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Abstract 

Heart disease is the leading cause of death in most countries. According to 2018 statistics, about 17.9 million people 
worldwide died from cardiovascular disease. Early prediction and control can help reduce mortality from heart disease 
using existing health data. The decision tree method accurately builds a computational model that aims to predict. The 
usefulness of decision trees in health has made them used to predict cancer, diagnose lung disease, diagnose heart 
disease, etc. More studies have also shown that geographical variables can affect the prevalence of hypertension, one 
of the causes of heart disease. Although hypertension is closely related to geographic variables and has a relationship 
with heart disease, there are still not many studies related to heart disease prevention and have not used the geographic 
location as a variable. This study predicts the risk of heart disease by combining 15 variables of heart disease patient 
data obtained from Azra Hospital, Indonesia and geographic data in the form of an area's altitude. We have categorized 
the elevation data from 367 villages in West Java into 2 categories based on the indicators of plains in Indonesia, 
highlands (>600m) and lowlands (<600m). Based on the test results, we found that the decision tree method's diagnosis 
had an accuracy of 93,75%, with the highest level of risk being in people living in the lowlands. This shows that the 
altitude of an area can affects the risk of heart disease. We suggest optimizing the method to improve the accuracy of 
the prediction results. 
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1. Introduction
Heart disease is the leading cause of death in most countries(Mamatha Alex and Shaji 2019). According to 2018 
statistics, about 17.9 million people worldwide died from cardiovascular disease(Iskandar, Hadi, and Alfridsyah 
2017)(Dhar et al. 2018). Early prediction and control can help reduce mortality from heart disease by using existing 
health data and data mining techniques that can help identify whether a person has a disease or not. Healthcare workers 
can take quick action to find more patients(Purushottam, Saxena, and Sharma 2016)(Priyanka and Ravikumar 2017). 

Efforts continue to be made to predict the possibility of this deadly disease. Data mining techniques can be an 
advantage(Khennou et al. 2019). In this case, predictions using data mining techniques can provide accurate initial 
conclusions about this disease(Dhar et al. 2018). Hidden patterns of data and existing relationships can be extracted 
from significant data sources using data mining techniques. It is also used for the initial automatic diagnosis of patients 
and to take action more quickly so that more patients can get the drug in a shorter period and can save many 
lives(Sharma, Yadav, and Gupta 2020). 
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The Decision tree method is one of the popular methods that can analyze the value of risk and the value of the 
information contained in alternative problem-solving(Rochmawati et al. 2020). The role of decision trees in the 
medical world is widely used as a decision support tool. The decision tree method accurately builds a computational 
model that aims to predict(Kohli and Regression 2020). The usefulness of decision trees in healthcare makes them 
used to predict cancer(Devi and Devi 2016)(Kohli and Regression 2020), diagnose lung disease(Alfatah, Arifudin, 
and Muslim 2018), diagnose heart disease(Kaur and Singh 2014)(Mamatha Alex and Shaji 2019), etc. 

 
Further research also shows that geographic variables can affect the prevalence of hypertension which is one of the 
causes of heart disease(Musadir, Hidayaturahmi, and Juwita 2019). The lowlands tend to experience rapid 
industrialization and modernization, which leads to an unhealthy lifestyle that increases blood pressure. Therefore, 
high blood pressure is more likely to occur in the lowlands than in the mountains(Sulistyanto and Madyoratri 2020). 
Although hypertension is closely related to geographic variables and has a relationship with heart disease, there are 
still not many studies related to heart disease prevention and have not used geographic location variables. In addition, 
geographical factors affect the type of food a person consumes(David Israel Garrido And Garrido 2018). The type of 
food affects cholesterol levels in the blood, affecting the risk of heart disease(Aprillia 2020). 
 
This study predicts the risk of heart disease by combining data on heart disease patients with 15 variables obtained 
from Azra Hospital, Indonesia, and geographic data in the form of the height of an area. The altitude data we use 
comes from 367 villages in 12 cities in West Java. We divide into two categories based on indicators of plains in 
Indonesia, namely highlands (more than 600 meters above sea level) and lowlands (less than 600 meters above sea 
level)(Hasanah 2020). This research has produced a system that can predict a person's risk level for heart disease based 
on geographical conditions or place of residence using the ID3 decision tree algorithm. 

