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Abstract 

The knapsack problem with setup (KPS) is a challenging problem in combinatorial optimization. This paper deals 
with the generalized problem of KPS called multiple-choice knapsack problem with setup (MCKS). The MCKS has 
several applications in industry such as the assignment of production to plants. A combination of Iterated local search 
with integer linear programming is provided and enhanced by LP-relaxation to solve the MCKS. The provided mat 
heuristic is called LP-ILS&IP. A sensitivity analysis is provided the justify the components of the LP-ILS&IP and 
numerical experiments are conducted on a set of 120 benchmark instances to show the competitiveness of the LP-
ILS&IP compared to the best state-of-the-art solving techniques.  
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1. Introduction
This paper deals with the multiple-choice knapsack problem with setup (MCKS) (Yang 2006; Adouani et al. 2019). 
The MCKS has several applications in industry e.g. the assignment of products (families of products) to plants is 
equivalent to the assignment of items (class of items) to knapsacks in MCKS. In fact, the selection of one plant to 
produce each item is justified by: the capacity and global budget that limit the production, the procurement of raw 
materials and logistics operation costs that differ from a plant to another, and the setup and running-in times that is of 
utmost importance. Moreover, items from the same family can be produced in different plants respecting Jordan and 
Graves (1995). In addition, to move from one item production to another, a setup is required. We note that the setup 
between items from the same family is quite negligible e.g. simple setting is required, but the setup from one class of 
items to another is time consuming and costly e.g. change the molds in the molding machine. The price of an item 
depends on the plant where it is produced i.e. the profit for an item varies from a plant to another i.e. plant dependent 
parameter, but the processing time remains the same i.e. plant independent parameter.  

The MCKS is a general extension of the classical knapsack problem (KP) (Martello and Toth 1990) where the items 
belong to classes and an item can be processed in a knapsack only if its class is assigned to this knapsack. The 
installation of a class requires setup time i.e. resource consumption and cost. MCKS is a generalization of KPS (Chebil 
and Khemakhem 2015) to multiple knapsacks. It is also a special case of MKPS (Lahyani et al. 2019) while items 
from the same class can be assigned to different knapsacks. The generalized quadratic multiple knapsack problem 
(GQMKP) (Avci and Topaloglu 2017) is a special case of MCKS that considers additional profit when two items (j, 
j’) are assigned to the same knapsack.  

Approximate and exact methods have been developed for KPS variants. Yang and Bulfin (2009) proposed an exact 
approach based on a B&B for KPS and showed its limitation for large instances. Yang et al (2009) provided a B&B 
framework based on the two-stage strategy for the KPS, and particularly analyzed the influence of the correlation 
between the profit and weight of items on the effectiveness of the framework. Chebil and Khemakhem (2015) 
proposed a DP algorithm and showed its limitation for large-scale KPS instances (up to 10000 items). For the same 
problem, Pferschy and Rosario (2018) provided a DP algorithm based on reduction techniques that outperforms the 
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DP of Chebil and Khemakhem (2015). Della et al. (2017) proposed an exact method for the KPS that reduces the 
solution space by dividing the decision variables into two levels: the first level reducing the number of classes with a 
continuous relaxation, and the second level optimizing the items within each class using ILP. Amiri (2019) showed 
the merit of using the Lagrangean relaxation method to solve the KPS problem. Amiri (2019) provided a Lagrangian 
relaxation-based solution algorithm, and Khemakhem and Chebil (2016) proposed a tree search heuristic to solve the 
KPS problem. Avci and Topaloglu (2017) provided a multi-start iterated local search to solve the generalized quadratic 
multiple knapsack problem (GQMKP). Tlili et al. (2016) provided an iterated variable neighborhood descent hyper 
heuristic for the quadratic multiple knapsack problems (QMKP). Akcay et al. (2007) proposed a greedy heuristic for 
the general multidimensional knapsack problem. Hifi and Wu (2015) proposed a Lagrangean heuristic-based 
neighborhood search for the multiple-choice multi-dimensional knapsack problem.  

