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Abstract 
 
The century old problem of configuring n queens on a chessboard so that none of them attack one another, 
known as the “n-queens problem”, has been studied intensively by researchers, along with many variants. 
To this day, the problem stands as a prominent example for backtracking search methods. Its demonstration 
of constraint satisfaction, as well as systematic and heuristic search methods, highlights its utility in fields 
such as artificial intelligence (AI) and program development.  This paper focuses on a contemporary variant, 
the “mod 2 n-queens problem”, recently proposed by Brown and Ladha. This paper uses graph theory to 
solve some of the open problems Brown and Ladha posed. 
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1. Introduction  
The Mod 2 n-Queens Game 
The n-queens problem is a challenge to place n queens on a n × n chessboard so that none of these queens attack one 
another. Noon describes this problem as a two-player game, where players successively place queens on a n × n board 
so that none attack each other (Noon 2002). The “mod 2 n-queens game”, rooted in the ideas of the n-queens game, 
was introduced by Brown and Ladha (Brown and Ladha 2019): on a n × n board, a queen can only be placed on a 
square if there are an even number of queens attacking that square, and a queen cannot be placed on a square if there 
are an odd number of queens attacking the square. These squares are respectively defined as open and closed squares. 
With a square taking on a value of the number of queens attacking it, these rules translate mathematically in terms of 
modulo 2: any square with an even integer value would be congruent to 0 mod 2, and any with an odd integer value 
would be congruent to 1 mod 2. In a mod 2 n-queens game, two players take turns placing queens, either cooperatively 
to fill the board, or competitively until queens can no longer be placed.  

To briefly compare the n-queens game to the mod 2 n-queens game, we see that a maximum of n queens can be placed 
in the n-queens game on a n × n board when n = 1 or n ≥ 4, whereas a total of n2 queens can be placed in the mod 2 n-
queens game on a n × n board for all positive odd integers n. Figure 1 compares the squares that are left open after a 
placement of five queens on a 5 × 5 board in the n-queens game and the mod 2 n-queens game. To generalize, more 
squares are opened for the placement of queens in the mod 2 n-queens game, and the bound on the maximum number 
of queens that can be placed is thus increased.  

In addition, the order of the placement of queens is relevant to the mod 2 n-queens game, but not to the n-queens 
game. This logic stands as the parity of the board changes with every queen placed. These slight, but notable 
differences between the two games poses many more questions and ideas for exploration in the mod 2 n-queens game. 

There are several of which Brown and Ladha call game states encompassed within the mod 2 n-queens game for an 
arrangement of queens on a n × n board. Rather than developing strategies to win the mod 2 n-queens game, this paper 
focuses on these game states which we treat as problems within the mod 2 n-queens game. Specifically, we explore 
complete and locked boards for a n × n board. Configurations found in these game states can provide a basis for future 
studies that hope to define a winning strategy in the mod 2 n-queens game.  
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Figure 1: Left: A maximum of 5 queens placed on a 5 × 5 board in the n-queens game. Right: Squares highlighted in 
green indicate open squares after the same placement of 5 queens on a 5 × 5 board in the mod 2 n-queens game. 

Definitions & Terminology 
Most of the terminology used to describe the mod 2 n-queens game in this paper is shared with those previously 
defined by Brown and Ladha.  

A board is said to be complete if all n2 squares are filled with queens. A locked board is one that has fewer than n2 
queens, but no more legal moves remain.  

In order to describe placements, squares on the n × n board will be indexed by ordered pairs (i,j), where 1 ≤ i ≤ n 
indicates rows numbered from top to bottom, and 1 ≤ j ≤ n indicates columns numbered from left to right. Diagonals 
running in the left to right and bottom to top direction are described when the sum of the indices of each square is k 
for some integer 1 ≤ k ≤ 2n, whereas diagonals running in the right to left and top to bottom direction are described 
when the difference of the indices of each square is k for some integer −(n − 1) ≤ k ≤ n − 1. We call these the k-sum 
diagonal and the k-difference diagonal, respectively. We also call the (n + 1)-sum diagonal the main sum diagonal, 
and the 0-difference diagonal the main difference diagonal.  

