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Abstract 
Over the last decade, a dramatic transform happened in information sources and their use in the digital era. Social 
media networks have brought a new way of expressing the sentiments of individuals. The matter went beyond being 
an expression of separate opinions of some individuals, as companies, official institutions and various organizations 
have pages on the communication sites through which they share various developments, products, opinions, and 
sometimes even official decisions. Social media become a medium with a huge amount of information where users 
can view the opinion of other users that are classified into different sentiment classes and are increasingly growing as 
a key factor in decision making. Twitter is a microblogging service built to describe what is happening anywhere 
worldwide, at any moment. It’s a fascinating forum for more than 500 million messages per day from about 1.3 billion 
people. Twitter data is short, specific, and easily accessible, that’s why it has become one of the best sources for 
sentimental analysis and knowledge discovery by data streams mining. One of the major issues that affect data streams 
mining is that the underlying distribution of data may change over time leading to the phenomenon of concept drift. 
Identification and handling concept-drift in Data Streams is present area of interest. In this study, we present an 
approach to explore and understand the concept drift occurring in Twitter data streams. Two machine learning 
technique Naive Bayes Classifier and Extreme Gradient Boosting (XGBoost) Classifier were applied on more than 
300K tweets from International Technology Companies, and to detect / understand concept drift and specify whether 
concept drift in a technology area is a radical or an incremental innovation. 

Keywords 
Tweets Mining, Social Media Analysis, Concept Drift, Data Stream, Technology Tweets. 

1. Introduction
The acceleration in the volume of data produced daily is growing constantly due to the increased number of 
applications that generate big amounts of data at a great velocity, such as the content and reactions on social media, 
advertisements click, shares, transactions, streaming content, the Internet of Things (IoT) realms and so much more. 
The need to deal with huge amounts of data has motivated the research in the field of data mining aiming to generate 
knowledge from data, which can be translated as discovering of new and non-trivial patterns, relations, and trends in 
data useful to the user (Schuh, et al. 2019) 

Over the last decade, a dramatic transform happened in information sources and their use in the digital era. Social 
media networks have brought a new way of expressing the sentiments of individuals. The matter went beyond being 
an expression of separate opinions of some individuals as companies, official institutions and various organizations 
have pages on the communication sites through which they share various developments, products, opinions, and 
sometimes even official decisions. Social media become a medium with a huge amount of information where users 
can view the opinion of other users that are classified into different sentiment classes and are increasingly growing as 
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a key factor in decision making. 

Twitter is a microblogging service built to describe what is happening anywhere worldwide, at any moment. Twitter 
data is short, specific and easily accessible, that’s why it has become one of the best sources for sentimental analysis 
and knowledge discovery by data streams mining. Sentiment analysis (SA) or opinion mining (OM) is the study of 
public opinions, sentiments, attitudes, and emotions expressed in social media (Bhuvaneswari and Srividhya 2017). 
The sentimental analysis is an intricate process, which consists of several tasks such as sentiment analysis subjectivity 
analysis, opinion mining and sentiment orientation. It is considered a novel, evolving new research field in machine 
learning (Saberi and Saad, Sentiment Analysis or Opinion Mining: A Review 2017)  

One of the major issues that affect data streams mining is that the underlying distribution of data may change over 
time leading to the phenomenon of concept drift. Concept Drift Analysis is the integrated study of identifying and 
handling Concept-Drift in this evolving stream of data  (M 2015). In a concept drift context, we can discard the old 
data and retrain the model using new observations (sudden drift) or combine the old data with the new data to update 
the model (gradual drift) or maintain the model as unchanged (no drift)  (Yang, et al. 2022). 

1.1 Objectives 
This paper aims at exploring and understanding the concept drift occurring in Twitter data streams of international 
technology companies over specific period (almost 10 years), by applying two machine learning technique Naive 
Bayes Classifier & XGBoost Classifier, trying to answer the following two research questions 

• RQ1: Is concept drift in a technology area a radical or an incremental innovation?