Approximate and exact methods show drawbacks and advantages, when solving complex problems in general and 
KPS variants. Therefore, the hybridization of exact and approximate methods has been performed by many researchers 
to take advantages of both approaches (Dumitrescu and Stützel 2003, Puchinger and Raidl 2005; Jourdan et al. 2009;
Blum and Calvo 2015; Hernandez et al. 2019; Turkeš et al. 2021). The matheuristics combining mathematical 
programming and metaheuristics have particularly received the intension of many researchers (Hanafi et al. 2010). 
Burke et al. (2010) provided a matheuristic combining variable neighborhood search (VNS) and integer programming 
(IP) for Highly Constrained Nurse Rostering Problems. A matheuristic combining Linear Programming (LP) and Tabu 
Search (TS) to solve the multiple knapsack problem (MKP) is provided by Vasquez and Hao (2001), where the LP is 
used to solve exactly a relaxation of the problem, and the TS is used to explore the solution neighborhood.  

Few works dealt with the MCKS. The related mathematical model is provided in (Yang 2006; Adouani et al. 2019). 
Due to the complexity of the MCKS (see Section 5), Adouani et al. (2019) provided a matheuristic combining VNS 
with IP that shows a high performance when tested on a set of 120 instances. Inspired from Adouani et al. 2019, we 
provide and experiment a new idea of a matheuristic combining LP-relaxation enhancing iterated local search (ILS) 
technique with IP. The provided matheuristic is called LP-ILS&IP and relies on an effective exploration of the solution 
space by separating variables into two levels like in Della et al. (2017): The LP-relaxation enhancing ILS technique 
assign classes to knapsacks and the IP includes items to knapsacks. The numerical results provided in Section 4 show 
the performance of the LP-ILS&IP approach in comparison to the IP (solved with CPLEX 12.7) and the VNS&IP of 
Adouani et al. (2019) on the existing benchmark of MCKS. The rest of the article is organized as follows: Section 2 
contains the mathematical formulation of MCKS. In Section 3, we detail the provided LP-ILS&IP matheuristic. The 
experiments and analysis are provided in Section 4. In Section 5, we conclude the work and give future research 
perspectives.  

2. Methods (Problem formulation)
Let consider a set of  𝑀𝑀 knapsacks, a set of 𝑁𝑁 classes of items and a limited budget 𝑏𝑏. Each class 𝑖𝑖 ∈ {1, … , 𝑁𝑁} is 
composed of 𝑛𝑛𝑖𝑖 items. Let 𝑐𝑐𝑖𝑖𝑖𝑖, negative integer number (𝑐𝑐𝑖𝑖𝑖𝑖 < 0 ), denotes the setup cost of class 𝑖𝑖 in knapsack  𝑚𝑚, 
and 𝑑𝑑𝑖𝑖 , a positive integer number ( 𝑑𝑑𝑖𝑖 > 0) , denotes the setup budget consumption related to class 𝑖𝑖. Each 
item 𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖} of a class 𝑖𝑖 has a profit 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  when assigned to m ( i ∈ {1,…, N}, j ∈ {1,…,  𝑛𝑛𝑖𝑖}, m ∈ {1,…, M}), and 
a budget consumption 𝑎𝑎𝑖𝑖𝑖𝑖 (i ∈ {1,…, N}, j ∈ {1,…, 𝑛𝑛𝑖𝑖}). For classes and items assignment to knapsacks, we consider 
two sets of binary decision variables 𝑦𝑦𝑖𝑖𝑖𝑖  and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, respectively. The variable 𝑦𝑦𝑖𝑖𝑖𝑖 is equal to 1 if knapsack 𝑚𝑚 includes 
items belonging to class 𝑖𝑖 and 0 otherwise. The variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  is equal to 1 if item 𝑗𝑗 of class 𝑖𝑖 is included in knapsack 
𝑚𝑚, 0 otherwise. The IP model for MCKS is expressed as follows in (Yang 2006; Adouani et al. 2019): 

 Max Z = � �(𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

N

𝑖𝑖=1

𝑀𝑀

m=1

)  (1) 

s.t.