Motivation for Mod 2 n-Queens Research  
Currently, the n-queens problem is one that can be solved using a constraint programming approach that utilizes 
propagation and backtracking (The N-queens Problem 2020). As the mod 2 n-queens game is an extension of the    n-
queens game, researching the mod 2 n-queens game gives us more insight into solving constraint satisfaction problems 
using systematic and heuristic search techniques, which is ultimately useful in the fields of artificial intelligence (AI) 
and program development. 

Our Results  
This paper proves two open problems posed in Brown and Ladha’s exploration of the mod 2 n-queens game.  

In the complete game state, Brown and Ladha (Brown and Ladha 2019) proved that a total of n2 queens cannot be 
achieved on n × n boards in which n is an even positive integer. We present our own distinctive proof on the same 
proposition using a graphical representation of the mod 2 n-queens game.  

Brown and Ladha (Brown and Ladha 2019) conjecture that on such a board, there exists a legal placement of n2 – 2 
queens. We build upon the construction steps Brown and Ladha had outlined for the placement of n2 queens on a     n 
× n board in the odd case and present a proof for the placement of n2 – 2 queens on any even-sized n × n board.  

We also present a proof for the placement of n2 – 2 queens being the maximally locked position for any even-sized  n 
× n board, thus answering Brown and Ladha’s question of whether a total of n2 – 2 queens is the maximum number 
of queens which can be placed on an even-sized n × n board. 
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2. Literature Review 
Brown and Ladha’s Results on The Mod 2 n-Queens Game  
Brown and Ladha’s study of the mod 2 n-queens game describes some basic and important results. A number of these 
results are relevant to this paper as the same concepts and ideas previously uncovered can be applied to the open 
problems we are concerned with.  
 
In Brown and Ladha’s (Brown and Ladha 2019) exploration of complete boards, they proved that the maximum 
number of n2 queens is achievable through legal play, but only for boards of odd sizes. For even-sized boards, Brown 
and Ladha (Brown and Ladha 2019) inductively proved that a complete solution of n2 queens cannot be achieved 
through legal gameplay. 
 

 
Figure 2: A 5 × 5 board with queens placed in the top two rows and leftmost two columns. 

 
Brown and Ladha (Brown and Ladha 2019) describes the idea of first filling the top two rows and leftmost two columns 
to achieve an unfilled (n – 2) × (n – 2) board in the lower right corner. Critically, each unfilled square is attacked by 
an even number of queens. Each square is attacked vertically, horizontally, and along the difference diagonal by 
exactly two queens on each line.  Squares on the main sum diagonal or to the left of it are attacked by four more 
queens on the sum diagonal, and squares on the n + 2 sum diagonal are attacked by exactly two more queens. All other 
squares are attacked by zero more queens. Overall, all the squares on this (n – 2) × (n – 2) board can be observed to 
be open squares. From this observation, Brown and Ladha state that gameplay on the board shown in Figure 2 is 
correspondent to gameplay on the (n – 2) × (n – 2) board with no queens and that they can inductively proceed to a  1 
× 1 board in the lower right corner. The 1 × 1 board can then be filled with a queen to achieve a n2 queens on a n × n 
board where n is an odd positive integer.  
 
A sequence of legal moves is presented by Brown and Ladha (Brown and Ladha 2019) to show that it is indeed 
possible to achieve the configuration of queens as shown in Figure 3.   
 

 
Figure 3: Left: First eight queens are placed. Right: Next eight queens are placed to fill the top two rows and 

leftmost two columns for a 5 × 5 board. 
 
The process outlined in Figure 3 is repeated on the (n – 2) × (n – 2) board until the board is reduced to the last unfilled 
square in the lower right corner which can then be filled with a queen. Brown and Ladha’s process for filling in the 
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top two rows and leftmost two columns become an idea that this paper reuses in proving that an even-sized n × n board 
can always be filled with n2 – 2 queens.  
 
