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Abstract 

The construction of mathematical models includes a variety of strategies for closing the gap between the model and 
real-time data. This study uses a data mining technique to expand mathematical model construction to include 
simulation optimization. At the same time, this procedure is used to verify the mathematical model. In addition to 
dynamic property validation, the paper suggests mathematical programming as a static property validation method. 
The validated mathematical model is compared and examined with real-time data, and the results show that the 
mathematical model applies to real-time systems. The mathematical model has a low error margin estimate and can 
be used to forecast. The paper's main contribution is to investigate simulation optimization, mathematical 
programming, and mathematical models to handle the increasing complexity of variables to improve prediction 
capabilities and lay a solid foundation for tackling factory planning issues. 

Keywords 
Simulation model validation, simulation optimization, mathematical programming validation, mathematical model 
validation, output’s mathematical model 

1. Introduction
Much research has addressed the mathematical model in manufacturing systems (Abazari et al., 2012; Bagheri and 
Bashiri, 2014; Leitão and Restivo, 2008; X. Li et al., 2010; Shen and Yao, 2015). The issues of mathematical model 
development relate to integrating multiple variables and various constraints into one mathematical model and model 
effectiveness under a real-time system's unpredictable and dynamic nature. To find a solution to the issue, many 
researchers studied various methods to develop a mathematical model that narrows the gap between the model and 
the real-time data. The existing methods are data mining (Arif et al., 2013; Chincholkar and Herrmann, 2008; Kim 
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and Lee, 1997; Luo et al., 2015) and model enhancement (Al-Zuheri et al., 2012; Georgiadis and Michaloudis, 2012; 
Jacomino, 2014; Kim & Morrison, 2014; Usubamatov et al., 2015; Wu, 2014).  

In (Arif et al., 2013), the authors studied a quality prediction model to deal with complex variable relationships. The 
authors used Cascade Quality Prediction Method and SP-ID3 and SP-PCA+ID3. The finding showed that the 
developed model performed better than other models with relatively high accuracy. Luo et al. (2015) analyzed a 
multiple regression model to predict equipment degradation and maintenance schedule optimization in manufacturing 
using four data mining techniques. The data mining techniques were artificial neural network, genetic algorithm, 
restricted Boltzmann machine and deep belief network. The effectiveness of the model is tested with industrial case 
achieving 74.1% testing accuracy. Model enhancement from previous literature is another mathematical model 
development method alternative. Model enhancement in research works is driven by analytical methods to derive, 
expand and improve existing mathematical models. Kim and Morrison (2014) revised literature models to develop a 
mathematical model on throughput using the Markov Chain concept. The results are acceptable through the 
comparison of the model and simulation data. Usubamatov et al. (2015) referred to previous research models to 
enhance the proposed mathematical model for the productivity rate of manufacturing systems with different failure 
rates. The finding indicates the mathematical model accuracy is close to actual production values. Wu (2014) revised 
the mathematical model from past literature in batch queuing models. The author discussed the validation result 
between the mathematical model and simulation, which is acceptable under certain conditions. Future research on the 
inclusion of batching size is proposed. Numerous validation methods of mathematical models are discussed in the 
literature (Jagdev et al., 1995; Kleijnen, 1995; Sargent, 2011). On validation method is simulation comparison with 
mathematical model (Almehdawe and Jewkes, 2013; Cao et al., 2012; Chincholkar and Herrmann, 2008; Zuheri et 
al., 2014). In general, the accuracy of the mathematical model is compared and validated with simulation data to 
evaluate the model's effectiveness (Almehdawe and Jewkes, 2013; Cao et al., 2012; Chincholkar and Herrmann, 2008; 
Zuheri et al., 2014). There are also works on real-time data validation methods (Defersha and Chen, 2006; Eickemeyer 
et al., 2014; Georgiadis and Michaloudis, 2012; W. Li, 2007; J.S. Lin, 2012). The two less-seen validation methods 
are the mathematical proof technique (Chang et al., 2012; Kim and Morrison, 2014) and the comparison with previous 
literature studies (Abazari et al., 2012; Brown, 2014; X. Li et al., 2010; Mahdavi et al., 2012).  

