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Abstract 

Proportional-integral-derivative (PID) controllers are widely used in industrial processes, and finding the most 
appropriate PID parameters plays an important role in optimizing plant operation. However, tuning a large number of 
PIDs is a labor-intensive task that often leaves many control engineers uncertain about how to proceed. To tackle this 
problem, this article provides an automated approach to select and recommend the appropriate set of numerical values 
for P, I, and D. Our approach is an open-loop PID autotuner which is based on a data-driven model that represents the 
physical process and an ensemble of optimization algorithms. To evaluate the effectiveness of our approach, we tuned 
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four PIDs that are responsible for controlling multiple-effect evaporators, a critical piece of equipment in kraft pulp 
manufacturing used to evaporate and concentrate black liquor. The results show clear success in tuning several PIDs 
automatically with basic process knowledge and minimum effort. 

Keywords 
PID Tuning, Data-driven, Model Identification, Optimization and Complex Industrial Processes. 

1. Introduction
Due to simplicity and ease of implementation, proportional-integral-derivative (PID) controllers have been extensively 
used in industrial processes over the past few decades, which consist of almost 90% of controllers in industrial control 
loops s (Al-Bargothi et al. 2019). They capture the system historical behaviors through the integration part and forecast 
the future behavior of the system via the differentiation part (Lakhani et al. 2021). 
At the same time, the advancement of modern science and technology improves the complexity of industrial processes, 
leading to potential problems such as unstable control loops (Shamsuzzoha 2018), which may contribute to the low 
effectiveness of PID tuning. 

Initially, PID controllers were manually tuned by the control engineers and operators with their empirical knowledge. 
This method does not need too much advanced technical support, but it depends on the personal professional ability, 
which cannot ensure the accuracy and adaptability of tuning. Apart from manual tuning, PID tuning approaches are 
categorized into heuristic tuning, rule-based tuning, and model-based tuning (Lakhani et al. 2021). Heuristic tuning is 
based on trial and error according to the prior knowledge on the control processes and its corresponding PID 
parameters, which is easy to implement but time-consuming. It also fails to guarantee that the selected PID parameters 
are optimal (Bucz and Kozáková 2018). Thus, heuristic tuning is usually used to provide an initial guess of the PID 
parameters. Rule-based tuning applies simple models for the approximation of the process on the basis of the step test. 
Ziegler-Nichols, Chien, Hrones and Reswick, Cohen-Coon, Kappa-Tau, and Lambda tuning are some commonly used 
rule-based tuning methods (Seborg et al. 2016). However, these methods are quite sensitive to discrepancies between 
the approximation model and the true control process, and they are only suitable for simple systems.  

Model-based tuning, which is also known as optimization-based tuning, is able to provide the optimal PID parameters 
when the model is sufficiently precise. However, it is difficult to obtain a precise model and to determine whether it 
is accurate enough in the real-world industrial processes due to the requirement of system identification (Abushawish 
et al. 2020). To mitigate the aforementioned issues in the existing methods and improve the tuning performance, 
several advanced tuning methods have been developed by combining traditional PID tuning with advanced techniques, 
including self-tuning (Khodadadi and Ghadiri 2018), auto-tuning (Borase et al. 2021), genetic tuning (Porter and Jones 
1992), and robust and optimal tuning (Kristiansson and Lennartson 2002). 

Industrial processes are complex and involve a large number of PIDs, as well as being dynamic and non-linear. Also, 
there are different regimes of operations, this results in several setpoints that PIDs must target. Consequently, for 
control engineers, tuning is a tedious task that requires a lot of time and effort. In addition, there are many different 
approaches to PID tuning, each with its own advantages and disadvantages. 
In order to address the challenge of tuning, we propose a hybrid approach to automate the tuning of PID. The approach 
combines simulator for industrial process, data from bump tests to model the first order plus dead-time (FOPDT), and 
several optimization algorithms.  

The following is an outline of our contributions to the tuning of PIDs: 
• A simulation process based on the industrial application is used for PID tuning, and the simulator is used to

gather sufficient bump test data to understand the dynamic of the process.
• Several optimization algorithms are used to obtain the parameters of FOPDT.
• Combined with the result of optimization, the internal model control (IMC) method is adopted to recommend

the PID parameters.