We now move on to briefly describe Brown and Ladha’s exploration of the locked game state, and its relevance to 
this paper. Brown and Ladha’s results on configurations in the locked game state provides a deeper understanding and 
insight into unanswered questions regarding locked states.  In the mod 2 n-queens game, locked states are explored 
for strategic purposes; players want to avoid these positions themselves while leading their opponent into them.  
 
Immediately, we note that n × n boards with n = 1, 2, or 3 can be simply locked with the placement of one queen; 
however, when n > 3, this rule cannot be enforced any further. Similar to their explorations with the complete game 
state, Brown and Ladha separate their exploration of locked boards into even and odd states and provide a consistent 
method that can be used to lock each.  
 

 
Figure 4: Left: A locked 5 × 5 board. Right: A locked 4 × 4 board. 

 
Indeed, the placement of queens for an odd board as shown in Figure 4, described as the set {(1, i),(i, 1)|1 ≤ i ≤ n}, 
locks the board. Brown and Ladha’s (Brown and Ladha 2019) proof for this follows similarly to the previously 
discussed case in the complete state, with each unfilled square being attacked by an odd number of queens, hence, 
closed. The same reasoning is applied for the placement of queens for an even-sized n × n board, described as the set                       
{(1, i),(i, 1)|2 ≤ i ≤ n − 1} ∪ {(n, n)} when n > 2. Once these configurations satisfy the condition of locking the odd 
and even boards, it is critical that it is possible to reach these configurations through a set of legal moves.  
 

 
Figure 5: A sequence for the placement of queens to reach a locked state for the 3 × 3 board. 

 
To extend the gameplay as shown in Figure 5 to odd boards of larger dimensions, the strategy is to repeat the first four 
moves: first in the two adjacent unfilled squares in the top row, then in the two adjacent unfilled squares in the leftmost 
column until the locked state is reached. For even boards, the same first four steps and strategy as in the odd case is 
followed until the last step, where the last queen will be placed in the lower right corner instead.  
With Brown and Ladha’s technique for locking boards with even and odd parity, there is now an upper bound on 
number of queens required to lock boards. However, their paper goes on to ask if fewer queens can lock boards of 
larger sizes, and the minimum number of queens needed to lock a n × n board. 
 
Queen Graphs 
The placement of queens on a board can be represented through means of a graph, and we call such a graph a “Queen 
Graph” (Weisstein 2021b). Figure 2 presents some simple queen graphs for 2 × n boards of various sizes. For a m × n 
board, we can have the queen graph Qm,n with mn vertices, where each vertex represents a square on the m × n board. 
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Edges are drawn between vertices that attack each other through a queen’s move, and vertices joined by an edge are 
said to be adjacent. The degree of a vertex is the number of edges going into that vertex.  
 
 

 
Figure 6: Queen graphs for 2 × n boards of various sizes. Source: “Queen Graph” from Wolfram MathWorld. [8] 

 
In this paper, we also look at induced subgraphs within a general queen graph. For such induced subgraphs, we only 
use vertices to represent placed queens on a board, and we draw edges between vertices when two queens attack each 
other. 
 
Domination in Queen Graphs 
Domination numbers and sets have been previously studied in various queen placement problems. The queen’s 
domination problem is one that asks for the minimum number of queens that can be placed on a board so that all the 
squares on a board are covered. Proposed in 1862 by de Jaenisch (de Jaenisch 1862), the queen’s domination problem 
was one of the first known problems to consider domination. In the queen’s domination problem, configurations are 
be said to be non-attacking if placed queens do not attack one another.  
 