The primary motivation behind this study is the challenge posed by the effectiveness of a mathematical model in 
comparing with real-time data. The first contribution is introducing a simulation optimization tool to support current 
mathematical model development in an attempt to draw nearer between theoretical and real-time data. The second 
contribution is introducing an additional validation method using mathematical programming and simulation to 
support the mathematical model's prediction when tested with real-time data. The paper is organized into four sections. 
Section 1 introduces the background of the topic and the paper's objective. Section 2 describes the methodology used 
in this paper. The findings of the study are discussed in Section 3. The conclusion of the study is drawn in Section 4. 

2. Methodology
The simulation model is developed based on an assembly semiconductor manufacturing system. The simulation model 
is built using Pro-Model. The input variables from real-time data are inserted into the model to collect the data on the 
response variable. The simulation model is validated using data from a real-time system. A statistical t-test was used 
to validate the simulation model with real-time data on each process. If the validation fails, the simulation model is 
revised. The simulation model is incorporated into the simulation optimization software, Sim Runner to optimise the 
response variable. During the simulation optimization, the study defines a suitable replication. Once suitable 
replication is selected, the simulation optimization performs each experimental run to find the optimum output. The 
simulation optimization employs genetic and evolutionary algorithms to optimize the simulated system (Chau et al., 
2014; Harrell and Price, 2003; Mason et al., 2008). The mathematical model is developed on a spreadsheet using 
simulation optimization experimental data. Mathematical programming is developed in the spreadsheet to collect the 
output data using the defined objective function and its constraints. The result of the mathematical model and 
mathematical programming is analysed using statistical t-test analysis. The mathematical model and programming 
will require further revision if the validation results are not statistically proven. Once the established mathematical 
model is validated, the model is further analysed with real-time data. The error acceptance between the mathematical 
model and real-time data enables it to be applied in manufacturing performance monitoring. Section 2.1, 2.2, 2.3, 2.4, 
2.5 and 2.6 illustrates the data analysis and findings based on Figure 1 using the IDEF0 methodology. Section 2.1 lists 
the annotation used in the study.  Section 2.2 to Section 2.7 shows the mathematical model development procedure 
and its integration with simulation optimization and mathematical programming.
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Figure 1.  IDEF0 methodology from section 2.2 to section 2.7 for the mathematical model development and its concurrent validation framework 
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2.1 List of Annotations 
Some annotations are pre-defined below: 
CTDA cycle time per unit (Die Attach) / unit = seconds 
CTWB cycle time per unit (Wire Bond) / unit = seconds 
CTPC cycle time per unit (Pre-Cap Inspection) / unit = seconds 
CTOC cycle time per batch (Oven Cure) / unit = seconds 
MTTRDA mean time to repair at Die Attach 
MTBFDA mean time between failure at Die Attach 
MTTRWB mean time to repair at Wire Bond 
MTBFWB mean time between failure at Wire Bond 
STDA setup time duration (Die Attach) / unit = seconds 
STWB setup time duration (Wire Bond) / unit = seconds 
ADA availability at Die Attach 
AWB availability at Wire Bond 
BQ  batch quantity 
Tb average completion time per batch, b 
Tmax maximum number of days used in the study 
TD total time per day 
STDA setup time at Die Attach process 
STWB setup time at Wire Bond process 
M number of machines available at process (based on least capacity in the system) 
OS optimized output per day from simulation optimization method 
OM optimized output per day from predicted mathematical model 
 
2.2 Simulation Model Construction 
We examined a case study from assembly semiconductor manufacturing (Figure 2). Figure 3 shows using semiconductor 
manufacturing the simulation model of assembly Pro-Model. The configuration of the process is as follows: 3 die attach machines, 
continuous available oven cure machine, 9 wire bond machines, and 3 pre-cap inspection machines. 