 
2. Methods 
This research was conducted through several stages. The research method in this study is shown in Figure 1. 
 

  
 

Figure 1. Research methods 
 

The first stage is critical in this research because data mining has original data obtained through data collection or data 
collection. After the required data has been obtained, the next step is to pre-process the data. This stage is carried out 
to clean up inappropriate or missing data and convert the data to numeric according to the needs of the method used. 
Furthermore, implementing the ID3 decision tree technique using python as a tool to create a model, then proceed 
with testing and evaluation. This needs to be done for the final result of the performance and suitability of the software 
as product quality. This stage is also the conclusion of the research results that have been carried out from each stage. 

 
2.1 Data Collection 
In this study, medical records of heart disease patients were obtained from Azra Hospital. The data used in this study 
is patient data with the attributes of Age, Sex, cp, rest blood pressure (fbs), Chol, Fbs, Restcg, Thalach, Exang, 
Oldpeak, Slope, Thal, Ca, and Target. Furthermore, there are regional elevation data from 12 cities in West Java 
province obtained from the Central Statistics Agency (BPS), West Java, with the location attribute, which is used as 
an indicator of the height of the patient's residence.  
 
2.2 Pre-Processing Data 
At this stage, it functions to change patient data whose data is already available to be processed into data ready to be 
processed into research objects.(Dhar et al. 2018) Before the data is used in this study, a pre-processing process must 
be carried out first for changing the patient data that is already available so that it is processed into data that is ready 
to be processed as an object of research. This study has several stages of pre-processing, namely data cleaning and 
selection. 
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2.2.1 Data Cleaning 
Data cleaning is a process carried out for cleaning patient data that does not have complete or missing medical record 
data to maintain data quality. the data cleaning process carried out in this study was to correct the data and eliminate 
data that did not have completeness for large amounts of data as shown in the Figure 2. 

 
Figure 2 Before cleaning data 

 
This data cleaning process resulted in 559 data from 1032 medical records as shown in Figure 3. 

 
Figure 3 After cleaning data 

 
2.2.2 Data Selection 
Data selection is made to group attributes according to the required information. Data that already has complete 
information on each attribute(Junaid and Kumar 2020). Data selection is made to group attributes according to the 
required information. Data selection is made to group attributes according to the required information. Selection data 
from attributes taken from this process is patient medical record data which includes 14 attributes, namely Age, Sex, 
cp, resting blood pressure, Chol, Fbs, Restcg, Thalach, Exang, Oldpeak, Slope, Thal, Ca, Target, and altitude data 
includes the location of the patient as shown in Figure 4. 
 

 
Figure 4 Attribute Data Selection 
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2.3 Decision Tree Implementation 
The next stage is the decision tree implementation process. At this stage, the data is checked and tries to calculate 
the accuracy of the data that has passed the pre-processing process using ID3. The steps that will be carried out 
by the Decision Tree algorithm recursively are as follow(Tyasti, Ispriyanti, and Hoyyi 2015)s: 
 
a. Define one of the features as Root Node in the decision tree 
b. Create a branch of each particular feature or attribute value. 
c. Repeat the process for each branch until there are no more features to define as Root Nodes or the Decision 

Tree already has all Leaf Nodes. 
To determine a feature as a Root Node, it is based on the highest Information Gain value from the existing features 
that previously did the Entropy calculation. The following is the formula for calculating the Entropy value and 
the Gain Information value: 

𝑛𝑛 
𝐻𝐻(𝑆𝑆) = ∑ 𝑝𝑝𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖 

𝑖𝑖=1 
 

Information : 
 

S : Case Collection 
n : Number of partitions S 
pi : Proportion of Si to S 

𝑛𝑛 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆, 𝐴𝐴) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) − ∑|Si|
|S|

×𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑖𝑖) 

𝑖𝑖=1 

Information: 
S : Set 
A :Attributes/Features 
N : Number of partitions Attribute/Feature A 
|Si| : Number of cases on partition i 
|S| : Number of cases in 

 
2.4 Testing  
This testing stage will be carried out using test data that is entered into the tree model created. The process of testing 
and making tree models is done using the system. 
 
