
Proceedings of the 6th European Conference on Industrial Engineering and Operations Management 
Lisbon, Portugal, July 18-20, 2023 

© IEOM Society International 

An Improved Autoencoder with Dynamic Hidden Layer  
for Anomaly Detection Monitoring 

Haitian Zhang 
PhD Candidate in the Department of Chemical Engineering 

University of Waterloo 
Waterloo, Canada 

Qinqin Zhu  
Assistant Professor in the Department of Chemical Engineering  

University of Waterloo 
Waterloo, Canada 

Ali Ahmadian 
Postdoctoral Research Fellow in the Department of Chemical Engineering 

University of Waterloo 
Waterloo, Canada 

Ali Elkamel 
Full Professor in the Department of Chemical Engineering 

University of Waterloo 
Waterloo, Canada 

aelkamel@uwaterloo.ca  

Abstract 

Due to the rapid advancement of Industry 4.0, the increasing complexity of industrial applications leads to the 
expanding dimensionality of time series data. To maintain the performance, avoid economic losses, and ensure safety 
during the industrial processes, anomaly detection draws great attention. In view of advantages in dimensionality 
reduction and feature retention, autoencoder (AE) technology is widely applied for anomaly detection monitoring. In 
this work, considering both high dimensionality and dynamic relations between elements in the hidden layer, an 
improved autoencoder with dynamic hidden layer (DHL-AE) is proposed and applied for anomaly detection 
monitoring. Two case studies including Tennessee Eastman process and Wind data are used to show the effectiveness 
of the proposed algorithm. The results demonstrate that compared with classical AE approaches that are most 
commonly used, DHL-AE exhibits the best overall performance in anomaly detection monitoring.  

Keywords 
Autoencoder, Dynamic hidden layer, Anomaly detection, monitoring. 

1. Introduction
With the accelerated development of Industry 4.0, considerable technological progress such as artificial intelligence 
and real-time signal processing methods has equipped existing industrial systems with highly sophisticated 
technologies in diverse fields, leading to significant enhancement on the complexity of real-world industrial 
applications, especially chemical industry. The collected data from complicated practical industry processes primarily 
consists of multivariate time series data with high dimensionality. To ensure the operational safety and security of 
complex industrial systems, anomaly detection has been a critical issue for identifying abnormal observations or events 
that deviate from normal patterns, which may cause potential problems in industrial practice (Zhou et al. 2020). 
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Several classical machine learning and deep learning methods have been widely adopted in industry and academia. 
More concretely, multivariate statistical approaches such as clustering (Xu and Wunsch 2005), principal component 
analysis (PCA) (Wold et al. 1987), and Gaussian mixture model (GMM) (Reynolds 2009) have been used to detect 
abnormal points that exhibit substantial deviations from the normal data. In terms of machine learning-based 
algorithms, support vector machines (SVM) (Hearst et al. 1998), random forests (Breiman 2001), and neural networks 
(Bishop 1994) are also suitable for anomaly detection by model training. Deep learning methods have also been 
employed for identifying abnormal events or observations that deviate significantly from the expected or typical 
behavior of the data (Pang et al. 2021). Due to the ability to capture complex patterns, feature extraction and 
dimensionality reduction, autoencoder (AE) technology has been considered as a popular choice for anomaly detection 
in chemical practice (Sakurada and Yairi 2014). However, they pay less attention to dynamic behaviors existing in 
industrial datasets. Thus, it still remains a challenging issue carrying out the reliable results of anomaly detection from 
high-dimensional data that changes over time. 
 
For reasons of identifying anomalies in real-world data with high dimensional and time-dependent properties, some 
classical algorithms such PCA and AE, and their corresponding variants can be employed for dimensionality reduction 
and feature extraction. Specifically, to handle time-dependent samples, dynamic PCA has been created to extract 
dynamics in the original data and detect irregular observations or samples (Tsung 2000). To overcome the assumption 
of most AE algorithms that data points are considered as independent samples, considering the dynamic relations 
existing in the original collected data from industrial applications, some pre-processing approaches for time series 
data have been adopted for the construction of frameworks combined with AE methods, such as mutual information 
(Yin and Yan 2019) and dynamic thresholding mechanism (Tayeh et al. 2022). However, these proposed schemes 
focus on the pre-processing methods, without any consideration for the improvement of AE structure. Pre-processing 
increases the complexity of algorithms, rendering disadvantages involving high computational costs, prolonged 
running time, difficulty of implementation, and higher demand on data quality (Bishop and Nasrabadi 2006). 
 