• RQ2: Can we understand/explore a technological change (innovation) by analyzing tweets?

The remainder of this paper is structured as follows: First, containing the most important work related to this topic. 
After that, a section explaining the methodology of this paper will be provided. In the next section, the results of the 
machine learning algorithm will be presented, followed by a separate conclusion and a results discussion part. 

2. Literature Review:
2.1 Sentiments Analysis: 
Sentiment Analysis (SA) -or opinion mining (OM)- is a branch of text mining. It is a widely used text classification 
tool that analyzes the source text and discovers the underlying sentiment (predicting people’s feelings or emotions 
about something) which can be either positive, negative, or neutral. The analysis can be done from different directions 
such as Natural Language Processing methods, application of lexicons with annotated word polarities, along with 
some machine learning-based approaches. 

2.1.1 Sentiment Analysis Approaches: 
There are two widespread groups for sentiment analysis: 

A. Machine Learning Approach:
Depends on machine learning techniques to give information about the polarity of sentiments. To perform
classification, two collection of text document are needed: training collection and test collection; the first one is used
by the classifier to differentiate between text features, and the second one is used to discover the accuracy of
classification/prediction. There are many machine learning algorithms used for sentiment analysis, however the
performances of Support Vector Machines, Naive Bayes, and Maximum Entropy with SA and classification are highly
successful (Saberi and Saad, Sentiment Analysis or Opinion Mining: A Review 2017). Other approaches include K-
Nearest Neighbor, Random Forests, and XGBoost. Many researchers have compared these approaches on text data to
find the best classifier in sentiment analysis tasks, Agarwal et al. found that Naïve Bayes classifier obtained good
results compared to Support Vector Machine on reviews in Cantonese  (Agarwal, et al. 2011).

Machine Learning approaches are usually classified as: 

1. Supervised Learning: requires well-defined and well-labelled corpus as a training set for the model, and
another data set to test the model performance & accuracy, many ML algorithms go under this category such
as: Support Vector Machine, Random Forests, XGBoost, Naïve Bayes and other classifiers.
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2. Unsupervised Learning: in this method, no training data set is needed, only input data set is required, and 
unsupervised methods can be either machine learning based, or lexicon based, an example of these methods 
is clustering, in which semantic orientation approach is used and algorithms will extract the phrases that 
include adjectives or adverbs to predict the sentiment orientation. 

3. Semi-Supervised Learning: this can be considered as a middle solution between the two previous ones, 
where a series of labelled and unlabeled data is provided, for the purpose of classification. 

 
B. Lexicon-Based Approach: 
 Depending on an unsupervised learning technique since no training is required under this approach. It can be said that 
this method determines whether the term is far or close to being positive or negative, that is being done depending on 
lexical rules. Some researchers introduced a sentimental lexicon (Abbasi, Chen and Salem 2008), the authors argued 
that that the preparation of manual lexicon is higher effective than the preparation of an automatic sentiment lexicon. 
Under Lexicon-Based approach there are two categories: 

1. Dictionary-based approach: in which small set of known-orientation words are collected manually, then this 
set is increased by searching of well-known corpora for their antonyms and synonyms (Hu and Liu 2004). 

2. Corpus-based approach: this method depends on syntactic patterns which come together along with seed list 
of opinion words, aiming to discover other opinion words within big corpus. 

 
C. Hybrid Approach: 
 lexicon-based machine learning approach that includes manual-written linguistic rules. In this method, cascaded 

classifiers are used so if one of them failed, the next one performs the classification task, and so on till the 
categorization of text/document is finished.  
 

2.1.2 Sentiment Analysis of Twitter Data: 
Social media is exceptionally useful source which generates huge amount of sentiment rich data including tweets, 
online blogs, status updates…etc.  Twitter is a microblogging service built to describe what is happening anywhere 
worldwide, at any moment. It is a fascinating forum for more than five hundred million messages per day from about 
1.3 billion people. Twitter data is short, specific, and easily accessible, that’s why it has become one of the best sources 
for sentimental analysis and knowledge discovery by data streams mining. (Figure 1) 
 
Sentiment analysis of Twitter data is challenging work due to the use of slang, misspells, abbreviations and the 
unstructured nature of data which required a lot of preparation and cleaning work on data set to be ready for machine 

Figure 1 - Sentiment Analysis Approaches  
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learning approaches. 