�  
M

𝑖𝑖=1

�(𝑑𝑑𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + � 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ) ≤ 𝑏𝑏 

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (2) 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 ;  ∀ 𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}, ∀𝑚𝑚 ∈ {1, … , 𝑀𝑀}  (3) 
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� 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖=1

≤ 1  ;  ∀𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}                                                   (4)      

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1} ;  ∀𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}, ∀𝑚𝑚 ∈ {1, … , 𝑀𝑀}  (5) 
 

The model contains 1+M*S+S constraints and M*N+M*S variables, where S=∑ 𝑛𝑛𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . Objective function (1) 

maximizes the profit of selected items minus the setup costs of the selected classes for all knapsacks. Constraint (2) 
guarantees that the sum of the total weight of selected items plus the class setup cost consumption does not exceed the 
budget b. Constraint (3) ensures that each item is selected only if it belongs to a class that has been setup. Constraint 
(4) guarantees that each item is selected to be realized in one knapsack at most. Constraint (5) guarantees that the 
decision variables are binary. 
 
The CPLEX 12.7 solver (with default setting) shows its limitation to solve this IP model, especially when considering 
large instances (see section 4): only 27 instances have been solved to optimality, and the computation for 93 instances 
terminates with an out of memory or stopped at a limit of computation time equal to 1 h. This result motivated us to 
invest in the development of an efficient mat heuristic that we detail in the following section. 
 
3. LP-ILS&IP: efficient Mat heuristic for MCKS  
The based idea of our approach is to divide the decision variables into two levels: The first level is about assigning 
classes to knapsacks by approximately determining the variables 𝑦𝑦𝑖𝑖𝑖𝑖 (𝑖𝑖 ∈ {1, … , 𝑁𝑁}; 𝑚𝑚 ∈ {1, … , 𝑀𝑀}) using the LP-
relaxation enhancing ILS technique. The second level solves the MCKS[Y] model (objective function 12, and 
constraints 13-14) to determine the variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  (𝑖𝑖 ∈ {1, … , 𝑁𝑁}; 𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖};  𝑚𝑚 ∈ {1, … , 𝑀𝑀})  using ILP to 
determine the optimal values of  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖. Note that the found values of 𝑦𝑦𝑖𝑖𝑖𝑖 and  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 does not necessarily represent an 
optimal solution of MCKS. 
 

Algorithm 1.  LP − ILS&IP  
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎  
𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ← 1; 𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖max  ← 𝑁𝑁; 
𝑀𝑀0  ← Construction heuristic RBH  
𝐵𝐵𝑖𝑖𝐵𝐵𝑑𝑑 ← 𝑀𝑀0  ; 𝑀𝑀cur  ← 𝑀𝑀0  ; 
While (𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖max  ) do    
    ( 𝑌𝑌,� 𝑈𝑈𝐵𝐵,����� ) ← Exchange-classes (𝐵𝐵𝑖𝑖𝐵𝐵𝑑𝑑); 
      𝑌𝑌 ← Perturb-classes (𝑌𝑌,� 𝑈𝑈𝐵𝐵 �����); 
     𝑀𝑀cur  ← 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐌𝐌𝐌𝐌𝐌𝐌𝐒𝐒[𝐘𝐘]; 
    If (𝑀𝑀cur  > 𝐵𝐵𝑖𝑖𝐵𝐵𝑑𝑑) then 
         𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ← 1;  
         𝐵𝐵𝑖𝑖𝐵𝐵𝑑𝑑 ← 𝑀𝑀cur  ; 
   Else  
        𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ← iter + 1; 
   Endif 
Endwhile    
Return Best 

 
First, the LP-ILS&IP begins with a construction method called reduction-based heuristic (called RBH) to obtain an 
initial solution. Second, the LP based ILS with its two procedures: LP-relaxation enhancing exchange move denoted 
exchange-classes procedure (EC), and LP-relaxation enhancing perturbation move denoted Perturb-classes 
procedure (PC) are applied to improve the values of 𝑦𝑦𝑖𝑖𝑖𝑖 and generate a new MCKS[Y].  Third, the MCKS[Y] is 
solved using CPLEX solver. As the values of 𝑦𝑦𝑖𝑖𝑖𝑖 are not guaranteed to be optimal, we repeat these two latter steps 
until stopping condition is met. Algorithm1 presents the framework of the LP-ILS&IP approach. The three 
components of the LP-ILS&IP: construction heuristic RBH, Exchange-classes local search, and Perturb-classes 
procedure, are explained in the following sections. 
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3.1 Construction heuristic RBH  
The MCKS is a special case of the (G)MKPS while considering only one global budget and multiple knapsacks. To 
generate a first solution for the MCKS, we were inspired by the RBH of (Adouani et al. 2020) and propose the 
following procedure composed of three steps: 
 