Compared with PCA, AE methods possess the strengths including handling missing data, learning hierarchical 
representations, new data generation, and data processing capabilities (Hinton and Salakhutdinov 2006). Thus, AE is 
adopted to build up the anomaly detection scheme proposed in this work. Inspired by autoregressive integrated moving 
average (ARIMA) model (Schaffer et al. 2021), the hidden layer of AE is improved to handle the issue of dynamics 
in our work. Then, a modified autoencoder method with dynamic hidden layer (DHL-AE) is proposed to address both 
high dimensionality and dynamic relations simultaneously and the corresponding anomaly detection scheme is 
designed to improve the performance of identifying abnormal points. The effectiveness and superiority of the proposed 
algorithm for anomaly detection monitoring can be demonstrated by case studies of Tennessee Eastman process (TEP) 
and Wind data. 
 
The main contributions of this article are listed as follows: 

• An improved autoencoder with dynamic hidden layer (DHL-AE) algorithm is developed to address high-
dimensional and time-dependent issues existing in the real-world data simultaneously. 

• An anomaly detection monitoring scheme based on DHL-AE is constructed and its validity and superiority are 
proved by case studies. 

The remainder of this article is organized as follows. Section 2 briefly reviews some preliminaries. Section 3 presents 
the details of the proposed DHL-AE algorithm and the corresponding anomaly detection monitoring framework, 
respectively. The superiority of the proposed methods is analyzed with two case studies in Section 4. Finally, 
conclusions are drawn, and the direction of future work is discussed in the last section. 
 
2. Preliminaries 
2.1 Autoencoder 
As a specific type of neural networks, AE has been created by encoding the input into a compressed representation 
and decoding it back to reconstruct the input that is nearly identical to the original input to greatest extent possible 
(Rumelhart et al. 1985). 
 
The purpose of AE is to learn a lower-dimensional and meaningful representation of the input in an unsupervised way 
via minimizing the reconstruction error based on a loss function in training (Hinton and Salakhutdinov 2006). 
Typically, the mean squared error (MSE) between the original input and the corresponding reconstructed output is 
adopted to be the loss function. Assuming 𝐱𝐱 ∈ ℝ𝑛𝑛 as the input, the loss function is expressed as 
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𝐿𝐿(𝐱𝐱, 𝐱𝐱�) = ‖𝐱𝐱 − 𝐱𝐱�‖2 (1) 
where 𝐿𝐿 expresses the loss function and is the corresponding reconstructed output vector of 𝐱𝐱. 
The encoder projects the input into the hidden layer to obtain a compressed representation 𝐳𝐳 ∈ ℝ𝑘𝑘, and the decoder 
reconstructs the output of AE based on 𝐳𝐳 as 𝐱𝐱�. 
To construct the encoder by the projection 𝜑𝜑: 𝜒𝜒 → 𝐹𝐹 and decoder by the projection 𝜓𝜓: 𝐹𝐹 → 𝜒𝜒, the objective of AE is 
defined as (Goodfellow et al. 2016) 

argmin
𝜑𝜑,𝜓𝜓

‖𝐱𝐱 − 𝜓𝜓[𝜑𝜑(𝐱𝐱)]‖2 (2) 

where 𝜑𝜑(𝐱𝐱) denotes the process of encoding, and 𝐳𝐳 = 𝜑𝜑(𝐱𝐱). 𝜓𝜓[𝜑𝜑(𝐱𝐱)] represents the process of decoding, and  𝐱𝐱� =
𝜓𝜓[𝜑𝜑(𝐱𝐱)]. 
More concretely, encoding and decoding can be expressed as 