The remaining parts of this paper are organized as follows. Section 2 describes the details of the proposed PID-tuning 
framework for open-loop process. The effectiveness of the proposed framework is manifested by the case study in 
Section 3. Finally, conclusions are drawn in the last section. The limitations of this work and the future perspective 
are also presented. 
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2. FOPDT-Based Model and IMC for PID Tuning Framework 
A PID controller can be represented as (Johnson and Moradi 2005) 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑐𝑐 �𝑒𝑒(𝑡𝑡) +
1
𝜏𝜏𝑖𝑖
� 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜏𝜏𝑑𝑑

𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

� (1) 

 
where 𝐾𝐾𝑐𝑐, 𝜏𝜏𝑖𝑖 and 𝜏𝜏𝑑𝑑 are controller gain, integral time and derivative time, respectively (see Figure 1). The P, I and D 
parameters are the respective 𝐾𝐾𝑐𝑐, 𝐾𝐾𝑐𝑐/𝜏𝜏𝑖𝑖 and 𝐾𝐾𝑐𝑐𝜏𝜏𝑑𝑑.  The control variable and the error value are represented by 𝑢𝑢(𝑡𝑡) 
and 𝑒𝑒(𝑡𝑡), accordingly. 
 
This work aims to autotune the PID parameters in an open-loop configuration, meaning that the feedback loop is 
temporarily disconnected. For this purpose, it is necessary to select and build a model that represents the process 
dynamics. Then the model parameters can be used in conjunction with a rule-based approach to calculate the PID 
parameters (see Eq. (3)). In the present study, the FOPDT model is chosen due to its interpretability and ease of 
implementation, making it one of the most commonly used identification methods (Muresan and Ionescu 2020). The 
FOPDT model is an empirical approximation of stable dynamic processes s (Murrill 1967), and its formulation is 
 

𝜏𝜏𝑝𝑝
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝑑𝑑(𝑡𝑡) + 𝐾𝐾𝑢𝑢�𝑡𝑡 − 𝜃𝜃𝑝𝑝� (2) 

 
where 𝑑𝑑(𝑡𝑡) denotes the process variable obtained by FOPDT at time 𝑡𝑡, 𝐾𝐾 is the gain of the process, 𝜏𝜏𝑝𝑝 is the process 
time constant, and 𝜃𝜃𝑝𝑝 is the process dead time. 
 

 
 

Figure 1.  Block diagram of PID control in a closed-loop process 
 
In this research, IMC tuning rule (Rivera et al. 1986) is adopted to study the connections between FOPDT and PID 
parameters. IMC is a common tuning correlation for PID control. While many PID controller tuning rules target quick 
responsivity but compromise loop stability to achieve that quick response, IMC tuning rule provide a workable option 
where control loop stability is an issue. With IMC, the PID parameters are calculated by the following equation 
(Tajjudin et al. 2018): 

𝐾𝐾𝑐𝑐 =
1
𝐾𝐾

𝜏𝜏𝑝𝑝
𝜏𝜏𝑐𝑐 + 𝜃𝜃𝑝𝑝

    𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑝𝑝 + 0.5𝜃𝜃𝑝𝑝

𝜏𝜏𝑑𝑑 =
𝜏𝜏𝑝𝑝𝜃𝜃𝑝𝑝

2𝜏𝜏𝑝𝑝 + 𝜃𝜃𝑝𝑝

(3) 

 
where 𝜏𝜏𝑐𝑐 is the IMC filter constant, and it shall be settled within one to three fold the value of 𝜏𝜏𝑝𝑝. For aggressive 
tuning, 𝜏𝜏𝑐𝑐 is equal to one 𝜏𝜏𝑝𝑝, and for conservative tuning, 𝜏𝜏𝑐𝑐 should be three times the 𝜏𝜏𝑝𝑝. 
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3. The Proposed Approach for Tuning PID Parameters 
To tune the PID parameters 𝐾𝐾𝑐𝑐, 𝜏𝜏𝑖𝑖 and 𝜏𝜏𝑑𝑑 through the data, FOPDT and IMC, we need first to find the 𝐾𝐾, 𝜏𝜏𝑝𝑝, and 𝜃𝜃𝑝𝑝 
that minimize the objective function in Eq. (4), which represents the sum-of-squares error (SSE) between the 𝑑𝑑 (see 
Eq. (2)) and the plant output 𝑑𝑑𝑝𝑝. The values of 𝑑𝑑𝑝𝑝 are collected from bump tests. 