 
 

 
Figure 2. Semiconductor manufacturing process flow 

 

 
Figure 3. Simulation model of assembly semiconductor manufacturing using Pro-Model 

Die Attach Wire Bond Oven Cure Pre-cap Inspection 
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2.3 Simulation Model Validation 
Machine availability is defined below: 

Machine availability, A 

=  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

                                                                                                                                                                                   (1) 

Table 1 represents the raw data from a real-time system which serves as input variables value. Each input variable's low and high 
settings are based on a 95% confidence interval of the distribution of input variables except BQ and CTOC. Table 2 shows the raw 
data between simulation and real-time output for two individual processes. 
 

Table 1. Input variable data for the simulation model 
 

Input variable Data 
Low setting Middle setting High setting 

CTDA (seconds) 2.8072 - 2.9460 
CTWB (seconds) 6.0902 - 6.4609 
CTPC (seconds) 0.9882 - 1.0498 

MTTRDA 6883 - 6887 
MTTRWB 3619 - 2724 
MTBFDA 50006 - 109826 
MTBFWB 53115 - 84831 

STDA (seconds) 2957 - 6063 
STWB (seconds) 1324 - 2714 

ADA 0.8790 - 0.9410 
AWB 0.9362 - 0.9680 

BQ (unit) 2200 3080 11264 
CTOC (seconds) 7200 (fixed) 

Note: Input variables values are randomly selected from real-time data 
 

Table 2. Raw data between simulation and real-time for both die attach and pre-cap inspection on output 
 

Low Setting 
(DA) 

High Setting 
(DA) 

Low Setting 
(PCI) 

High Setting 
(PCI) 

Simul
ation 

Real-
Time 

Simul
ation 

Real-
Time 

Simul
ation 

Real-
Time 

Simul
ation 

Real-
Time 

78848 89458 78848 82709 40480 80379 38280 80379 
95392 89289 87912 81987 81928 83724 78848 83724 
81928 89624 84128 82899 92312 78552 78848 78552 
92312 87127 87912 78949 84128 83793 90112 83793 
93192 86084 78848 78114 95392 76586 79728 76586 
84128 95195 90112 87949 90112 68069 92312 68069 
90112 87054 78848 79861 84128 91621 87912 91621 
95392 84264 90112 78076 93192 88828 78848 88828 
81928 104389 81928 97405 92312 95241 90112 95241 
92312 100457 90112 91937 81928 92379 78848 92379 
95392 90168 76648 83468 95392 91345 93192 91345 
78848 91749 92312 80734 90112 84828 78848 84828 
93192 94255 76648 83696 84128 86172 90112 86172 
95392 96612 90112 89620 93192 86483 78848 86483 
78848 98199 81928 87190 81048 81552 93192 81552 
95392 87354 90112 78835 93192 89310 76648 89310 
84128 99419 78848 89316 95392 85138 92312 85138 
90112 85780 93192 77658 81048 77414 76648 77414 
95392 95096 78848 87873 93192 76207 90112 76207 
81928 78492 87912 71772 92312 83345 81928 83345 
92312 89378 81048 82177 81928 90172 90112 90172 
93192 90409 87912 82177 93192 78552 78848 78552 
84128 89238 90112 80696 95392 84586 90112 84586 
90112 88015 81928 79367 81048 88966 78848 88966 
95392 82134 78848 75190 93192 92897 87912 92897 
81928 89377 90112 77696 92312 91966 84128 91966 
92312 85252 90112 79367 81928 87931 87912 87931 
93192 82366 78848 75987 95392 94414 78848 94414 
84128 98009 90992 89278 78848 90759 93192 90759 
90112 89979 81048 82177 95392 77621 78848 77621 

Note: DA = Die Attach; PCI = Pre-cap Inspection 
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Table 3 illustrates the validation result of the die attach and pre-cap inspection from Table 2. In this paper, α = 0.05. The p-value 
for low and high input variables setting for die attach is 0.0961 and 0.3490, respectively. The p-value for low and high input 
variables setting for pre-cap inspection is 0.3462 and 0.3426, respectively. Since the p-value is larger than α, it accepts the null 
hypothesis indicating no significant difference between the simulation model and real-time data.  