𝐳𝐳 = 𝑓𝑓1(𝐖𝐖1𝐱𝐱 + 𝐛𝐛1)
𝐱𝐱� = 𝑓𝑓2(𝐖𝐖2𝐱𝐱 + 𝐛𝐛2) (3) 

where 𝑓𝑓1 and 𝑓𝑓2 represent the activation functions used to construct the hidden and output layers, respectively. 𝐖𝐖1 
and 𝐛𝐛1 are the weight and bias of encoder, while 𝐖𝐖2 and 𝐛𝐛2 are the weight and bias of decoder. 
 
2.2 Autoregressive Integrated Moving Average Model 
Autoregressive Integrated Moving Average (ARIMA) models have been commonly utilized in time series analysis. 
Due to its flexibility and applicability, ARIMA models have been developed and applied for processing data with trends, 
irregular fluctuations, or even seasonality. Typically, an ARIMA model consists of three parts, involving autoregressive 
part, integrated part, and moving average part. The autoregressive part captures the temporal dependence of current 
value based on its past values, while the differencing process depends on the integrated part. Additionally, the error 
term is processed as a linear combination of past error terms by the moving average part (Schaffer et al. 2021). Given 
an input vector 𝐯𝐯 ∈ ℝ𝑛𝑛, which can also be expressed as time series, the autoregressive part at time t (t = 1, 2, ..., n) is 
expressed by 

𝐯𝐯𝑡𝑡 = �𝛽𝛽𝑖𝑖𝐯𝐯𝑡𝑡−𝑖𝑖 + 𝜺𝜺𝑡𝑡

𝑝𝑝

𝑖𝑖=1

(4) 

 
where 𝐯𝐯𝑡𝑡 denotes the aggressive part 𝐯𝐯 existing in the input 𝐳𝐳 at time t. p is the number of time lags, and 𝛽𝛽𝑖𝑖 (i = 1, 2, ..., 
p) are parameters of the autoregressive part. 𝜺𝜺𝑡𝑡 denotes the white noise error term at time t, which is typically assumed 
to be independent and conform to a normal distribution with zero mean. 
The moving average part is given by 

𝐞𝐞𝑡𝑡 = 𝝁𝝁 + �𝜃𝜃𝑖𝑖𝜺𝜺𝑡𝑡−𝑖𝑖 + 𝜺𝜺𝑡𝑡

𝑞𝑞

𝑖𝑖=1

(5) 

where 𝐞𝐞𝑡𝑡 denotes the moving average part 𝐞𝐞 existing in the input z at time t. 𝝁𝝁 represents the mean of 𝐞𝐞. q is the order 
of the moving average part. 𝜃𝜃𝑖𝑖 (i = 1, 2, ..., q) are parameters of the moving average part. 𝜺𝜺𝑡𝑡 is the white noise error 
term at time t (t = 1, 2, ..., n) for the moving average part as well. 
Combining Eqs. (4) and (5), the ARIMA model is defined by 

𝐳𝐳𝑡𝑡 = �1 −�𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖
𝑝𝑝

𝑖𝑖=1

�

−1

(1 − 𝐵𝐵)−𝑑𝑑 �1 −�𝜃𝜃𝑖𝑖𝐵𝐵𝑖𝑖
𝑞𝑞

𝑖𝑖=1

� 𝜺𝜺𝑡𝑡 (6) 

 
where 𝐳𝐳𝑡𝑡 represents the component of time series 𝐳𝐳 at time t.  B denotes the backshift operator, which operates on an 
element of the compressed representation to construct the previous element and can be expressed as 𝐵𝐵𝐳𝐳𝑡𝑡 = 𝐳𝐳𝑡𝑡−1,∀𝑡𝑡 >
1. d denotes the degree of differencing, which is the number of times the time series 𝐳𝐳 has that had past values subtracted. 
Here, p, d, and q are non-negative integers. 
 