In the queen’s domination problem, we say that a vertex dominates itself and any adjacent vertices (Burchett 2005). 
A queen graph, Q, is said to be dominated by a subset of vertices, S, if any vertex in Q is dominated by a vertex in S. 
The minimum number of queens needed to dominate a given n × n board, which we denote as γ(Qn), is known as the 
domination number of the queen graph (Burchett 2005). A dominating set is the subset of vertices, S, within the 
larger set of vertices in a graph with every vertex not in S adjacent to at least one of the vertices within S (Bray and 
Weisstein 2021). 
 
In a standard, 8 × 8 chessboard, it has been proven that γ(Q8) = 5. Much progress has been made on this problem, 
with Rouse Ball (Burger et al. 1994) presenting minimum dominating sets for n ≤ 8 in Qn in 1892, followed by Ahrens 
(Ahrens 1910), who in 1910 provided minimum dominating sets of Qn for 9 ≤ n ≤ 13 and n = 17.  
 
As the idea of domination in queens placement problems have been previously proposed and studied, it makes sense 
to apply the same basic ideas of domination numbers and sets in graph theory to the defined queen graph for the mod 
2 n-queens game. In this way, finding the domination number is equivalent to answering a question about locking the 
board with the smallest number of queens. The minimum domination set can provide an idea of how to place such 
queens. Algorithms have been developed to attempt at finding such domination numbers and sets in graphs, but with 
the queen’s domination problem classified as NP-complete, it becomes impractical to rely on computer searches and 
algorithms.  
 
Independence in Queen Graphs 
In the n-queens problem, the idea of independence applies when trying to find the maximum number of queens that 
can be placed on a n × n board such that no two queens attack each other. In 1979, this problem has already been 
answered by Madachy (Madachy 1979): n − 1 queens can be placed when n = 2, 3, and n queens can be placed for all 
other values of n. In 1874, Pauls (Pauls 1874) appears to have provided the earliest proof that a placement of n queens 
can always be achieved on a n × n board in the n-queens problem. Following Pauls, various other authors have 
published their own distinct proof to the same problem.  
 
An independent vertex set of a queen graph, Q, is a subset of the vertices in which no two vertices in the subset is 
connected by an edge. We call the cardinality of the largest independent vertex set the independence number 
(Weisstein 2021a). In the mod 2 n-queens game, we can look for the largest independent vertex set as well as the 
independence number to describe the maximum number of queens that can be placed on a n × n board. For a n × n 
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board where n is an odd positive integer, Brown and Ladha have already found the independence number to be n2; 
however, the question of the independence number remained for n × n boards of even sizes. In this paper, we find that 
this independence number turns out to be n2 – 2 and describe how to achieve the largest independent set. 
 
3. Methods  
This paper uses the concepts of ‘Queen Graphs’, as well as domination and independence in queen graphs to prove 
several open questions proposed by Brown and Ladha. 
 
4. Results and Discussion 
Placement of n2 − 2 Queens on Even-sized Boards 
We have seen Brown and Ladha’s (Brown and Ladha 2019) proof of being able to place n2 queens on a n × n board 
where n is an odd positive integer and how it is impossible to achieve the same results when n is an even positive 
integer. Brown and Ladha (Brown and Ladha 2019) then proposed that n2 − 2 queens can be legally placed on a n × n 
board when n is an even positive integer. We note that this can only be true when n is an even positive integer greater 
than or equal to 4, as when n = 2, a maximum of one queen can be placed to achieve a total of n2 − 3 queens.  
 
A brief explanation is provided on how to construct this placement of n2 − 2 queens, claiming that “One such 
construction could follow similarly to the odd case by applying induction and filling the topmost two rows and leftmost 
two columns,”. Referring to figure 7, if we look at filling the topmost two rows and leftmost two columns in the             
4 × 4 board, it becomes clear that the last four squares in the lower right corner are all open, and the placement of one 
more queen on any of these squares would lock the last three, leaving us with n2 − 3 queens placed in total.  
  

 
Figure 7: Topmost two rows and leftmost two columns filled with queens on a 4 × 4 board. 

 
Although Brown and Ladha’s construction idea fails immediately for the 4 × 4 board, we further explore their idea for 
boards of larger sizes.  
 