The Naive Bayes technique was used in (Gangawane and Torvi 2017) to assess sentiments on abbreviations and short 
sentences, to improve the algorithm for identifying sentiment words, and to successfully handle bipolar sentiments 
based on Twitter data. 

Many of works related to sentiment analysis have focused on product or movies reviews (Devi, Bai and Ramasub 
2020), (Ogul and Ekmekciler 2012), (Wang and Liu 2017), (Dave, Lawrence and Pennock 2003) and (Alencia, et al. 
2018) on customer tweets, review sites, blogs or other websites. 

(Zhou, et al. 2013 ) have suggested a Tweets Sentiment Analysis Model (TSAM) that may identify societal interest in 
and attitudes on the 2010 Australian federal election. The research has shown that it is feasible and advantageous to 
construct an intelligent system for sentiment analysis based on a lexicon. In (Vasudevan 2017) the sentiment of twitter 
data was performed depending on Support Vector Machine (SVM) and Decision Tree (DT), and that was performed 
depending on a dataset consists of 7156 tweets classified with respect to Google self-driving cars, achieving high 
accuracy with SVM (90%) and less accuracy with DT (65%).  

Similar work was introduced in (Barzenji 2021) Whereas sentiment analysis on Twitter text was used to learn about 
the subjective polarity of the writings, this analysis was carried out using three distinct machine learning algorithms: 
Support Vector Machine, Radom Forests, and Gaussian Naive Bayes. The classifiers obtained accuracy of 89%, 88%, 
and 72%, respectively. Similar method was employed in (Gupta, Pruthi and Sahu 2017), where part of that process on 
sentiment analysis of Twitter data using a mix of two machine learning algorithms, K-Nearest Neighbors (KNN) and 
Support Vector Machines (SVM). According to the findings, the suggested model enhanced the accuracy and f-
measure of tweet class prediction. 

2.2 Concept Drift Definition & Types:  
Concept drift has become a common area of research in the field of data mining and machine learning since it’s a 
major issue when dealing with data streams. Some previous works has focused on the definitions and types of concept 
drifts, such as: 
In (Elwel and Polikar 2011) concept drift refers to a change in the class (concept) definitions over time, and therefore 
a change in the distributions from which the data for these concepts are drawn. The classification of changes in data 
distribution into two class; real concept drift and virtual concept drift (Widmer and Kubat 1996). The formalization 
of these two types of drifts as follows (Janardan 2017) and (GAMA, et al. 2014): (Figure 2) 
1. Real Drift: the posterior probability Pt(x|y) varies over time, independently from variations in the evidence Pt(x). 
2. Virtual Drift: the evidence or the marginal distribution of the data, Pt(x), changes without affecting the posterior 

probability of classes Pt(y|x).  

 
 
 
 
 

Figure 2- Types of drifts: circles represent instances, different colors represent different 
classes 
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Another concept drift is based on how the drift evolves in the system, The drift may occur suddenly, incrementally, 
or gradually. For better demonstration of the mentioned types, the term “intermediate concept” was introduced by 
(GAMA, et al. 2014) and to describe the transformation between concepts. Figure 3 illustrates this classification (Lu, 
et al. 2019): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Concept Drift Detection: 
The number of surveys, overviews, and reviews on idea drift detection that were published between 2009 and 2019 
was provided by the authors in (Gemaq, et al. 2020)., the result is shown in Figure 4: 
 

 
Drift detection algorithms can be divided into three categories (Lu, et al. 2019): 

2.3.1 Error rate-based drift detection:  
The algorithm will monitor changes in the online error rate and will trigger the drift alarm when a substantial change 
(increase or reduction) of the error is established. Examples of this type of algorithm are:  
 