2.3 Anomaly Detection 
Anomaly detection refers to the identification of anomalies, which are defined as abnormal events, observations, or 
samples that significantly deviate from the normal or expected behavior of given data to indicate the potential problems 
in the dataset (Aggarwal and Aggarwal 2017). The early detection of anomalies plays an essential role in industrial 
practice to raise the system safety, prevent failures, reduce downtime, and improve production in manufacturing, since 
anomalies are considered as indicative of potential issues involving safety risks, equipment failures, and maintenance 
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problems (Chalapathy and Chawla 2019). To detect anomalies in a given dataset, the model that captures the normal 
observations or behaviors is constructed by the training period, and the test data is applied for the identification of 
abnormal points which are not fitted with the training model. 
 
Anomaly detection using dimensionality reduction has been developed based on the assumption that variables in the 
input data are correlated with each other and their features can be captured by projecting them into a lower dimensional 
subspace where the samples are significantly different from the original ones (Sakurada and Yairi 2014). In the training 
period, the input matrix 𝐗𝐗 = �𝐱𝐱(1), 𝐱𝐱(2), … , 𝐱𝐱(𝑛𝑛) � ∈ ℝ𝑛𝑛×𝑚𝑚 with normal samples is considered as the training set, where 
n and m denote the number of samples and variables in the original data. Then, the corresponding compressed 
representation matrix 𝐙𝐙 = �𝐳𝐳(1), 𝐳𝐳(2), … , 𝐳𝐳(𝑛𝑛) � ∈ ℝ𝑛𝑛×𝑘𝑘 is reconstructed as 𝐙𝐙� = �𝐳𝐳�(1), 𝐳𝐳�(2), … , 𝐳𝐳�(𝑛𝑛) � ∈ ℝ𝑛𝑛×𝑘𝑘 to capture 
the features of 𝐗𝐗, where k is the dimension of the compressed representation. The output of the model is reproduced by 
decoder as 𝐗𝐗� = �𝐱𝐱�(1), 𝐱𝐱�(2), … , 𝐱𝐱�(𝑛𝑛) � ∈ ℝ𝑛𝑛×𝑚𝑚′

 (𝑚𝑚′ ≤ 𝑚𝑚), and MSE is used as the reconstruction error (RE) between 
input and output is calculated as 

𝜺𝜺(𝑡𝑡) = �𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)�2 (7) 
where 𝜺𝜺(𝑡𝑡) denotes the RE of an input vector 𝐱𝐱(𝑡𝑡) at time t (t = 1, 2, ..., n). RE is obligated to update the parameters 
of encoder and decoder and calculate the anomaly score for anomaly detection. 
 
3. Anomaly Detection Framework Based on Autoencoder with Dynamic Hidden Layer 
3.1 DHL-AE Algorithm 
Based on the structure of AE, DHL-AE algorithm is constructed by processing dynamics in the hidden layer. 
Premised on the assumption of normalized input, the encoder maps the original input into the latent space in hidden 
layer, and the dynamics in the original data are captured by the compressed representation. After decoding, dynamic 
relations are also retained in the output, which is considered as the reconstructed input. Thus, to deal with dynamic 
datasets, it is reasonable to handle dynamic relations in the hidden layer. 
 
For the dynamic input data 𝐗𝐗, after normalization, the encoder projects 𝐗𝐗 into the latent space in the hidden layer, 
obtaining 𝐙𝐙 = 𝑓𝑓1(𝐖𝐖1𝐗𝐗 + 𝐛𝐛1). Considering dynamic relations existing in the input 𝐗𝐗, motivated by ARIMA, the 
components of compressed representation in the hidden layer can be constructed as follows (Hyndman and 
Athanasopoulos 2018): 

𝐳𝐳�(𝑡𝑡) = 𝐯𝐯(𝑡𝑡) + 𝐞𝐞(𝑡𝑡)               

𝐯𝐯(𝑡𝑡) = �𝛽𝛽𝑖𝑖𝐳𝐳(𝑡𝑡−𝑖𝑖)

𝑝𝑝

𝑖𝑖=1

             