3. Results and Discussion 
The following is data that shows information about the heart disease status of patients at the Azra hospital from 
January 2017 to September 2021. The data results from data that has gone through preprocessing to produce 559 
data. the percentage of positive patients suffering from heart disease can be seen in Table 1 
 

Table 1 heart disease  status 
 

Status Quantity Percentage 
Positive 349 62.43% 
Negati 210 37.56% 

 
Table 1 describes the data used. There were 349 cases of heart disease, or equal to 62.43%, and 210 cases without 
heart disease, or equal to 37.56% of the total 559 data that had been cleaned. 
 

 

(1) 

(2) 
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Table 2 heart disease status by altitude 
 

Height Positive Negative Total 
More than 600 above sea level 39 179 218 
Less than 600 above sea level 310 31 341 
Total 349 210 559 

 
Table 2 describes the composition of heart disease patients based on their altitude. At an altitude of 600 meters 
above sea level, there were 39 positive and 179 negative cases. In comparison, at an altitude of fewer than 600 
meters above sea level, there were 310 positive cases and 31 negative cases. 
 
3.1 Construction of the Decision Tree Model  
We divide the data into training data and testing data. In this study, 80% of the data were partitioned for training or 
447 data, and 20% for test data or 112 data. The following is a calculation to find the entropy and information gain 
values at the root node using a training sample with the ID3 Algorithm to construct a decision tree. (Table 3) 
 
1. Calculate the proportion of each class  

Table 3 Class Proportion 
 

Status Quantity Proportion 
Positive 273 0.61 
Negative 174 0.39 
Total(S) 447 1.00 

 
2. Calculating the class entropy 

In this study, S is the set of positive and negative classes. Positive class with code 1 and negative class with code 
2 so that we get: 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(S)  = ∑ − 𝑃𝑃𝑃𝑃𝑛𝑛

𝑘𝑘=1 log2 𝑃𝑃𝑃𝑃  
Entropy (1,2) = (−�273

447
� . log2 �

273
447

�) + (−�174
447

� . log2 �
174
447

�) 
  = 0.964 
 

3. Calculating the frequency of categories on the altitude attribute based on the class 
 

Table 4 heart disease  status by altitude in testing data 

Height Frequency Total Positive Negative 
More than equal to600 above 
sea level 

25 149 174 

Less than 600 above sea level 248 25 273 
Total 273 174 447 

 
Table 4 describes the composition of heart disease patients based on the altitude from the total test data used, which 
is 477. At an altitude of 600 meters above sea level, there were 25 positive and 149 negative cases. For comparison, 
at an altitude of fewer than 600 meters above sea level, there were 248 positive cases and 25 negative cases. 

 
4. Calculating the entropy of the altitude attribute 

Entropy (more than equal to 600 1,2) = (−� 25
174

� . log2 �
25
174

�) + (−�149
174

� . log2 �
149
174

�) = 0.5937 

Entropy (Less than 600 1,2) = (−�248
273

� . log2 �
248
273

�) + (−� 25
273

� . log2 �
25
273

�) = 0.4417 
 

5. Calculating the information gain 

Gain(S, Altitude) =  Entropy(S) −�
|Si|
|S|

𝑛𝑛

𝑖𝑖=1

× Entropy(Si) 
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Gain (S, Altitude) = 0.964 – �174
447

 . 0.593� + �273
447

 . 0.441� = 0.4634 
 
The following results from the calculation to find the entropy and information gain values of all attributes to 
determine the best features. information gain data is presented in Table 5. 