Table 3. Validation result of die attach and pre-cap inspection from table 2 using statistical t-test analysis 

Die Attach Pre-Cap Inspection 
Low Input Variables Setting High Input Variables Setting Low Input Variables Setting High Input Variables Setting 

P value = 0.0961 P value = 0.3490 P value = 0.3462 P value = 0.3426 

Once the simulation model is validated, the simulation model is incorporated into simulation optimization software, SimRunner, 
to perform experimental optimization runs. 

2.4 Simulation Optimization 
Five replications are used to perform simulation optimization for 25 random experiments. The study has tested 1, 5, 10, and 100 
replications. There is no significant different comparison among these replications as the model is deterministic. 

The validated simulation model is integrated into the simulation optimization software, SimRunner. The input variables' low and 
high settings are inserted into SimRunner with an objective function to maximize the output. The SimRunner performs optimization 
for 25 random experiment runs, as shown in Table 4. The values of each variable in simulation optimization constitute the boundary 
between low and high settings, which are defined in Table 1. The SimRunner searches the maximum output for 25 random 
experiments within the boundary of these settings of input combination. Table 4 shows the optimized output from 25 random 
experiments with Sim Runner simulation software. 

Table 4. Optimized output from 25 random experiments with simulation optimization 

Run CTDA CTWB CTDC MTTRDA MTTRWB MTBFDA MTBFWB ADA AWB BQ OS 
1 2.810 6.090 0.988 6887 2724 84831 109826 0.9410 0.9689 2200 73333 
13 2.826 6.391 1.049 9704 3615 59031 100665 0.9121 0.9423 2287 76233 
23 2.908 6.112 1.020 6860 4100 64555 92420 0.9309 0.9403 2490 83000 
2 2.000 6.000 1.000 6885 3027 74058 85548 0.9255 0.9607 4466 123262 
25 2.931 6.232 1.039 8869 2836 72167 85742 0.9063 0.9622 3226 83876 
14 2.831 6.279 1.008 5817 2589 61732 61162 0.9131 0.9597 3618 87194 
20 2.836 6.168 1.040 6068 2844 58663 54829 0.9003 0.9538 4245 87023 
6 2.887 6.203 1.010 4525 2837 63209 57228 0.9267 0.9570 4253 86761 
9 2.870 6.239 0.997 6086 4784 82377 79319 0.9287 0.9451 4658 85707 
3 2.000 6.000 1.000 6886 3266 65586 69630 0.9100 0.9526 6732 122522 
10 2.908 6.136 1.017 6981 2714 67692 70876 0.9103 0.9615 6071 83780 
4 2.000 6.000 1.000 6886 3459 58749 58390 0.8945 0.9444 8998 121473 
22 2.884 6.163 1.022 5235 4038 61128 65848 0.9264 0.9380 7091 85801 
15 2.935 6.334 1.021 5394 3016 54070 62208 0.9202 0.9472 7255 84158 
7 2.849 6.305 1.028 5163 2941 54960 57330 0.9174 0.9492 8033 85150 
11 2.938 6.313 0.995 5648 3820 74237 57113 0.9100 0.9511 8663 83165 
8 2.906 6.423 1.050 9187 4867 79758 76621 0.8929 0.9425 8591 82474 
24 2.940 6.249 1.010 9969 4249 72484 86945 0.8971 0.9446 8857 82370 
19 2.859 6.107 1.023 8709 3930 75810 70905 0.8906 0.9507 9366 84294 
12 2.935 6.418 1.043 9295 3698 78107 82014 0.8982 0.9548 10102 80816 
17 2.900 6.418 0.994 7917 3119 74532 77301 0.9071 0.9598 10624 82867 
21 2.909 6.275 1.046 5782 3416 64102 65130 0.9185 0.9494 10723 83639 
16 2.894 6.092 1.026 9759 2656 72339 95121 0.9069 0.9646 10703 81343 
18 2.891 6.455 1.031 9326 3705 65053 74533 0.8888 0.9461 11041 81703 
5 2.946 6.461 1.050 6883 3619 53115 50006 0.8790 0.9362 11264 81101 

2.5 Mathematical Model Validation 
In Section 2.5, the study develops a mathematical output model as a function of input variables using simulation optimization data 
from 25 random experiments.   