First step: We reduce the size of the MCKS instance so that all the items of each class 𝑖𝑖 ∈ {1, … , 𝑁𝑁} are substituted 
by a single element named jumbo element, that is identified by a weight 𝑤𝑤𝑖𝑖 and a profit 𝜌𝜌𝑖𝑖𝑚𝑚  with 𝑤𝑤𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑖𝑖=1  and 

𝜌𝜌𝑖𝑖𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1  𝑖𝑖 ∈ {1, … , 𝑁𝑁}; 𝑚𝑚 ∈ {1, … , 𝑀𝑀}. We consider variable  𝜒𝜒𝑖𝑖𝑖𝑖  equal to 1 if the jumbo element  𝑖𝑖  is 

assigned to knapsack 𝑚𝑚, 0 otherwise. As the weight 𝑤𝑤𝑖𝑖  of the jumbo element 𝑖𝑖 can exceed the budget 𝑏𝑏, the variables 
 𝜒𝜒𝑖𝑖𝑖𝑖 are relaxed i.e. 0 ≤  𝜒𝜒𝑖𝑖𝑖𝑖 ≤ 1 and variables 𝑦𝑦𝑖𝑖𝑖𝑖 remain binary to provide a feasible combination of  𝑦𝑦𝑖𝑖𝑖𝑖 variables 
(vector Y) and to ensure that we will count the total setup cost of a class 𝑖𝑖 even if we select a fraction of the jumbo 
item of this class (the same for the setup budget consumption). Thus, the reduced MCKS, named 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟  is 
mathematically formulated as follows: 

                Max 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 = � �(𝜌𝜌𝑖𝑖𝑖𝑖 𝜒𝜒𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖)                                       (7)       
N

𝑖𝑖=1

𝑀𝑀

m=1

 

                           s.t. 

              �  
𝑀𝑀

𝑖𝑖=1

�( 𝑤𝑤𝑖𝑖 𝜒𝜒𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖

𝑁𝑁

i=1

𝑦𝑦𝑖𝑖𝑖𝑖) ≤ 𝑏𝑏                                                    (8)    

    𝜒𝜒𝑖𝑖𝑖𝑖  ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 ;  ∀𝑖𝑖 ∈ {1, … , 𝑁𝑁}; 𝑚𝑚 ∈ {1, … , 𝑀𝑀}                                      (9) 

�  𝜒𝜒𝑖𝑖𝑖𝑖 ≤ 1
 M

𝑖𝑖=1

 ; 𝑖𝑖 ∈ {1, … , 𝑁𝑁}                                                                     (10) 

                                0 ≤  𝜒𝜒𝑖𝑖𝑖𝑖 ≤ 1,  𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1};  𝑖𝑖 ∈ {1, … , 𝑁𝑁}; 𝑚𝑚 ∈ {1, … , 𝑀𝑀}                          (11)      
 
Second step: This step consists of optimally solving the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟  using CPLEX (12.7), which returns a feasible 
combination of the setup variables 𝑦𝑦𝑖𝑖𝑖𝑖 denoted by 0-1 vector 𝑌𝑌𝑖𝑖 (𝑚𝑚 ∈ {1, . . , 𝑀𝑀}). The setup variables are fixed to 1 
for selected classes (𝑦𝑦𝑖𝑖𝑖𝑖 = 1) and fixed to 0 for free classes (𝑦𝑦𝑖𝑖𝑖𝑖 = 0). Let 𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑖𝑖

1 ∪ 𝑌𝑌𝑖𝑖
0 , with 𝑌𝑌𝑖𝑖

1 =
{𝑖𝑖 ∈ {1, … , 𝑁𝑁}|𝑦𝑦𝑖𝑖𝑖𝑖 = 1} and Ym

0 = {i ∈ {1, … , N}|yim = 0} . We note that the obtained values for  𝜒𝜒𝑖𝑖𝑖𝑖 are not 
important in this step and will be optimally solved in the next step.  