min
𝐾𝐾,𝜏𝜏𝑝𝑝,𝜃𝜃𝑝𝑝

��𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑝𝑝(𝑡𝑡)�2

𝑠𝑠. 𝑡𝑡. 𝜏𝜏𝑝𝑝 > 0 𝜃𝜃𝑝𝑝 > 0 
(4) 

 
Once the values of 𝐾𝐾, 𝜏𝜏𝑝𝑝, and 𝜃𝜃𝑝𝑝 are obtained, the IMC rule can be used to recommend the values of 𝐾𝐾𝑐𝑐, 𝜏𝜏𝑖𝑖 and 𝜏𝜏𝑑𝑑.   
However, the selection of an optimizer is a challenge. Moreover, PIDs in industrial processes usually control variables 
with different dynamics and behaviors. Therefore, there is no single optimizer that can help adjust the parameters of 
all PIDs in an industrial process. Consequently, several optimizers are studied. It is worth mentioning that computing 
power (CPU and GPU) has increased considerably over the past 15 years, which is a major driver for successfully 
integrating and deploying various operations research algorithms. In addition, these varieties are available using open-
source Python libraries. Using the "Scipy. optimize" library in Python, various optimization methods were tested and 
applied to find the optimal PID parameters. In terms of unconstrained minimization, conjugate gradient (CG) 
algorithm, Newton-CG algorithm, Newton conjugate gradient trust-region (trust-ncg) algorithm, Newton GLTR trust-
region Krylov subspace (trust-krylov) algorithm (Jorge and Stephen 2006) are applied for the comparison. With 
respect to constrained minimization, and constrained optimization by linear approximation (COBYLA) (Powell, 2007) 
are adopted to optimize PID parameters. For bound-constrained minimization, approaches are considered involving 
limited-memory BFGS algorithm for bound-constrained optimization (L-BFGS-B) (Byrd et al. 1995), Powell's 
conjugate direction (Powell) method (Press et al. 2007), truncated Newton (TNC) algorithm (Jorge and Stephen 2006), 
bound optimization by quadratic approximation (BOBYQA) (Powell 2009). Apart from the above methods, particle 
swarm optimization (PSO) and genetic algorithm (GA) are also used for PID tuning. 
 
To recap our approach which is demonstrated in Figure 2, we first conduct bump tests on the variables that require 
control}, which are done in an open-loop mode. Second, several selected optimizers need to be performed to adjust 
the FOPDT parameters (see Eqs. (2) and (4)). Considering both the coefficient of determination (𝑅𝑅2)  (Draper 
and Smith 1998) and process time, the optimizer with the best performance is selected, and the corresponding set of 
parameters (𝐾𝐾, 𝜏𝜏𝑝𝑝, and 𝜃𝜃𝑝𝑝) obtained by the optimizer is used to determine further PID parameters 𝐾𝐾𝑐𝑐 , 𝜏𝜏𝑖𝑖  and 𝜏𝜏𝑑𝑑). 
Afterwards, by using the IMC tuning method, the PID parameters are calculated in the following three modes: 
aggressive, moderate, and conservative. Finally, the simulator is used to obtain the appropriates values of the PIDs. 
 

 
 

Figure 2. Proposed method for simplifying PID tuning in chemical industrial processes: a schematic representation 
 
4. Case Study 
4.1 Process Description 
The proposed approach has been tested and validated using data generated with a dynamic simulation of a multiple-
effect evaporators (MEV) system. This system represents a major part of the chemical recovery cycle in Kraft pulp 
mills. Its role is to increase the dissolved solids content of black liquor generated in the wood chips pulping line from 
around 13%-17% to around 50%. The system uses steam for black liquor water evaporation. More details about the 
MEV design and operation are provided as follows. 
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Figure 3.  Flowsheet of black liquor multi-effect evaporators-CADSIM 
 
This energy-intensive system is characterized by non-linear behaviors and a constant change of its dynamics. Indeed, 
many parameters can affect the dynamics of the systems including the incremental increase in the fouling of the heat 
transfer areas, changes in system operating conditions and a high variability of the black liquor physical properties 
due to changes in wood species and pulping conditions. The parameters of the local PID controllers of this system 
should be tuned regularly to adjust to system dynamics changes and therefore maintain efficient control of the system. 
The MEV that has been selected in this work contains six effects as shown in Figure 3. The first effect includes two 
parallel evaporators. The vacuum is created and maintained by a surface condenser. A preheater is installed between 
the first and the second effect and aims to preheat part of the liquor leaving the third effect. This system contains four 
PID controllers. PID 1 controls solid concentration of black liquor (SCBL1) leaving the first evaporator. PID 2 controls 
the solid concentration of black liquor leaving the second evaporator (SCBL2). PID 3 aims to control the temperature 
of black liquor out of the preheater (TBLP). PID 4 is used to control the temperature of the condensed vapor in the 
surface condenser (TCV). 
 