In order to find OM, the paper defines the total time available in the system, Tsys, as the sum of two terms (a) individual process 
time available minus setup time for day 1 and (b) individual process time available, then are multiplied by the balance number of 
days used in the study. Tmax is used to achieve steady-state conditions to apply the mathematical model in a real-time system 
(Gavriel 2007; Khan 2005; Martand 2010). STDA and STWB are defined as setup time for Die Attach and Wire Bond once at the 
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start of the experimental runs. ADA and AWB are defined as Die Attach and Wire Bond availability using Equation (1). M is the 
number of machines available at the process based on the least capacity in the system. TD is the total time per day. 
 
Thus, the total time available in the system, Tsys: 
= total time available in the system for day 1 that includes setup time + total time available in the system for remaining of the days 
that excludes setup time 
= total time available for Die Attach includes setup time for day 1 + total time available for Die Attach exclude setup time for 
balance of the days (Tmax-1) + total time available for oven cure for Tmax + total time available for Wire Bond includes setup time 
for day 1 + total time available for Wire Bond excludes setup time for balance of the days (Tmax-1) + total time available for pre-
cap inspection for Tmax. 
= ((TD-STDA) (ADA)+(TD)(1)+(TD-STWB)(AWB)+(TD)(1))(M) +(((TD)(ADA)+(TD)(1)+(TD)(AWB)+ (TD)(1))(M))x(Tmax-1)              (2)                                                                                                                                         
 
The mathematical model to find output is defined as total time available in the system, Tsys, divided by completion time, Tb and 
multiplied by batch quantity, BQ (Gavriel 2007; Khan 2005; Martand 2010). This is because completion time is obtained based on 
batch quantity. OM equation is shown below. 

Average output per day, OM = 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 𝐵𝐵𝐵𝐵

𝑇𝑇𝑇𝑇
𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇

                                                                                                                                            (3) 
                      
Table 5 shows OM data for 25 random experiments, and Tb is collected from the simulation. 
 

Table 5. OM data collection from 25 random experiments 
 

Run MTTRDA MTBFDA ADA MTTRWB MTBFWB AWB Tsys Tb OM 
1 6887 109826 0.9410 2724 84831 0.9689 30391064 27991 79622 
13 9704 100665 0.9121 3615 59031 0.9423 29951939 30954 73764 
23 6860 92420 0.9309 4100 64555 0.9403 30086196 31825 78466 
2 6885 85548 0.9255 3027 74058 0.9607 30204209 46115 97503 
25 8669 85742 0.9063 2836 72167 0.9622 30062486 40159 80498 
14 5817 61162 0.9131 2589 61732 0.9597 30101914 43687 83098 
20 6068 54829 0.9003 2844 58663 0.9538 29952015 49661 85343 
6 4525 57228 0.9267 2837 63209 0.9570 30184513 50045 85507 
9 6086 79319 0.9287 4784 82377 0.9451 30107451 54227 86206 
3 6886 69630 0.9100 3266 65586 0.9526 30017168 69186 97359 
10 6981 70876 0.9103 2714 67692 0.9615 30092258 68334 89116 
4 6886 58390 0.8945 3459 58749 0.9444 29830491 92256 96981 
22 5235 65848 0.9264 4038 61128 0.9380 30031335 78789 90094 
15 5394 62208 0.9202 3016 54070 0.9472 30055465 81644 89026 
7 5163 57330 0.9174 2941 54960 0.9492 30052033 88972 90443 
11 5648 57113 0.9100 3820 74237 0.9511 30004094 95743 90494 
8 9187 76621 0.8929 4867 79758 0.9425 29802304 95729 89152 
24 9969 86945 0.8971 4249 72484 0.9446 29850928 97461 90426 
19 8709 70905 0.8906 3930 75810 0.9507 29850034 101470 91842 
12 9295 82014 0.8982 3698 78107 0.9548 29942562 111171 90695 
17 7917 77301 0.9071 3119 74532 0.9598 30053172 116024 91729 
21 5783 65130 0.9185 3416 64102 0.9494 30056319 116596 92140 
16 9759 95121 0.9069 2656 72339 0.9646 30089675 115184 93198 
18 9326 74533 0.8888 3705 65053 0.9461 29798827 120643 90904 
5 6883 50006 0.8790 3619 53115 0.9362 29643539 123367 90220 