 
Third step: Once the classes (vector 𝑌𝑌𝑖𝑖) are fixed, we determine the 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  variables by optimally solving the 
following MCKS[Y ] model:  

 Max 𝑧𝑧 =   𝜃𝜃 + � � � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

𝑖𝑖∈𝑌𝑌𝑚𝑚
1

𝑀𝑀

𝑖𝑖=1

                                                    (12)   

                         s.t. 
                                 Constraint   (4) 

� � � 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

i∈𝑌𝑌𝑚𝑚
1

𝑀𝑀

𝑖𝑖=1

  ≤ 𝑏𝑏′                                                                     (13) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} ; ∀𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖
1  ; 𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}; ∀𝑚𝑚 ∈ {1, … , M}                    (14)   

 
Where constants  𝜃𝜃 = ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖

 
i∈𝑌𝑌𝑚𝑚

1
𝑀𝑀
𝑖𝑖=1 , 𝛾𝛾 = ∑ ∑ 𝑑𝑑𝑖𝑖

 
i∈𝑌𝑌𝑚𝑚

1
𝑀𝑀
𝑖𝑖=1 , and   𝑏𝑏′ = 𝑏𝑏 − 𝛾𝛾.  The   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌 ]  is solved using 

CPLEX. The initial solution is represented by two vectors of variables: Y= {𝑦𝑦𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 𝑁𝑁;  𝑚𝑚 = 1, … , 𝑀𝑀} and 𝑋𝑋 =
{𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑁𝑁;  𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖; 𝑚𝑚 = 1, … , 𝑀𝑀}.  
 
3.2 LP-relaxation enhancing exchange (EC) 
The EC local search starts by the solution obtained by solving the MCKS(Y) (denoted 𝐵𝐵𝑖𝑖𝐵𝐵𝑑𝑑)  and consists of 
efficiently permute classes between different knapsacks i.e. update some values of Y from 0 to 1 and vice versa. More 
precisely, we swap the values of  𝑦𝑦𝑖𝑖𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖

  and   𝑦𝑦𝑖𝑖𝑗𝑗 ∈ 𝑌𝑌𝑗𝑗
   ( ∀ 𝑖𝑖, 𝑗𝑗 ∈ {1, … , 𝑁𝑁}; ∀ 𝑚𝑚 ∈ {1, … , 𝑀𝑀 − 1}, ∀𝑘𝑘 ∈ {m +

1, … , 𝑀𝑀}). Six types of swaps moves (𝑵𝑵𝟏𝟏 to 𝑵𝑵𝟔𝟔) have been considered as neighborhood structures within the EC:            
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- 𝑵𝑵𝟏𝟏: swap class 𝑖𝑖 from knapsack 𝑚𝑚 with class 𝑗𝑗 from knapsack 𝑘𝑘 i.e. 𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖
1  and 𝑗𝑗 ∈ 𝑌𝑌𝑗𝑗

1. 
- 𝑵𝑵𝟐𝟐: swap class 𝑖𝑖 from knapsack 𝑚𝑚 with two classes 𝑗𝑗 and 𝑗𝑗’  from knapsack 𝑘𝑘 i.e.  𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖

1  and 𝑗𝑗, 𝑗𝑗′ ∈ 𝑌𝑌𝑗𝑗
1. 

- 𝑵𝑵𝟑𝟑 : swap two classes 𝑖𝑖 and 𝑖𝑖‘ from knapsack 𝑚𝑚 with class 𝑗𝑗 from knapsack k i.e.  𝑖𝑖, 𝑖𝑖′ ∈ 𝑌𝑌𝑖𝑖
1  and 𝑗𝑗 ∈ 𝑌𝑌𝑗𝑗

1. 
- 𝑵𝑵𝟒𝟒: swap class 𝑖𝑖 from knapsack 𝑚𝑚 with class j from the set of non-selected classes i.e. 𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖

1 ;  𝑗𝑗 ∈ 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟, 
where, 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 = ⋂ 𝑌𝑌𝑖𝑖

0𝑀𝑀
𝑖𝑖=1   contain the free families.   

- 𝑵𝑵𝟓𝟓: swap class 𝑖𝑖 from knapsack 𝑚𝑚 with two classes j and j’ from 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟  i.e. 𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖
1  and 𝑗𝑗, 𝑗𝑗′ ∈ 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 

- 𝑵𝑵𝟔𝟔: swap two classes 𝑖𝑖 and 𝑖𝑖’ from knapsack 𝑚𝑚 with class 𝑗𝑗 from 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 i.e. 𝑖𝑖, 𝑖𝑖′ ∈ 𝑌𝑌𝑖𝑖
1  and 𝑗𝑗 ∈ 𝑌𝑌𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟. 