𝐞𝐞(𝑡𝑡) = �𝜃𝜃𝑖𝑖𝜺𝜺(𝑡𝑡−𝑖𝑖) + 𝜺𝜺(𝑡𝑡)

𝑞𝑞

𝑖𝑖=1

(8) 

where 𝐳𝐳�(𝑡𝑡) ∈ ℝ𝑘𝑘 represents the compressed representation reconstructed considering dynamic relations in 𝐳𝐳(𝑡𝑡) 
obtained by encoding at time t, which consists of the autoregressive part 𝐯𝐯(𝑡𝑡) and the moving part 𝐞𝐞(𝑡𝑡). 
Similar to Eq. (6), Eq. (8) can also be reorganized as 

𝐳𝐳�(𝑡𝑡) = �1 −�𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖
𝑝𝑝

𝑖𝑖=1

�

−1

(1 − 𝐵𝐵)−𝑑𝑑 �1 −�𝜃𝜃𝑖𝑖𝐵𝐵𝑖𝑖
𝑞𝑞

𝑖𝑖=1

� 𝜺𝜺(𝑡𝑡) (9) 

where 𝜺𝜺(𝑡𝑡) is the white noise error at time t (t = 1, 2, ..., n) for the moving average part. 
After the process in the hidden layer, the decoder reconstructs the output from 𝐳𝐳� via 𝐱𝐱� = 𝑓𝑓2(𝐖𝐖2𝐳𝐳� + 𝐛𝐛2). 
 
The detailed DHL-AE algorithm is summarized as follows: 

• Scale the input data 𝐗𝐗 = �𝐱𝐱(1), 𝐱𝐱(2), … , 𝐱𝐱(𝑛𝑛) � into zero mean and unit variance. 
• The normalized input data is fed to DHL-AE. 
• After encoding via 𝐙𝐙 = 𝑓𝑓1(𝐖𝐖1𝐗𝐗 + 𝐛𝐛1), the input 𝐱𝐱(1), 𝐱𝐱(2), … , 𝐱𝐱(𝑛𝑛) can be projected to the latent space in the 

hidden layer as the compressed representation 𝐙𝐙 = �𝐳𝐳(1), 𝐳𝐳(2), … , 𝐳𝐳(𝑛𝑛) �. 
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• Decompose 𝐳𝐳(1), 𝐳𝐳(2), … , 𝐳𝐳(𝑛𝑛)  into two parts, involving the autoregressive part 𝐯𝐯(1),𝐯𝐯(2), … , 𝐯𝐯(𝑛𝑛)  and the 
moving average part 𝐞𝐞(1),𝐞𝐞(2), … , 𝐞𝐞(𝑛𝑛), leading to the reconstructed compressed representation 𝐳𝐳�(𝑡𝑡) = 𝐯𝐯(𝑡𝑡) +
𝐞𝐞(𝑡𝑡) (t = 1, 2, ..., n). 

• The decoder reconstructs the input as the output of DHL-AE by 𝐗𝐗� = 𝑓𝑓2(𝐖𝐖2𝐙𝐙� + 𝐛𝐛2) , where 𝐙𝐙� =
�𝐳𝐳�(1), 𝐳𝐳�(2), … , 𝐳𝐳�(𝑛𝑛) �. 

The structure of DHL-AE algorithm is visualized as Figure 1. 
 

 
 

Figure 1. Structure of autoencoder with dynamic hidden layer 
 

 
 

 Figure 2. Anomaly detection monitoring scheme based on DHL-AE 
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3.2 Anomaly Detection Scheme Based on DHL-AE 
To enhance the performance, improve the safety, and decrease the potential losses of the process, in this article, DHL-
AE is integrated with anomaly detection to identify anomalies in the process monitoring. 
Anomaly detection is based on the conversion from reconstruction errors to anomaly scores. The anomaly score for a 
datapoint 𝐱𝐱𝑖𝑖

(𝑡𝑡) is computed as (Ahmad et al. 2020) 

𝐚𝐚𝑖𝑖
(𝑡𝑡) = �𝜺𝜺𝑖𝑖

(𝑡𝑡) − 𝝁𝝁�
T
𝚺𝚺−1�𝜺𝜺𝑖𝑖

(𝑡𝑡) − 𝝁𝝁� (10) 

where 𝐚𝐚𝑖𝑖
(𝑡𝑡) is the anomaly score for 𝐱𝐱𝑖𝑖

(𝑡𝑡). 𝜺𝜺𝑖𝑖
(𝑡𝑡) represents the corresponding RE. 𝝁𝝁 and Σ are obtained from a normal 

distribution using maximum likelihood estimation based on 𝜺𝜺𝑖𝑖
(𝑡𝑡) (Malhotra et al. 2016). 