 
The data between OS and OM from Table 4 and Table 5 are compared using statistical t-test analysis to validate the mathematical 
model using simulation optimization results. The study uses α = 0.05 at 95% confidence level for validation. The p-value between 
OM and OS is 0.7787. Since the p-value is larger than α, the null hypothesis is accepted, indicating no significant difference between 
the simulation optimization method and the predicted mathematical model. The result shows that the mathematical model 
development based on simulation optimization is validated statistically using 25 random experiments.   
 
2.6 Mathematical Programming Validation 
In Section 2.6, the study develops a mathematical programming model and collects the data on response variables using 
experimental runs from simulation optimization.   
 
Some annotations for mathematical programming are pre-defined below. 
x1 : output Die Attach 
x2 : output Oven Cure 
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x3 : output Wire Bond 
x4 : output Pre-Cap Inspection 
TDA : time available for Tmax days at Die Attach 
TOC : time available for Tmax days at Oven Cure 
TWB : time available for Tmax days at Wire Bond 
TPC : time available for Tmax days at Pre-Cap Inspection 
TD : total time per day 
MDA : number of machines available at Die Attach 
MOC : number of machines available at Oven Cure 
MWB : number of machines available at Wire Bond 
MPC : number of machines available at Pre-Cap Inspection 
OOR : optimized output per day from mathematical programming method 
 
Equation (4)-(7) represents the total time available for Tmax days at each process, including the setup time, availability and number 
of machines available. The total time available for Tmax is defined as the sum of two-term (a) total time per day minus setup time 
multiplied by availability and number of machines available at each process and (b) total time per day multiplied by availability, 
the number of machine available at each process and (Tmax-1) (Gavriel 2007; Khan 2005; Martand 2010).  
 
Similar to section D, Tmax is used in Equation (4)-(7) to match the Tsys, Equation (2) and also used for calculation on steady-state 
conditions. 
TDA = (TD-STDA) (ADA)(MDA)+(TDxADAxMDAx(Tmax-1))    (4)                                                                                                                                                                                                                   
TOC = TD x MOC x Tmax        (5)                                                                                                                                                                                                                                                                                                                       
TWB = (TD-STWB) (AWB)(MWB)+(TDxAWBxMWBx(Tmax-1))     (6)                                                                                                  
TPC = TD x MPC x Tmax                                                     (7)                                                                                                                                   
 
Equation (8) represents the optimized output per day in mathematical programming. OOR is defined as the average output at the 
end of the system multiply batch quantity and divided by the maximum number of days used in the study.  
 
The OOR is given below: 

OOR = 
��𝑥𝑥1+𝑥𝑥2+𝑥𝑥3+𝑥𝑥44 �𝑇𝑇 𝑀𝑀𝐵𝐵�

𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇
                                         (8)                                                                                                                                                                                                    

 
From Equation (4)-(8), the mathematical programming model is developed as below. 
 