 
After each swap, a new combination of 𝑦𝑦𝑖𝑖𝑖𝑖 variables are obtained and hence a new MCKS[Y] model is determined. 
Let denote the  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 

𝐿𝐿𝐿𝐿 be the continuous relaxation of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] by relaxing the integrity constraint of 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 
variables (14). To save computational effort, before optimally solving 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌], we search the best 𝑈𝑈𝐵𝐵𝑌𝑌  by solving 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 

𝐿𝐿𝐿𝐿 for combinations of 𝑦𝑦𝑖𝑖𝑖𝑖 variables obtained by iteratively applying the six neighborhood structures. The 
pseudo code of EC is present in Algorithm 2. 
 

Algorithm 2: LP-relaxation enhancing exchange 
 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 Best solution for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ,  and 𝑁𝑁𝑗𝑗 (k ={1,…,6}) 
  𝑈𝑈𝐵𝐵best  ← Best; 
While (𝑘𝑘 ≤ 6) 𝒅𝒅𝒅𝒅     
    𝑌𝑌 ← Apply 𝑁𝑁k  ( 𝑈𝑈𝐵𝐵best  ); 
    𝑈𝑈𝐵𝐵Y  ← solve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 

𝐿𝐿𝐿𝐿; 
    If ( 𝑈𝑈𝐵𝐵Y  > 𝑈𝑈𝐵𝐵best  ) then 
         𝑈𝑈𝐵𝐵best  ←  𝑈𝑈𝐵𝐵Y  ;  
         𝑌𝑌𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏  ← 𝑌𝑌; 
    Else  
         𝑘𝑘 ← k + 1; 
    Endif 
Endwhile    
Return  𝑈𝑈𝐵𝐵best   and  𝑌𝑌𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏 vector  

 
3.3 LP-relaxation enhancing perturbation (PC) 
The provided PC strongly perturbs the best solution so that to jump the local optima and give a new starting solution. 
The PC is composed of two steps: 

Step 1: Let N be the number of selected classes that can lead to an optimal solution of MCKS. N is bounded by solving 
two linear continuous problems 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑚𝑚 . The main idea consists of minimizing and maximizing 
 𝑁𝑁𝑀𝑀 = ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑖𝑖=𝑁𝑁
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1  (15) with constraints (2– 4),  new constraint (16) guaranteeing that the total profit must be 

superior to the best solution found, and constraint (17) of non-integrity. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑚𝑚  are obtained, 
respectively: 

𝑀𝑀𝑎𝑎𝑥𝑥 or 𝑀𝑀𝑖𝑖𝑛𝑛  𝑁𝑁𝑀𝑀 = � � 𝑦𝑦𝑖𝑖𝑖𝑖

𝑖𝑖=𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝑖𝑖=1

                                                                                (15)  

�  
𝑀𝑀

𝑖𝑖=1

�(𝑑𝑑𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + � 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ) ≤ 𝑏𝑏 

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

                                                         (2) 

  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 ;  ∀ 𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}, ∀𝑚𝑚 ∈ {1, … , 𝑀𝑀}          (3) 

                  � 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖=1

≤ 1  ;  ∀𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}                                      (4)   

                                        � �(𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) ≥ 
𝑛𝑛𝑖𝑖

𝑖𝑖=1

N

𝑖𝑖=1

𝑀𝑀

m=1

𝑍𝑍 (𝑀𝑀𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏)                                         (16)  
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                𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖 ∈ [0,1];  ∀𝑖𝑖 ∈ {1, … , 𝑁𝑁}, ∀𝑗𝑗 ∈ {1, … , 𝑛𝑛𝑖𝑖}, ∀ 𝑚𝑚 ∈ {1, … , 𝑀𝑀}  (17) 
 

The main idea is to iteratively solve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑚𝑚 to obtain respectively the minimum and maximum 
numbers of classes 𝑁𝑁𝑀𝑀max  and 𝑁𝑁𝑀𝑀min  . The PC starts by randomly choosing N’ families, N’ ∈ [𝑁𝑁𝑀𝑀min  , 𝑁𝑁𝑀𝑀max  ] and 
randomly affecting the N’ classes to randomly selected knapsacks i.e. randomly fixing 𝑦𝑦𝑖𝑖𝑖𝑖  variables. 