 
 

Table 5 Information Gain 
 

No Attrubut Gain 
1 Age 0.0476 
2 Sex 0.0397 
3 Cp 0.1748 
4 Tresbps 0.0028 
5 Chol 0.0007 
6 Fbs 0.0028 
7 Restecg 0.0191 
8 Thalac 0.1082 
9 Exang 0.1630 
10 Oldpeak 0.0813 
11 Slope 0.1033 
12 Thal 0.0320 
13 Ca 0.2796 
14 loct 0.4634 

 
Based on Table 5, the location attribute is the attribute with the largest information gain value with a value of 0.4634, 
then the location attribute becomes the root node. 

 
3.2 Tree Model Analysis 
Based on the model construction that has been made, we form a tree model that describes the relationship between 
attributes. The tree model can be seen in Figure 5. 
 

 
 

Figure 5 generated tree model results using python 
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ID3 Algorithm results to identify medical record data of heart disease patients based on geographic variables with 
attributes Age, Sex, cp, resting blood pressure (fbs), Chol, Fbs, Restcg, Thalach, Exang, Oldpeak, Slope, Thal, Ca, 
Location and the target obtained from the hospital Azra, the following information can be obtained from the results 
of making a tree model using the ID3 Algorithm: 
 
1. In this study, many of the nodes formed were 51 nodes with 26 leaf nodes. 
2. The location attribute is selected as the best attribute for the root node based on the largest information gain value. 
 
3.3 Testing 

 
3.3.1. Testing Results based on Training Data 
After getting the results from the ID3 algorithm in the form of a decision tree, the next step is to measure the accuracy 
of the prediction results. The tree model that has been formed is tested by entering the train data into the tree model. 
The test sample size was 447 cases. The confusion matrix is presented in Figure 6 and Table 6. 
 

Figure 6 confusion matrix data train 
 

 
 
 

Table 6 Confusion matrix data train 
 

 Positive Negative Total 
Positive 174 0 174 
Negatif 0 273 273 
Total 174 273 447 

 
Based on Table 6, the accuracy value of the ID3 Algorithm in the test sample is as follows: 
 
Confusion matrix data train = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇
 x 100 

      
  = 174 + 273 

174 + 0+0+273
 x 100 

 
     = 447 

447
 x 100 

 
     = 100% 
 
3.3.2. Testing Results Using Testing Data 
After getting the results from the ID3 algorithm in the form of a decision tree, the next step is to measure the accuracy 
of the prediction results. The tree model that has been formed is tested by entering the test data into the tree model. 
The test sample size was 112 cases. The confusion matrix is presented in Figure 7 and Table 7. 
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Figure 7 confusion matrix data test 
 

 
 
 

Table 7 Confusion matrix data test 
 Positive Negative Total 

Positive 33 3 36 
Negatif 4 72 76 
Total 37 75 112 

 
Based on Table 7, the accuracy value of the ID3 Algorithm in the test sample is as follows: 
 
Confusion matrix data test = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇
 x 100 

 
   = 33 + 72 

33 + 3+4+72
 x 100 

 
   = 105 

112
 x 100 

 
   = 93,75% 
 
Based on the results of testing the tree's accuracy level in predicting the data, an accuracy rate of 93.75% is obtained 
with a prediction error rate of 6,25%, so tree construction results are good enough to predict possible classes in 
subsequent cases. 
 
3.4 Heart Disease Prediction Software Implementation 
We continue our research and produce web-based software to predict heart disease risk. The display of the software 
that has been made is shown in Figure 6. 
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Figure 6 Software Implementation 
 
There are several menus in the software, including entering test data that can be done through the available forms, 
viewing the tree model used in the software, and checking altitude location data from 368 districts in 12 cities in West 
Java which are implemented into the database. 
 
4. Conclusion 
This study can conclude that the prediction of the risk of heart disease based on geographic variables using a decision 
tree gets good results. Based on the test results, it was found that the diagnosis of the decision tree method has an 
accuracy of 93.75%. This shows that the altitude of an area can affects the risk of heart disease. We suggest optimizing 
the method and using more geographic variables associated with heart disease to increase the accuracy of the 
prediction results. 
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