Figure 3- Concept Drift Types 

Figure 4- Number of publications on concept drift detectors 
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A. Drift Detection Method (DDM) (Gama, et al. 2004), which uses a binomial distribution. That distribution gives 
the general form of the probability for the random variable that represents the number of errors in a sample of n 
examples. The concept is modeling the error as a binomial variable, which means that the expected value of the 
errors can be calculated.  DDM monitors the count of errors that resulted from a model learned on the previous 
stream elements, in general, the model error should stay stable or decrease as more data is used assuming that: 
a. The learning algorithm/method is controlling overfitting. 
b. The distribution of data labels is stationary. 

B. Early Drift Detection Method (EDDM) (Baena-Garcıa, et al. 2006), which was developed to improve the 
detection in presence of gradual concept drift and keeps performing well with sudden or abrupt drift detection. 
The principle behind this method is to focus on the distance between two successive errors’ classification instead 
of focusing only on the number of errors. During the learning process, because the model is developing, the 
prediction will be improved, which means that the distance between two successive errors will be increasing.   

C. Adaptive Windowing (ADWIN): (Bifet and Gavaldà 2007): this is one of the popular methods that goes under 
the window-based detectors, which in general depends on dividing the data streams in a sliding manner, based on 
either data size or time interval, then the performance of the latest observations will be compared with a reference 
window. ADWIN uses exponential histograms to detect or estimate the change, it maintains a variable-length 
window of recent items, ensuring that the data distribution has not changed.   

In addition to the methods presented above, there are many other methods that depends on the error rate to detect the 
drift, such as the one class drifts detection (OCDD) (Gözüaçık and Can 2021) and Page-Hinckley Test (PHT) based 
drift detector (Qahtan, et al. 2015).  

The following Table 1 summarize the error-based classification algorithms (Bayram, Ahmed and Kassler 2022): 

 

Table 1 - Error-based drift detectors 
 

Method Calculation Method Tested Hypothesis  Type of drift detected 

DDM Online error rate Distribution estimation  Sudden drift 

EDDM Online error rate Distribution estimation Gradual / Sudden  

ADWIM Error rate difference  Hoeffding bound Gradual / Sudden 

Page-Hinckley Average value  Performance means Sudden drift 

OCDD Outlier percentage  Post hoc Neymenvi test Gradual / Sudden 

 

3.2.2 Data Distribution-based Drift Detection:  
Techniques in this category use a metric/distance function to quantify the dissimilarity between historical and current 
data distributions. Since raw data points are used directly rather than through indirect, abstract information (the 
learner's output or parameters), data distribution-based drift detection approaches have the advantage of sensitive 
detection and important output knowledge (when, how, and where concept drift happens).  

An example for this kind is: Competence Model-based drift detection (CM)  (Lu, Guangquan Zhang and Lu 2007) 
This method is an innovative technique for identifying concept drift in a case-based reasoning system. It presents a 
new competence model that discovers differences through changes in competence rather than evaluating the actual 
case distribution. No prior knowledge of case distribution is necessary for the competence-based idea detection method 
to work, and it offers statistical assurances on the dependability of the changes found as well as accurate descriptions 
and quantification of these changes.  

3.2.3 Multiple Hypothesis Test Drift Detection:  
These algorithms apply similar techniques of mentioned in the previous two categories, but they use multiple 
hypothesis tests to detect concept drift, such as the Linear Four Rate drift detection (LFR) (Wang and Abraham 2015) 
and Drift Detection Ensemble (DDE) (Maciel, Santos and Barros 2015). 
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3. Methodology: 
This section explains the research steps related to Twitter data collection and processing to make it ready for the next 
stage where it is analyzed, and machine learning algorithms applied. Twitter was chosen as source of data due to the 
following reasons: (Figure 5) 
 

o Unlike other social platforms, in Twitter almost user’s tweets are completely public, and 
o Twitter provides developers and researchers with a streaming API (application programming interface), 

which allows them to fetch real-time data and past tweets and do complex queries. 
o Twitter data is specific, since Twitter API gives the ability to get the tweets related to specific topic or pull 

the non-retweeted tweets of certain user. 
 