Step 2: for each new Y vector, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 
𝐿𝐿𝐿𝐿 is solved optimally using ILP i.e. obtaining the upper bound  𝑈𝑈𝐵𝐵Y   of  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 
 . The new feasible vector 𝑌𝑌 is accepted only if (𝑈𝑈𝐵𝐵Y   >  𝑈𝑈𝐵𝐵best  ), while 𝑈𝑈𝐵𝐵best   is the best upper bound 

founded. 

The pseudo code of Perturb-classes procedure is presented in Algorithm 3. 
 

Algorithme 3: LP-relaxation enhancing perturbation  
Input 𝑌𝑌,�  and 𝑈𝑈𝐵𝐵,����� returned by exchange-families 
𝑁𝑁𝑀𝑀min  ← Solve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑛𝑛; 
𝑁𝑁𝑀𝑀max  ← Solve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑚𝑚; 
𝑈𝑈𝐵𝐵best  ← 𝑈𝑈𝐵𝐵���� ; 
 𝒀𝒀𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏 ← Y; 
𝑭𝑭𝒅𝒅𝑭𝑭 all N’ in [ ⌈𝑁𝑁𝑀𝑀min  ⌉, ⌊𝑁𝑁𝑀𝑀max  ⌋ ] do 
      𝐿𝐿𝑖𝑖𝐵𝐵𝑑𝑑 ← Randomly choose N’ classes from {1,…,N}; 
       𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖max  ← N′;  𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ← 0;     
      𝑾𝑾𝑾𝑾𝒊𝒊𝑾𝑾𝑾𝑾 (𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 <  𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖max  ) 
              𝑌𝑌 ← Randomly assign all 𝑁𝑁’ classes to 𝑀𝑀 knapsacks; 
            𝑈𝑈𝐵𝐵Y   ← solve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑌𝑌] 

𝐿𝐿𝐿𝐿; 
           𝑰𝑰𝑰𝑰 ( 𝑈𝑈𝐵𝐵Y   >  𝑈𝑈𝐵𝐵best   ) 𝒊𝒊𝑾𝑾𝑾𝑾𝒊𝒊   
                 𝑈𝑈𝐵𝐵best   ←  𝑈𝑈𝐵𝐵Y  ; 
                  𝒀𝒀𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏  ← 𝑌𝑌; 
           𝑬𝑬𝒊𝒊𝒅𝒅𝒊𝒊𝑰𝑰  
           𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 ← iter + 1; 
      𝑬𝑬𝒊𝒊𝒅𝒅𝑬𝑬𝑾𝑾𝒊𝒊𝑾𝑾𝑾𝑾       
𝑬𝑬𝒊𝒊𝒅𝒅 𝑰𝑰𝒅𝒅𝑭𝑭 
𝑹𝑹𝑾𝑾𝒊𝒊𝒊𝒊𝑭𝑭𝒊𝒊 best feasible   𝒀𝒀𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏 vector  

 
4. Computational experiments   
The provided LP-ILS&IP is developed using C programming language and run on a personal computer with 2.4 GHZ 
intel core 2 duo B960 processor and 4 GB of memory. We used CPLEX 12.7 with default setting as solver. For the 
experimentation, we considered the benchmark instances from literature (Adouani et al. 2019) with a total number of 
knapsacks M in {5, 10, 15,20}, a small budget, a total number of classes N in {10, 20,30}, and a total number of items 
𝑛𝑛𝑖𝑖 for each class i in [90,110]. Before the experimentation results, we provide in what follows the performance 
analysis of the main LP-ILS&IP components: RBH, EC, and PC. We consider three combinations: the RBH alone, 
the RBH with Exchange-families, and the three components together (RBH, Exchange-classes and Perturb-families). 
We consider the benchmark set of instances with M={5, 10, 15, 20}. Fig.1 shows the average deviation 
𝑑𝑑𝑖𝑖𝑑𝑑 (%) between each combination’s solutions (named  combinaitionsol ) and the best know solutions (named 
bestsol) on each set of instances, where  𝑑𝑑𝑖𝑖𝑑𝑑 (%) = 100 ∗ �bestsol−combinationsol

bestsol
�. 
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Figure 1.  Performance of the three LP-ILS&IP components. 
 