The objective function is to maximize the output at the end of the system.  
Objective function: 

Maximize  
��𝑥𝑥1+𝑥𝑥2+𝑥𝑥3+𝑥𝑥44 �𝑇𝑇 𝑀𝑀𝐵𝐵�

30
   or Maximize OOR             (9)                                                                                                                                                                                                   

 
Equations (10)-(15) ensure that the optimized output OOR does not exceed the total time used by the OOR than the overall time 
available in the system or at each process. Equation (10) states that the sum of each process's total processing time must not exceed 
the total time available in the system, Tsys. Equation (10) can be rewritten as Equation (11), where Equation (11) states the average 
output in the system multiplied by completion time, tb must not exceed the total time available in the system, Tsys. Equation (12) 
states the sum of processing time at Die Attach must not exceed the time available at the process. Equation (13) states the sum of 
processing time at Oven Cure must not exceed the time available at the process. Equation (14) states the sum of processing time 
at Wire Bond must not exceed the time available at the process. Equation (15) states the sum of processing time at Pre-Cap 
Inspection must not exceed the time available at the process.  
 
Constraints: 
(CTDA x BQ) (x1) + 7200 (x2) + (CTWB x BQ) (x3) + (CTPC x BQ) (x4) ≤ Tsys                                                                                  (10)                                       
or  �𝑇𝑇1+𝑇𝑇2+𝑇𝑇3+𝑇𝑇4

4
� (𝑇𝑇𝑇𝑇) ≤ Tsys                                                                                                                                             

(11)                                                                                                                                                                    
(CTDA x BQ)(x1) ≤ TDA                                                                                   (12)                                                                                                                                                                                                                                                                                  
7200 (x2) ≤ TOC                                                                   (13)                                                                                                                                                                                             
(CTWB x BQ) (x3) ≤ TWB                                                      (14)                                                                                                                                       
(CTPC x BQ) (x4) ≤ TPC                                              (15)   
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Table 6 shows the data obtained from the mathematical programming method using 25 random experiments from simulation 
optimization. 

Table 6. Result from mathematical programming using the same 25 random experiments from simulation optimization 
 

Run OOR 
1 79622 
13 73764 
23 78466 
2 97503 
25 80498 
14 83098 
20 85343 
6 85507 
9 86206 
3 97359 
10 89116 
4 96981 
22 90094 
15 89026 
7 90443 
11 90494 
8 89152 
24 90426 
19 91842 
12 90695 
17 91729 
21 92140 
16 93198 
18 90904 
5 90220 

 
In order to validate the mathematical programming using simulation optimization results, the data between OS and OOR from Table 
4 and Table 6 are compared using statistical t-test analysis. The study uses α = 0.05 at 95% confidence level for validation. The p-
value between OM and OS is 0.7787. Since the p-value is larger than α, it accepts the null hypothesis indicating no significant 
difference between the simulation optimization method and mathematical programming. The result shows that the mathematical 
programming based on simulation optimization is validated statistically using 25 random experiments.                                                                                                           
 
In order to validate the mathematical model with mathematical programming, the data of OM and OOR are compared using statistical 
analysis. The study uses α = 0.05 at 95% confidence level for validation. The p-value between OM and OOR is 1. Since the p-value 
is larger than α, it accepts the null hypothesis indicating no significant difference between the simulation optimization method and 
the predicted mathematical model. Furthermore, the result indicates both models show similar data from the 25 random 
experiments. Thus, there is no significant difference between the mathematical model and mathematical programming. 
 
2.7 Mathematical Model Testing 
The validated mathematical model (Equation (3)) is further compared with real-time data. The real-time data on output and input 
variables are collected from the system.  
 
Table 7 compares 9 sample results between the mathematical model and the real-time data on the output response variable. OM 
shows the data from the mathematical model using Equation (4). ORT shows the data from the real-time system. The relative error 
was 1.57%–10.36%, with an average value of 7.28%. 