To determine whether a sample is an anomaly or not, the threshold of anomaly scores, which is denoted by τ, is learned 
using the normal data (Ahmad et al. 2020). If 𝐚𝐚𝑖𝑖

(𝑡𝑡) > 𝜏𝜏, the corresponding sample 𝐱𝐱𝑖𝑖
(𝑡𝑡) is labelled as an anomaly, while 

if 𝐚𝐚𝑖𝑖
(𝑡𝑡) < 𝜏𝜏, 𝐱𝐱𝑖𝑖

(𝑡𝑡) is considered as a normal point. 
 
For better illustration, the integrated scheme is depicted in Figure 2. In the scheme, DHE-AE is first performed on the 
normal data after normalization to obtain the proper activation function and model parameters. Then samples of testing 
data are processed by anomaly detection monitoring to identify irregular datapoints. 
 
4. Tennessee Eastman Process Case Study 
In this section, the Tennessee Eastman Process (TEP) is applied for case study to demonstrate the effectiveness of the 
proposed anomaly detection monitoring framework, with 15 disturbances (IDV (1–15)) simulated in the dataset 
(Downs and Vogel 1993). XMEAS (1-9) are chosen as input variables, and 500 normal datapoints in d00 are selected 
as training data. Faulty data d02_te is utilized for testing, which represents the disturbance of IDV (2) and has 960 
samples in total. 
 
The activation function and model parameters are determined by the training data. The first three-quarters of the 
training data are designated as the training set, while the complement of the training set is assigned as the test set. 
Mean squared error (MSE), root mean squared error (RMSE), normalized root mean squared error (NRMSE), and 
mean absolute error (MAE) (Müller and Guido 2016) are considered as the candidates of model selection criteria to 
determine the best activation function and model parameters involving the dimension of output and compressed 
representation of DHL-AE. The activation function is selected from rectified linear unit (ReLU) (Arora et al. 2016), 
leaky rectified linear unit (Leaky ReLU) (Maas et al. 2013), and exponential linear unit (ELU) (Clevert et al. 2015). 
As mentioned in Section II, 𝑚𝑚′ denotes the dimension of output 𝐗𝐗� after decoding, and 𝑘𝑘 refers to the dimension of the 
compressed representation of input after encoding. 
 
The results of activation function and parameter selection for modeling are shown in Table 1. In terms of activation 
function, Leaky ReLU and ELU perform better than ReLU, since they have lower MSE, RMSE, and NRMSE for all 
the metrics which are used for activation function and parameter selection. Considering the selection criteria and 
process time simultaneously, the combination of ELU as the activation function and RMSE as the section criteria is 
the best choice due to the smallest values of metrics including MSE, RMSE, NRMSE, and MAE, as well as the shortest 
process time. In this case, the parameters are determined as follows: the dimension of the output 𝑚𝑚′ = 8, and the 
dimension of the compressed representation 𝑘𝑘 = 5. Thus, it is concluded that for TEP, ELU is selected as the 
activation function, and the model parameters are selected as 𝑚𝑚′ = 8 and 𝑘𝑘 = 5. 
 