In this study, we’ve focused on 160K tweets of technology companies over a timeline from 1/January/2015 to 
30/June/2019, the data retrieved by Twitter API was pre-processed to remove stop words and punctuations, then 
stemming/normalization will be applied on tweets to converts the words to their root form (known as lemma). The 
next stage is sentiment analysis of tweets and splitting dataset to train and test samples with 80/20 ratio so it can be 
used to train & test the model of Multinomial Naive Bayes Classifier. 

Finally, to detect concept drift, a new set of tweets (112K from 1/July/2019 to 25/June/2022) will be fetched to test 
the Naive Bayes model. Finally, to verify the results, another algorithm known as XGBoost will be applied, and the 
results will be discussed in the results section. 

 
3. Data Collection: 

 
4.1 Data retrieval 
Twitter’s Application Programming Interface (API) is a platform that allows researchers and developers to fetch 
real-time data and historical tweets. API can be used to find and retrieve, engage with, or create a variety of different 
resources including (tweets, users, trends, media, and others), in addition to the ability to determine the appropriate 
period. In this study, Twitter API V2 was used to get approximately 300K English tweets which had the following 
attributes: 
 

Data Retrieval

Data Preprocessing

Stemming/Normalization

Exploratory Data Analysis

Seintiment Analysis 

Multinomial Naive Bayes Classifier

Concept Drift Detection

Figure 5 - Work Phases 
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• Date 
• Username 
• Tweet 
• Hashtag/Company  

 
The first timeline of tweets fetched is from 1/January/2015 to 25/June/2022.  
 

4.2 Data Pre-Processing  
Benefitting from the streaming API tool, the initial Twitter data set has already been filtered to include only English 
tweets, and retweets – republication or forwarding of an existent tweet – are excluded, the thing that reduces the 
number of duplicates. The initial number of tweets was 120,015 then became 108,281 after removing the 
duplications. In the next step, the data was loaded to Jupyter Notebook which is used for Python code of this study. 
The next step in the pre-processing is removing stop words and punctuation, while keeping the ‘emojis’ which play 
an important role in sentiment analysis. 
 
4.3 Stemming/Normalization 
Stemming or Normalization is a technique used in Natural Language Processing (NLP) to retrieve information by 
tracking affixed words back into their root, this will increase the classification accuracy as many studies proved, for 
example in (Rianto, et al. 2021), the results showed that the accuracy of Support Vector Machine (SVM) classifier 
has achieved a score of 0.85 when applying stemming compared with  0.73  without stemming. The stemmer used 
in our study is Porter Stemmer which is the most popular stemmer for English language, and it is known for its speed 
and simplicity. 
 
5. Results and Discussion   
 
5.1 Sentiment Analysis 
The analysis will be performed through the following steps:  
 
A. Detecting Text Polarity:  
In this step, the tweets will be labeled with three main values: Positive, Negative and Neutral. These values will be 
used later to be reflected in the sentiment analysis. The results of this step are shown in Figure 6. 
 
B. Handling Data Imbalance:  
It’s noticed from the polarity results, that the three categories are imbalanced, and the lowest distribution is about 
20%, so the data will be balanced by taking 20% of each category. 

 
 

Figure 6 - Tweets Polarities 
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C. Text Vectorizations:  
Machine learning classifiers only deal with numbers, that’s why the results obtained from the previous stage should 
be transformed to a matrix of numbers, this is known as Test Vectorization. There are many ways to perform this 
step, such as: Bag of Words, (L1) Normalized Term Frequency, (L2) Normalized TF-IDF, Binary Term Frequency 
and Word2Vec.  
 
In this study, Bag of Words was selected, which is a technique that takes the whole corpus and assigns the vector 
representation to a given word. The words present are marked as 1 and absent as 0 in the vector representation. The 
target feature is first encoded using the label encoder. The labels given are: Negative = 0, Neutral = 1, and Positive 
= 2. 