 
Table 7. Relative error analysis between OM and ORT 

 
OM ORT Relative error % error 

70156 71254 1098 1.57 
65384 68678 3294 5.04 
74680 72829 1851 2.48 
102810 113458 10648 10.36 
112808 105555 7253 6.43 
101455 109689 8234 8.12 
132519 119911 12608 9,51 
138868 150216 13348 9,75 
126634 117763 8871 7.01 

Average % error 7.28 
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3. Finding and Discussion 
The study shows that validation of the simulation model with real-time data plays a very important role in improving the 
mathematical model application in a real-time system. The main reason for the improvement in model prediction in this study is 
due to the revised methodology that envelopes the mathematical model development through data mining using simulation 
optimization data and its concurrent mathematical programming validation  
 
The study shows the importance of validating the model's static and dynamic properties. The mathematical model development 
through data mining on simulation optimization has performed validation of dynamic properties as the mathematical model is 
producing the acceptance statistical analysis data as a simulation optimization result (see Tables 4 and 5). The dynamic properties 
of the model reflect the actual environment that is affected by time and describe the change from one state to another. The 
integration between mathematical model development and its validation using simulation optimization has advantages to reducing 
procedure in this proposed methodology and a higher probability of producing closer results to real-time data since the simulation 
is a reflection tool of the actual manufacturing system. Simulation replicates the behavior and exhibits the changes in nature, 
representing the real-time manufacturing system. While it is a popular validation tool among researchers, the study argues the 
limitation and less effectiveness of having one validation due to a lack of prediction effectiveness. 
 
In order to improve the mathematical model’s effectiveness, it is proposed to validate the static properties. The static properties 
calculate the model performance in a time-invariant steady-state, and the change takes place instantaneously.  Using the input 
setting from simulation optimization, the mathematical model and mathematical programming comparison show similar data for 
each experiment of various input settings (see Tables 5 and 6). This method reinforces the validation of static properties as evidence 
to improve mathematical model robustness for prediction effectiveness. The importance of this validation reveals that the 
manufacturing system contains both dynamic and static properties, which are required in the proposed mathematical model. 
 
Based on the results, we conclude that the model has a high satisfactory quality estimate and is acceptable for performing 
prediction. The error between the mathematical model and sampling real-time data in the study is in the range 0%–9.9% marginally, 
which is a relatively high-quality estimate (Eickemeyer et al., 2014). Based on the findings, it is recommended that simulation 
optimization is the better alternative data mining when compared with other methods as it exhibits the dynamic properties of the 
system. It is also recommended to use additional static properties of the model for validation to demonstrate prediction effectiveness 
to fit into the system's behavior. The inclusion of static properties of validation in parallel with dynamic properties enhances the 
effectiveness of the proposed mathematical model to produce closer results in manufacturing systems exhibiting both types of 
behavior.   
 
The effectiveness of the mathematical model includes its capability to adapt the changes in various input values of higher number 
of variables and at the same time, it can produce acceptable error of the output variable. Two other key elements that led to this 
contribution are randomness in 25 experiments and the acceptance of other real-time input variables in the simulation model 
(validation of individual processes). Due to this result, the study proposes this enhanced methodology to establish a more effective 
mathematical model in manufacturing systems to address the limitations that the previous studies faced.  
 
4. Conclusion 
In this paper, an enhanced methodology that involves mathematical model development through simulation optimization and its 
concurrent static validation properties is proposed to improve the mathematical model in manufacturing systems. The main goal 
of the mathematical model is to minimize the gap between theory and practice. The data mining on simulation optimization is used 
for the mathematical model development. The developed mathematical model is further validated with static properties of 
mathematical programming. The paper emphasizes the quantitative analysis during the mathematical model development and 
validation. The effectiveness of the developed mathematical model is evaluated with real-time data. The mathematical model and 
real-time data result show that the model is satisfactory and acceptable for prediction analysis in the manufacturing system. Future 
studies must focus on enhancing the proposed methodology for the mathematical model development and its validation to narrow 
the gap between the mathematical model and real-time data. The findings can be used to continuously enhance the developed 
mathematical model and apply the model in real-time manufacturing systems in the future. Although this methodology is an 
improved version of current literature, the mixture of data mining on dynamic properties of the simulation model and static 
properties of mathematical programming in this proposed methodology provides a new platform for researchers to address further 
these limitations for future enhancement of the mathematical model. 
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