Table 1. Activation function and parameter selection for IDV (2) in TEP 
 

Activation 
Function 

Selection 
Criteria m' k MSE RMSE NRMSE MAE Time/s 

ReLU 

MSE 6 13 0.2537 0.5037 1.3305 0.3145 3288.84 
RMSE 6 13 0.2537 0.5037 1.3305 0.3145 3535.73 

NRMSE 6 13 0.2537 0.5037 1.3305 0.3145 4398.42 
MAE 7 1 0.2178 0.4667 1.2327 0.3283 3254.39 

Leaky ReLU MSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3716.17 
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RMSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3309.23 
NRMSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3925.47 

MAE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3108.95 

ELU 

MSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3298.11 
RMSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3006.76a 

NRMSE 8 5 0.2034a 0.4510a 1.1914a 0.3141a 3122.58 
MAE 7 1 0.2178 0.4667 1.2327 0.3283 3603.27 

   a. The values of metrics and process time with best performance are displayed in bold font. 
 
In this case study, the proposed anomaly detection monitoring framework based on DHL-AE is applied for the 
detection of the anomalies in d02_te. Taken as the ground truth, PCA-based anomaly detection monitoring is assigned 
as the criterion to classify a sample into normal or abnormal datapoints. To manifest the superiority and effectiveness 
of the DHL-AE based anomaly detection scheme, other AE methods involving convolutional autoencoder (CAE), 
denoising autoencoder (DAE), sparse autoencoder (Sparse AE), 2-layer stacked autoencoder (2-Layer Stacked AE), 
4-layer stacked autoencoder (4-Layer Stacked AE), and variational autoencoder (VAE). 
 
Figure 3 illustrates the anomaly detection monitoring results of DHL-AE, PCA, and other AE methods for comparison. 
For better understanding, the following metrics are introduced to demonstrate the comparison results statistically: 
accuracy, precision, recall, F1-score (Powers 2020), false discovery rate (FDR), false alarm rate (FAR) (Zhang and Zhu 
2022), and missing alarm rate (MAR) (Izadi et al. 2009), and the corresponding results are presented in Table 2. Among 
the performance of the aforementioned algorithms, in terms of accuracy, precision, recall, and F1-score, the proposed 
algorithm performs best, and it also has the best performance on fault alarm rate (FAR) due to its lowest value. Although 
the performance of DHL-AE on fault detection rate (FDR) and missing alarm rate (MAR) is not the best, it is second 
only to CAE, DAE, and 4-Layer Stacked AE, and the difference is quite small. Thus, it is concluded that DHL-AE takes 
advantages over other AE methods in this case study. 
 

 
 

Figure 3. Anomaly detection monitoring results of algorithms for comparison for IDV (2) in TEP 
 

Table 2. Statistical metrics results of algorithms for comparison for IDV (2) in TEP 
 

Algorithms Accuracy Precision Recall F1-
Score FDR FAR MAR 

DHL-AE 0.7333a 0.7906a 0.7828a 0.7867a 0.6499 0.2172a 0.3501 
CAE 0.7271 0.7895 0.7711 0.7802 0.6527a 0.2289 0.3473a 
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DAE 0.7281 0.7898 0.7728 0.7812 0.6527a 0.2272 0.3473a 
Sparse AE 0.5854a 0.7243 0.5489 0.7457 0.6471 0.4511 0.3529 

2-Layer Stacked 
AE 0.6000 0.7102 0.6136 0.6584 0.5770a 0.3864 0.4230a 

4-Layer Stacked 
AE 0.7104 0.7836 0.7446 0.6232 0.6527a 0.2554 0.3473a 

VAE 0.5375 0.6755a 0.5075a 0.4415a 0.5882 0.4925a 0.4118 
a. The values of metrics with best performance are highlighted in bold font, and the worst are displayed in red. 