5.2 Multinomial Naive Bayes & XGBoost Classifiers 
Naïve Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and used for solving 
classification problems. Despite its simplicity, Naive Bayesian classifier usually terminates surprisingly well and is 
widely used because frequently it outperforms more sophisticated classification methods. It’s been declared as; 
Bayesian classifiers have also exhibited high accuracy and speed when applied to large databases (Han, Kamber and 
Pei 2012). 
 
Before using the Naïve classifier, the data set will be divided into Train & Test samples by 80/20 ratio respectively. 
Then the model was built by using the ‘Scikit-learn’ library in Python. (Figure 7) 

 
According to the confusion matrix, the algorithm correctly predicted 11,952 actual positive tweets (True Positive), 
3,618 Neutral tweets (True neutral), and correctly predicted 8,159 negative tweets (True Negative). Given these 
numbers, the performance metrics were calculated giving the accuracy obtained by the Naive Bayes Model as 
73.59%. (Figure 8) 

 
XGBoost stands for Extreme Gradient Boosting. It’s a highly effective machine learning method that depends on 
gradient tree boosting, which has been shown to give state-of-the-art results on many standard classification 
benchmarks (Li 2010). XGBoost is a scalable machine learning system for tree boosting the impact of the system 
has been widely recognized in several machine learning and data mining challenges (Tianqi Chen 2016). In our 
study, the XGBoost classifier was used, and Figure 8 illustrates the Confusion Matrix of it. 
The accuracy obtained by XGBoost Model is 82.14%. 

Figure 7- Confusion Matrix for Naive Bayes 
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5.3 Concept Drift Detection 
This task aims to find out whether the statistical models built on top of twitter data suffer from the problem of label 
drift or concept drift, to discover it, several steps were followed: (Figure 9) 

1. 161,255 tweets were fetched from 01/01/2015 to 29/06/2019, as training set. This data was used to train
two models – Naive Bayes & XGBoost.

2. 112,411 tweets were fetched from 01/07/2019 to 25/06/2022, as testing set. This range of tweets can help
determine the concept drift since all the data is sorted by date.

3. In the next step, both the train and test data are concatenated to form a dataset of date wise tweets
4. Finally, a function is defined which splits the data into fragments and check for the accuracy, here, the step

size is used as 10000, which means the accuracy is checked for every 10000 samples and the results are
stored and further the results are plotted which helps determine the type of drift the model is facing.

Figure 8- Confusion Matrix for XGBoost 

Figure 9 - Accuracy Plot with Concept Drift Effect 
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 Discussion 
The model was able to classify the sentiments of tweets into three main classes (positive, negative, and neutral) so the 
predicted value (the concept) of this model will be distributed over these three classes, with 73.59% accuracy rate for 
Naive Bayes and 82.14% for XGBoost classifiers. However, the monitoring of model accuracy showed that this 
accuracy ranged from 70-80% on the trained data, but on new data it fell to 30-40 %, which indicates that the model 
predicted value (the concept) has changed and the result of classification will not be true. 

This change in the accuracy rates occurred in a short time and stabled on the new value so, it can be said that the drift 
the model suffers from is a sudden drift, since the accuracy of the first model, Naive Bayes, was suddenly changed 
from 73% to 30-40%, and to cross verify the existence of sudden concept drift, another classification algorithm 
(XGBoost Classifier) was implemented and the results were observed to be quite similar. The performance on the 
model on training data was ~82 % but it fell to ~40 % when the new data was shown to the model. 

The sentiment analysis of tweets of technology companies has a larger positive fraction, which indicates that: as long 
as the analysis results is giving the higher positive percentage, the model is not suffering from any drift, on the other 
hand, receiving different results during the analysis of new tweets will indicates that the predicted value (the concept) 
is drifted, and there is a change in the topic, product or company that these tweets is focusing on. 