4.2 Data Generation and Optimizer Selections 
The dynamic simulation of the MEV system was developed using CADSIM Plus © process simulation software. The 
model closely mimics the real system behavior and can simulate different operational scenarios, add noise, conduct 
open-loop bump tests, incorporate PIDs to control specific variables, and generate datasets. During the open-loop 
bump test, a noise with 𝑁𝑁(𝜇𝜇,𝜎𝜎 = 1) was added to each manipulated variable. In the closed-loop configuration test for 
PIDs, a variability was added to the weak black liquor with 𝑁𝑁(𝜇𝜇,𝜎𝜎 = 5)  and a noise with 𝑁𝑁(𝜇𝜇,𝜎𝜎 = 1). It should be 
mentioned that variability and noise propagate through all MEV and introduce dynamics and noisy signals to all 
variables in the MEV. For this study, the simulation was linked to MS Excel for feeding the simulation with input 
data, performing bump tests, datasets generation and testing the obtained PID parameters. The simulation could also 
be linked to Python for online tests performing. 
 
To conduct a bump test and collect data on the process variables that require control, we adjusted the manipulated 
variables in CADSIM at various steps. The process variables under consideration in this case study are SCBL1, 
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SCBL2, TBLP, and TCV. We obtained four different sets of data (see Table 1) to estimate the parameters of the four 
FOPDT models. The sampling time used was 0.1 simulation time. 
 

Table 1.  Length of data sets to build the four FOPDT model 
 

FOPDT Models Samples 
1 3401 
2 2901 
3 2901 
4 2907 

 
Based on the proposed framework, we evaluated eleven optimizers listed in Tables 2-5 to tune the PIDs using the 
available data. These optimizers were applied to obtain the parameter values of four FOPDT models, which were 
then used to calculate the parameters of four PIDs using Eq. (3). The assessment of optimizers is based on two 
criteria: (1) the convergence time of each optimizer, and (2) the coefficient of determination (𝑅𝑅2) between the 
predicted and actual values of the FOPDT models. According to the definition of 𝑅𝑅2, the closer its value is to 1.0, 
the more precise is the FOPDT model. 
 
4.3 Results and Discussion 
The datasets generated (see Table 1) from the bump tests contain the manipulated variables and the process variables 
(𝑢𝑢, 𝑑𝑑𝑝𝑝). These 4 datasets are fed to the 11 selected optimizers to obtain the values of (𝐾𝐾, 𝜏𝜏𝑝𝑝, and 𝜃𝜃𝑝𝑝). There are 4 
process variables to be controlled. Additionally, 4 parameters (𝐾𝐾𝑐𝑐, 𝜏𝜏𝑖𝑖, 𝜏𝜏𝑑𝑑 and 𝜏𝜏𝑐𝑐) need to be determined by values of 
(𝐾𝐾, 𝜏𝜏𝑝𝑝, and 𝜃𝜃𝑝𝑝) based on the IMC tuning rule. In Tables 2 and 3, trust-ncg, trust-krylov, Powell, BOBYQA gave the 
most accurate results (see bold values). In Table 4, the highest values of 𝑅𝑅2 are given to the following optimizers: 
Powell, TNC, BOBYQA, and GA. In Table 5, the two optimizers (trust-ncg and trust-krylov) are the most accurate 
according to their 𝑅𝑅2. In addition, CG, Newton-CG, L-BFGS-B, Powell, TNC, BOBYQA, PSO, COBYLA, and GA 
perform well since their 𝑅𝑅2 values are reasonable (0.9 < 𝑅𝑅2< 1.0). For each optimizer, the IMC rule is used to 
calculate the parameters of the PIDs (see Eq. (3)). Finally, the simulator is used to evaluate and select the optimizers 
that must be used to calculate the parameters of the 4 PIDs. Several setpoints that represent different operational 
regimes are used during the evaluation. The selected optimizers are Powell, BOBYQA, COBYLA. By using these 
optimizers and the IMC, the recommended parameters of the 4 PID controllers are obtained and demonstrated in 
Table 6. The tuning results of the four PIDs are depicted in Figure 4. It is evident from the figure that all four PIDs 
are capable of regulating the process variables effectively, without causing overshoot and with reasonable rise time. 
Consequently, the proposed approach can tune several PID controllers in a complex chemical process based on data 
and with minimum knowledge about the process. 
 

