝑅𝑅 (the value in the box), is included in these illustrations. 
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Figure 2. Illustration of an assembly supply chain 
 
The supply chain in Figure 2 is known as an assembly network, where a downstream internal stage, i.e., Stage 1, is 
supplied by two upstream external ones, i.e., Stages 2 and 3. In this network, there are two possible locations for 
holding inventory, either before or after Stage 1. In addition, two types of inventories can be kept in storage. They 
include the finished goods from Stage 1(in the bucket on the arc linking Stage 1 to the End customer), raw material 
from either Stage 2 (in the bucket on the arc linking Stage 2 to Stage 1) or Stage 3 (in the bucket on the arc linking 
Stage 3 to Stage 1). The holding costs for these inventories are fractions of their corresponding values. For example, 
if the raw material from Stage 2 is held as stock before Stage 1, its holding cost is a fraction of $100 because it is 
considered as the product of Stage 2. 

 

 
 

Figure 3. Illustration of a serial supply chain 
 

Similar to the above figure, Figure 3 illustrates a serial supply chain, in which one stage is supplied by another. In 
such a network, the places for keeping inventory are located before and after each internal stage. In addition, two 
types of inventories, i.e., finished goods and material, are considered for placement. The holding costs for these 
inventories are interpreted the same as in the case of assembly network. For parameters other than those included in 
Figures 2 and 3, they are presented in the following table.   

Table 1. Parameters for supply chain networks 

 
Parameter Description 

Holding cost at each stage 𝑖𝑖 (𝐻𝐻𝑖𝑖) ℎ × 𝜑𝜑𝑖𝑖 , where ℎ = 20% 

Customer demand  Normally distributed with 𝜇𝜇 = 11.76 and 𝜎𝜎 = 11.91 

Bounded demand during the 𝑚𝑚 periods 
(𝑄𝑄𝑚𝑚) 

𝑄𝑄𝑚𝑚 = 𝑘𝑘𝑘𝑘√𝑚𝑚, where 𝑘𝑘 = 1.65 (safety factor for a service level of 
95%), 𝑚𝑚 ∈ 𝑀𝑀 

 
From Table 1, it should be noted that the upper bound for the set of replenishment options 𝑀𝑀 depends on the structure 
of the supply chain. Specifically, the upper bound of 𝑀𝑀 is 55 days for the assembly network in Figure 2 and 56 days 
for the serial network in Figure 3. 
 
By using the above data with the model in Section 3, the inventory positing solution for each supply chain network is 
obtained through IBM Ilog Cplex optimization suite. The results are presented in Figures 3 and 4.  
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Figure 4.  Inventory placement for assembly supply chain 
 

In Figure 3, it is observed that to accommodate a short service time quoted to a customer, i.e., 2 periods, and a relatively 
long service time quoted by one of the suppliers, i.e., 37 periods, inventory should be held in both locations of Stage 
1, i.e., before and after. Particularly, 71 units of finished goods (the bucket after Stage 1), 116 units of raw material 
from Stage 2 (the bucket on the arc between Stages 1 and 2), and 124 units of raw material from Stage 3 (the bucket 
on the arc between Stages 1 and 3) are kept as inventory. This placement of inventory results in a total inventory cost 
of $5721.35, including $3106.88 for finished goods and $2614.47 for raw material.  
 

 
 

Figure 5. Inventory placement for serial supply chain 
 
A similar interpretation is applied for the results in Figure 5. Among eligible stocking locations in the serial supply 
chain, two are selected for holding inventory, i.e., before and after Stage 2. Specifically, 62 units of finished goods 
and 109 units of raw material are held as inventory. This leads to a total inventory cost of $1565.72, of which, $1238.60 
is for finished goods and $327.12 for raw material. 
 
5. Conclusion  
In this paper, an alternative approach for modelling a supply chain inventory positioning (IP) problem is introduced. 
Conventionally, the problem is formulated as non-linear mathematical model. Solving this type of model involves the 
development of complex algorithm. The implementation of such an algorithm is also a challenge. As an attempt to 
overcome this difficulty, the IP problem is constructed as mixed-integer linear programming model. The solution for 
this kind model is obtained by using a commercial solver. Indeed, this is demonstrated by a numerical study, in which 
the inventory position problem is solved for an assembly and a serial supply chain. In addition to illustrating the ease 
of having an optimal solution, the numerical study highlights the flexibility of our approach to model different 
structures of a supply chain network. As a result, the outcome of this research is served as the groundwork for future 
studies, including the consideration of uncertainty in processing and transportation, or an experiment with non-normal 
distributions for customer demand. 
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