 
5. Wind 2017 Case Study 

 
Table 3. Activation function and parameter selection for Wind 2017 

 
Activation 
Function 

Selection 
Criteria m' k MSE RMSE NRMSE MAE Time/s 

ReLU 

MSE 1 9 0.1692 0.4113 1.3528 0.2308 4394.00 
RMSE 1 9 0.1692 0.4113 1.3528 0.2308 4394.00 

NRMSE 1 9 0.1692 0.4113 1.3528 0.2308 4394.00 
MAE 5 2 0.1159 0.3404 1.1198 0.1532 4642.00 

Leaky ReLU 

MSE 5 7 0.1063a 0.3261a 1.0725a 0.1589a 4465.00 
RMSE 5 7 0.1063a 0.3261a 1.0725a 0.1589a 4523.00a 

NRMSE 5 7 0.1063a 0.3261a 1.0725a 0.1589a 4539.00 
MAE 3 2 0.1229 0.3506 1.1531 0.1655 4419.00 

ELU 

MSE 3 2 0.2381 0.4880 1.6050 0.2471 4481.00 
RMSE 3 2 0.2381 0.4880 1.6050 0.2471 4492.00 

NRMSE 3 2 0.2381 0.4880 1.6050 0.2471 4503.00 
MAE 3 2 0.2381 0.4880 1.6050 0.2471 4546.00 
a. The values of metrics and process time with best performance are displayed in bold font. 

 
To illustrate the validity of the anomaly detection monitoring based on DHL-AE, a time-relevant dataset of only total 
wind supply with weather in 2017 (Alkabbani et al. 2021) is employed for case study in this section. 7283 samples 
are divided into two groups, 4854 samples for training and 2429 samples for testing. In addition, weather conditions 
are considered as input variables, including temperature, relative humidity, wind direction, wind speed, and pressure. 
For the selection of activation function and model parameters, as shown in Table 3, Leaky ReLU is the best choice 
for the activation function, and the model parameters are 𝑚𝑚′ = 5 and 𝑘𝑘 = 7. 
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Figure 4. Anomaly detection monitoring results of algorithms for comparison in Wind 2017 
 
The anomaly detection monitoring results of the aforementioned algorithms is shown in Figure 4. To further analyze 
the comparison of different algorithms based on the results of anomaly detection monitoring, as shown in Table 4, a 
series of metrics are used to express the performance of anomaly detection. Among the aforementioned algorithms, in 
terms of accuracy, precision, FDR, and MAR, the anomaly detection monitoring based on DHL-AE performs best. Its 
recall and F1-score are not the highest values, but not far from them; although the performance of DHL-AE on FAR 
is not the best, it is close to the best values. For methods other than DHL-AE, Sparse AE has the highest F1-score, but 
other metrics do not perform best; 2-Layer Stacked AE has the best recall and FAR values, while its accuracy, 
precision, and MAR has the worst performance. Besides, the recall, F1-score, and FAR of VAE have the worst 
performance. Thus, it is concluded that DHL-AE takes advantages over other AE methods in this case study. 

 
Table 4. Statistical metrics results of algorithms for comparison in Wind 2017 

 

Algorithms Accuracy Precision Recall F1-
Score FDR FAR MAR 

DHL-AE 0.6316a 0.7192a 0.5270 0.6082 0.7559a 0.4370 0.2441a 
CAE 0.6308 0.7120 0.5368 0.6121 0.7423 0.4632 0.2577 
DAE 0.4977 0.5308 0.6416 0.5810 0.3270a 0.3584 0.6730 

Sparse AE 0.5810 0.6109 0.6272 0.6190a 0.5261 0.3728 0.4739 
2-Layer 

Stacked AE 0.4780a 0.5151a 0.6492a 0.5744 0.2748 0.3508a 0.7252a 

4-Layer 
Stacked AE 0.5113 0.5417 0.6454 0.5891 0.3523 0.3546 0.6477 

VAE 0.4734 0.5245 0.3174a 0.3955a 0.6856 0.6826a 0.3414 
a. The values of metrics with best performance are highlighted in bold font, and the worst are displayed in red. 

 
6. Conclusion 
To deal with issues of high-dimensionality and time-dependence in the real-world datasets, DHL-AE is proposed in this 
article, and DHL-AE based anomaly detection monitoring framework is also developed to identify abnormal samples, 
which is conducive to ensuring the safety of industrial processes and solving the potential problem in the complex 
industrial applications. Tennessee Eastman process and Wind 2017 are used for the case study to show the effectiveness 
and superiority of the proposed DHL-AE method and the corresponding scheme for anomaly detection monitoring. 
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