The results show that concept drift monitoring can indicates the change in technology by analyzing the tweets of 
technology companies, however, further analysis needs to be done on the new status (data with drift) to specify 
whether this change will be considered innovative or not, in other words, whether the new product, idea, solution that 
led to change, will be accepted by the targeted audience or not. This can be known through new analysis of customers 
and/or reviewers’ tweets after the change (concept drift) happens. 

6. Conclusion
While there are many studies in literature that focused on sentiment analysis, social media mining, concept drift in 
machine learning, and text mining but however, previous research has not adequately focused on understanding the 
innovational change caused by concept drift while performing sentiment analysis. A similar issue was raised by 
(Ozgun and Broekel 2021) indicating that, so far, previous research has not adequately addressed the potential 
variations in news media’s content and sentiment with respect to technologies. 

Concept Drift is a phenomenon associated with classification models, especially in dynamic environments, which 
makes the model’s prediction not sufficient anymore. Many studies in literature have focused on drift detection 
methods, systems, and corrective approaches, but limited studies focused on analyzing and/or understanding the 
change caused by concept drift over time, especially in the field of new inventions or modern technologies. Most of 
the studies refers to concept drift as negative effect, since the evaluation is from model accuracy perspective, but the 
change resulted by this phenomenon in technology field is not necessary to be negative, since it may lead to a new 
products or new inventions, and this was the main argument of this study. 

The tweets data was preprocessed, and sentiment analysis was done on the processed tweets, showing that the large 
segment of technology companies’ tweets is positive. Then the data was used to make predictions using the two 
machine learning algorithms which are: 

o Naive Bayes Classifier
o XGBoost Classifier

The accuracies attained by both the Naive Bayes Classifier and the XGBoost Classifier are ~73% and ~82% 
respectively, but these accuracies fall to the ~30-40% mark when shown new data, which indicates that the label is 
drifting rapidly with respect to the new data. To visualize this, the line plots were observed which show a sudden drop 
in model performance and therefore lead to the conclusion that sudden concept drift is present in this use case. 

The findings of this study show that machine learning models can be used in many fields to analyze and understand 
the public opinion about specific service or products, and the effects of sudden or gradual changes on that opinion, 
and this is particularly important for decision support systems in marketing, market analysis, politics, and social 
studies. Furthermore, these machine learning tools can cooperate with artificial intelligence systems to form most 
effective decision support systems, especially since the incorporation of AI and ML into products and services involve 
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substantial innovation by firms. Yet, we still lack insight into how these innovations are communicated (Fredstrom, 
et al. 2022). 
 
This study tried to spot the light on understanding the changes that happens in technology through machine learning 
tools and introduce new reading to these changes as innovative change, which may lead to new products or 
technologies. Such an approach can provide important tools for technology companies, market analysts and 
researchers in this field to get an insightful forecast of the trends of future technologies and products. 

7. Future Work: 
This study presented an approach to understand the change in technology (innovation) based on tweets. The study 
focused on 270K tweets of ten technology companies, the focus was on analyzing the sentiment of these tweets and 
detecting/identifying the concept drift that occurred and studying the results of this drift / change to predict the pattern 
of results that could cause the deviation of the concept, which can in turn give some insights about future technological 
change or innovation. 
 
The future work may include one or more of the following: 
1. To use wider data set by increasing the number of tweets and the number of companies to expand the data set 

and include some accounts that usually focus on technology news and latest updates and inventions. 

2. In our study, we depended on one commonly used algorithm for text classification (Naïve Bais) and another state 
of art algorithm in the field, which is XGBoost classifier, it worth to include other algorithms such as artificial 
neural network (ANN), Random Forests and Support Vector Machine (SVM), to compare the accuracy of the 
results and choose the best performance algorithm(s). 

3. In our study, we chose the Error rate drift detection method, and there are many other similar methods that can 
be used for drift detection. Future work may also consider using different methods and comparing the results. 

4. Lastly, Re-perform the study depending on the Patent Records/Documents as new data set for the research and 
compare the results with tweets to better understand the technology changes or innovation. 
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