Proposition 1. If n is an even positive integer with n ≥ 4, n2 − 2 queens can be placed legally on a n × n board. 
 
Proof. We apply the idea of filling the topmost two rows and leftmost two columns to boards of larger sizes, until an 
empty 4 × 4 board is reached (refer to figure 8). We know the empty 4 × 4 board in the lower right corner of the board 
can always be achieved as filling the topmost two rows and leftmost two columns do not change the parity of the 
unfilled squares. Brown and Ladha have already provided the process for filling in the topmost two rows and leftmost 
two columns in their proof for achieving n2 queens on an odd-sized board, so we simply follow their outlined process.  
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Figure 8: Left: Topmost two rows and leftmost two rows are filled for an 8 × 8 board. Right: Next two top rows and 
leftmost columns are filled to leave an empty 4 × 4 board. 

 
For the 4 × 4 board, we then suggest a sequence of legal moves to lock the board with two unfilled squares on                  
(n − 3, n) and (n − 1, n − 1) as shown in Figure 9. In turn, this locks the even-sized n × n board with n2 − 2 queens. 
We know this sequence of moves can always be applied because the parity of the squares in the 4 × 4 board will stay 
the same after the previous placement of queens. Hence, we have achieved a legal placement of n2 − 2 queens on a     
n × n board where n is an even positive integer.  
 

 
Figure 9: Left: First eight queens are placed in 4 × 4 board. Right: Next six queens are placed in 4 × 4 board to leave 

two empty, locked squares. 
 
 
Knowing that n2 − 2 queens can always be legally placed on a n × n board where n is an even positive integer and        
n ≥ 4, the question arises of whether this is the maximum number of queens which can be placed on an even-sized 
board. This is also a question of finding the maximally locked solution for even-sized boards which this paper explores 
and answers next. 
 
Maximally Locked Solution for Even-sized Boards 
Brown and Ladha (Brown and Ladha 2019) utilized empirical data as well as computer simulation to verify that for a 
n × n board, when n = 4, n2 − 2 queens is the maximum number of queens which can be legally placed. However, 
computational power is modest and fails to compute for larger values of n in a reasonable time span. For n = 6, it 
would take approximately 22 years to verify whether a total of n2 − 2 queens is the maximum number of queens which 
can be legally placed, so computational power and algorithms are not effective in this case.  
 
We now define “even-neighbour labelling” as being able to number a vertex in a queen graph only when it is adjacent 
to an even number of vertices that have been previously numbered. This is likewise to how we can only place a queen 
on a square attacked by an even number of queens previously placed. When we assign numbers 1 to n to all the vertices 
in a queen graph, we call this a complete labelling. If all the vertices are numbered with even-neighbour labelling in 
consideration, we can call this a complete even-neighbour labelling. Therefore, a queen graph with a complete even-
neighbour labelling corresponds to being able to legally place a number of queens (equivalent to the number of vertices 
within the queen graph) on a board.  
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Going back to the problem at hand, asking the question of whether n2 − 2 queens is the maximal solution on n × n 
boards where n is an even positive integer is essentially asking a question of whether n2 − 1 queens can be achieved 
through legal gameplay on the defined n × n board. We already know a complete solution on even-sized boards is 
unachievable from Brown and Ladha’s inductive proof, though we now suggest another proof through the 
representation of an even-sized board filled with n2 queens in terms of a queen graph.  
 
Lemma 1. If n is an even positive integer, the n × n board does not have a complete solution of n2 queens. 
 
Proof. To prove that n2 queens cannot be placed, we will show that the queen graph for n2 queens on an even-sized     
n × n board does not have a complete even-neighbour labelling. We consider a n × n board where n is an even positive 
integer. Along the vertical and horizontal lines, each square attacks a total of 2(n – 1) squares which is an even number 
of squares, and each square also attacks an odd number of squares along one of the diagonals. In total, we see that 
each square attacks an odd number of squares. If we use vertices on a queen graph to represent every square, each of 
these vertices should in turn have an odd degree. If every vertex has an odd degree, it becomes clear that a complete 
even-neighbour labelling cannot be achieved, and that n2 queens cannot be placed on an even-sized n × n board. We 
thus complete our distinctive proof.              
 