Figure 1 shows the performance of the RBH heuristic on all instances sets with a dev% average of 4.57%. The 
performance of the RBH decreases when the number of knapsacks increases. We see a considerable improvement of 
3.16% on average by adding Exchange-classes to RBH (second combination), and a supplementary improvement of 
1.41% by adding Pertub-classes (Third combination).  
 
Table 1 summarizes the results of ILP (solved with CPLEX 12.7), VNS&IP (Adouani et al. 2019) and LP-ILS&IP on 
the 120 benchmark instances provided in (Adouani et al. 2019). Each line presents the average of 10 instances with 
the same values of M and N. The first two columns present the instance set (values of 𝑀𝑀 and 𝑁𝑁 ), and the next three 
columns show the numerical results provided by the ILP, the VNS&IP and the ILS-M. For each instance, we consider 
10 independent runs and report the average and best solutions of these 10 runs and the average of CPU times of the 
10 runs in the following link: https://goo.gl/w44aUs. The notations 𝑀𝑀𝑆𝑆𝑆𝑆𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏, 𝑀𝑀𝑆𝑆𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎 and CPU report the average of the 
10 best solutions found, the average of the 10 average solutions found and the average of the 10 average CPU times 
(in seconds), respectively. We note that ILP is stopped at a limit of computation time equal to one hour. The 
columns 𝑑𝑑𝑖𝑖𝑑𝑑 report the standard deviation from the best solution obtained by the algorithm named approachsol (𝐼𝐼𝐼𝐼𝑏𝑏𝑠𝑠𝑠𝑠, 
or 𝑀𝑀𝑆𝑆𝑆𝑆𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏 ) and the best known solution, which is the best among all, named bestsol known:  𝑑𝑑𝑖𝑖𝑑𝑑 (%) = 100 ∗
�bestsol known−approachsol

bestsol known
� . 

The results in Table 1 show that the LP-ILS&IP outperforms the VNS&IP and ILP (using CPLEX). More precisely 
the ILP, VNS&IP and LP-ILS&IP obtain solutions with average dev of 0.107%, 0.001% and 0.000% respectively.  
The detailed results are provided in the following link: https://goo.gl/w44aUs and show that the ILP (using CPLEX) 
solved only 27/120 instances to optimality in less than one hour CPU time, and for the rest of instances it terminates 
with an out of memory or exceeds the execution time limit of one hour. On contrary, the LP-ILS&IP finds the best 
solutions for all instances except 2/120 (instances 5x30x1 and 5x30x7 in detailed results: https://goo.gl/w44aUs) and 
92 new best-known solutions, while VNS&IP finds the best solutions for 28/120 instances. In addition, for the 
instances where the average and the best results are not the same, the average dev between the best and the average 
results are 0.001% for LP-ILS&IP and 0.014 % for VNS&IP, which proves the robustness of the LP-ILS&IP.  
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Table 1. Numerical results on the benchmark instances (Adouani et al. 2019) 

Table 1 also shows the performance of the LP-ILS&IP on benchmark instances in terms of computation time. We 
notice that LP-ILS&IP is considerably faster on average than VNS&IP and ILP: 2.17 seconds with LP-ILS&IP versus 
13 seconds with VNS&IP and 2868 seconds with ILP. 

5. Conclusion
In this article, we studied the multiple-choice knapsack problem with setup (MCKS). A new mat heuristic called LP-
ILS&IP combining LP-relaxation enhancing ILS with ILP is provided to solve the MCKS. The performance of the 
LP-ILS&IP components are studied. The LP-ILS&IP is tested on 120 benchmark instances. Numerical results showed 
the effectiveness and the efficiency of LP-ILS&IP compared to IP (solved with CPLEX 12.7) and the best algorithm 
in literature (VNS&IP). The LP-ILS&IP particularly reaches optimality for 25 instances and provides best-known 
solutions for 118/120 instances.  For future work, we expect to improve and generalize our LP-ILS&IP algorithm to 
deal with other variants of KP problems such as generalized knapsack sharing problem (GKSP).  
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