Table 2.  Accuracy of the optimizers for capturing the dynamics of the process variable: SCBL1 
 

Optimization Methods 𝑅𝑅2 Process Time/s 
CG 0.8870 117.27 

Newton-CG 0.8870 609.38 
trust-ncg 0.9062 3697.97 

trust- krylov 0.9062 3437.59 
COBYLA 0.8093 236.11 
L-BFGS-B 0.9601 94.61 

Powell 0.9602 147.80 
TNC 0.8877 6636.41 

BOBYQA 0.9602 297.39 
PSO 0.9601 8189.12 
GA 0.8782 23985.33 
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Table 3.  Accuracy of the optimizers for capturing the dynamics of the process variable: SCBL2 

 
Optimization Methods 𝑅𝑅2 Process Time/s 

CG 0.9534 115.48 
Newton-CG 0.9442 549.41 

trust-ncg 0.9535 4708.28 
trust- krylov 0.9535 3842.41 
COBYLA 0.9504 32.91 
L-BFGS-B 0.9529 16.47 

Powell 0.9535 114.80 
TNC 0.9532 6109.89 

BOBYQA 0.9535 279.34 
PSO 0.9531 369.58 
GA 0.9534 25027.81 

 
Table 4.  Accuracy of the optimizers for capturing the dynamics of the process variable: TBLP 

 
Optimization Methods 𝑅𝑅2 Process Time/s 

CG 0.8990 75.72 
Newton-CG 0.8990 578.28 

trust-ncg 0.9007 2051.16 
trust- krylov 0.9007 2084.56 
COBYLA 0.8900 882.64 
L-BFGS-B 0.8972 206.38 

Powell 0.9011 176.17 
TNC 0.9011 8482.73 

BOBYQA 0.9011 138.94 
PSO 0.8985 6372.62 
GA 0.9011 7404.08 

 
Table 5.  Accuracy of the optimizers for capturing the dynamics of the process variable: TCV 

 
Optimization Methods 𝑅𝑅2 Process Time/s 

CG 0.9587 62.52 
Newton-CG 0.9587 539.27 

trust-ncg 0.9614 5242.67 
trust- krylov 0.9614 4372.88 
COBYLA 0.7753 882.64 
L-BFGS-B 0.9519 27.83 

Powell 0.9593 107.64 
TNC 0.9587 624.77 

BOBYQA 0.9570 45.08 
PSO 0.9511 6784.86 
GA 0.9324 31759.06 
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Table 6.  Accuracy of the optimizers for capturing the dynamics of the process variable: TCV 
 

PID Controller 𝐾𝐾𝑐𝑐 𝜏𝜏𝑖𝑖 𝜏𝜏𝑑𝑑 𝜏𝜏𝑐𝑐 
PID 1 187.9 4.8 2.5 1.0 
PID 2 153.0 3.6 0.9 3.0 
PID 3 19.0 2.3 0 3.0 
PID 4 -3000.0 0.1 0 3.0 

 

 
 

Figure 4.  Performance evaluation of PIDs with setpoints and controlled variables 
 
 
5. Conclusions 
This paper proposes a systematic PID tuning framework based on a FOPDT model for an industrial open-loop 
process, and its effectiveness of controlling the concentration of black liquor is shown by a case study of an 
evaporator system in Kraft pulp manufacturing. For this energy-intensive industrial application, optimization 
algorithms including CG, Newton-CG, trust-ncg, trust-krylov, COBYLA, L-BFGS-B, Powell, TNC, BOBYQA, 
PSO, and GA can achieve the function of PID tuning. After taking into account the metrics of 𝑅𝑅2, convergence time, 
and closed-loop simulation, it has been established that the Powell and BOBYQA optimization methods are the most 
appropriate choices for optimizing the four PIDs. 
For future research, it would be valuable to conduct a thorough examination of FOPDT as a model identification 
technique in order to assess its benefits and drawbacks in relation to other methods. Furthermore, our proposed 
approach will be validated by testing it on real-world applications. Moreover, there is potential for exploring 
alternative directions, such as utilizing advanced machine-learning and reinforcement-learning techniques to tune 
PID directly in a closed-loop configuration. 
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