 
Even though we know that a complete solution cannot be achieved, to prove that n2 − 2 queens is the maximally locked 
solution on an even-sized board, we need to also prove that a legal placement of n2 − 1 queens is impossible. To prove 
this, we first attempt to count the total number of edges in a n2 queen graph.  
 
Lemma 2. The total number of edges in a n2 queen graph, where n is an even positive integer, has an even parity.   
 
Proof. Fundamentally, we want to sum up the degrees of each of the individual n2 vertices and then divide the resulting 
number by two to account for counting each edge twice (we know each edge is counted twice due to each edge going 
into two vertices). To carry this out, we first look at any n × n board where n is an even positive integer. Although we 
are looking at a board, we think of every square on this board as a vertex in a queen graph.  
 
We see that each square attacks a total of 2(n – 1) squares along the horizontal and vertical lines. Within a ring, as we 
move from the corner square along the edge, a square’s attack along the greater diagonal decreases by one while its 
attack along the lesser diagonal increases by one. This keeps the sum of the diagonals attacked by any square within 
the same ring equal to n – 1. Therefore, we notice that every square part of the same “ring” on such boards have the 
same degree, while squares on different rings have a different degree. For example, in any n × n board, the innermost 
ring consisting of four squares all have a degree of 4n − 5, whereas squares on the outermost ring each have a degree 
of 3n − 3. We then make the critical observation that each ring can always be broken down into four pieces, as shown 
in Figure 10.  
 
 

 
Figure 10: Left: Outermost ring of a 4 × 4 board broken into four pieces. Right: Innermost ring of a 4 × 4 board 

broken into four pieces. 
 
Hence, the total number of squares in the outermost ring can be described as 4(n − 1), 4(n − 2) in the following ring, 
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down to 4(n(n − 1)) in the innermost ring. To count the total number edges of the n2 queen graph where n is an even 
positive integer, we sum up the degrees of each individual vertex in this graph and divide the total by two. The degree 
of each individual vertex proves to be insignificant. Vertices part of the same ring on a board carry the same degree, 
so we simply group such vertices together.  
 
Keeping in mind that each ring can be broken into four pieces, we can derive that the sum of the degrees of each 
individual vertex in this n2 queen graph is going to be a multiple of four. In order to ensure that the total number of 
edges in the n2 queen graph is even, the sum of all the degrees of each individual vertex divided by two needs to be 
even. Even though the division of an even number by an even number does not always give us an even number, we 
know that the calculation 4 ÷ 2 gives us two, an even number. Therefore, we can conclude that the total number of 
edges in a n2 queen graph, where n is an even positive integer, has an even parity.   
 
 
We now proceed to prove that one cannot achieve a placement of n2 − 1 queens through legal gameplay on a n × n 
board where n is an even positive integer.  
 
Proposition 2. If n is an even positive integer, n2 − 1 queens cannot be placed legally on a n × n board. 
 
Proof. We set up a proof by contradiction by assuming that there exists a legal placement of n2 − 1 queens on a n × n 
board where n is an even positive integer and proceed to derive a contradiction. We consider this placement of n2 − 1 
queens as a list of vertices and append on the last position so that we have n2 vertices. Hence, we now have a n2 queen 
graph where n is an even positive integer.  
 
In a complete labelling of this graph, we see that the number of edges in the graph can be totaled by counting the 
number of neighbours ahead of each vertex. When we assume that a placement of n2 − 1 queens is possible, we are 
also claiming that it is possible to achieve even-neighbour labelling with n2 – 1 vertices on the n2 queen graph.  
 
If we know it is impossible to achieve a complete even-neighbour labelling for the n2 queen graph (refer to proof for 
Lemma 1), but assume it is possible to have even-neighbour labelling for n2 – 1 vertices on the n2 queen graph, we 
can conclude that one vertex in the n2 queen graph will be adjacent to an odd number of vertices previous to it.  
In total, we have n2 – 1 vertices adjacent to an even number of vertices previous to it, and one vertex adjacent to an 
odd number of vertices previous to it. Recall that vertices adjacent to one another are joined by an edge. 
Mathematically, we can now sum up the total number of edges: 
 
(n2  – 1 vertices) × (even #) + (1 vertex) × (odd #) = even # + odd # = odd # 
 
When assuming that there exists a legal placement of n2 – 1 queens, our calculations tell us the total number of edges 
in the n2 queens graph carries an odd parity. Here, we can draw a contradiction: in Lemma 2, we proved that the total 
number of edges in a n2 queen graph, where n is an even positive integer, must be of an even parity; however a 
placement of n2 – 1 queens only appears to be possible when the total number of edges in a n2 queens graph has an 
odd parity. Therefore, we can conclude that it is impossible to achieve a placement of n2 – 1 queens through legal 
gameplay on a n × n board where n is an even positive integer.  
 
 
Exploring Lower Bounds on Locked Game States 
With Brown and Ladha’s (Brown and Ladha 2019) proof for a placement of queens that can lock boards of even or 
odd parity, it appears they have imposed an upper bound on the number of queens needed to lock an even or odd-sized 
board; for a n × n board, when n is odd, a maximum of 2n – 1 queens is needed to lock the board, and when n is even, 
a maximum of 2n – 3 queens is needed to lock the board. Brown and Ladha proceed to ask if the upper bound stated 
is a strict bound, and the question: “What is the minimum number of queens needed to lock a n × n chessboard?”.   
 
Their question of the minimum number of queens needed to lock a n × n chessboard goes back to a domination problem 
once we represent the problem in terms of a queen graph. We would want to find the domination number of a board 
represented as a queen graph and be able to do this with boards of larger sizes as well. For example, the domination 
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number of a 3 × 3 board would be one; one queen is placed in the center of the board to dominate all squares (vertices).  
 
Particularly for the mod 2 n-queens game, it becomes much harder to find domination numbers in graphs with 
numerous vertices due to the additional rules of the game. Nevertheless, we notice that the domination problem in the 
mod 2 n-queens game is similar to the queen’s domination problem earlier discussed in this paper, as the key idea 
summarizes to finding domination numbers and sets within graphs. Keeping in mind the NP-completeness of the 
queen’s domination problem, it is reasonable to assume that it will be notably difficult to find domination numbers 
and sets for the mod 2 n-queens problem, especially for boards of larger sizes. However difficult, we cannot claim this 
problem to be impossible to solve, so it remains an open question for future research.  
 
Even though we cannot disprove Brown and Ladha’s stated upper bounds for all boards, we can disprove the 2n – 1 
queens upper bound for the specific 5 × 5 board.  
 
Proposition 3. For a 5 × 5 board, there exists a placement of 2n – 3 queens which can be achieved through legal 
gameplay and locks the board.  
 
Proof. Refer to figure 11.  
 

 
 

Figure 11: Left: Seven queens placed on a 5 × 5 board, locking the board. Right: Sequence of legal moves to place 
seven queens on a 5 × 5 board. 

 
The configuration of queens in the 5 × 5 board does not have any symmetry or notable patterns, so applying the same 
configuration to larger boards is not practical. 
 
5. Conclusion 
In summary, distinct and detailed proofs were outlined in this paper to answer two of the open problems posed in 
Brown and Ladha’s original exploration of the mod 2 n-queens game. Using the concepts of queen graphs, domination, 
and independence, this paper has taken a unique approach to analyzing the mod 2 n-queens problem. Such an approach 
may be applied in future studies of similar games or problems that are concerned with constraint satisfaction. 
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