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Abstract 

Due to the advancement of modern industrial processes, a considerable number of measured variables enhance the 
complexity of systems, progressively leading to the development of multivariate statistical analysis (MSA) methods 
to exploit valuable information from the collected data for predictive modeling, fault detection and diagnosis, such as 
partial least squares (PLS), canonical correlation analysis (CCA) and their extensions. However, these methods suffer 
from some issues, involving the irrelevant information extracted by PLS, and CCA’s inability to exploit quality 
information.  Latent variable regression (LVR) was designed to address these issues, but it has not been fully and 
systematically studied.  

A concurrent kernel LVR (CKLVR) with a regularization term is designed for collinear and nonlinear data to construct 
a full decomposition of the original nonlinear data space, and to provide comprehensive information of the systems. 
Further, dynamics are inevitable in practical industrial processes, and thus a dynamic auto-regressive LVR (DALVR) 
is also proposed based on regularized LVR to capture dynamic variations in both process and quality data. The 
comprehensive monitoring framework and fault diagnosis and causal analysis scheme based on DALVR are 
developed. Their superiority can be demonstrated with case studies, involving the Tennessee Eastman process, Dow’s 
refining process and three-phase flow facility process.  

Keywords 
Multivariate statistical analysis, Nonlinearity, Dynamics, Monitoring and Fault diagnosis. 

1. Introduction
To assure the safe operation of industrial processes and the quality of their products, multivariate statistical analysis 
(MVA) has been extensively used for the purpose of predictive modeling (Gillo and Shelly 1976), fault detection and 
diagnosis (Qin 2003), and causal analysis (Peerally et al. 2017), which are critical for the enhancement of safety, 
reliability, and maintainability of industrial processes. When the collected data contains both process and quality data, 
supervised algorithms are preferred to fully exploit the information in the data, such as partial least squares (PLS) 
(Geladi and Kowalski 1986), canonical correlation analysis (CCA) (Hardoon et al. 2004), and latent variable 
regression (LVR) (Zhu 2020). For instance, PLS maximizes covariances between input and output, but its extracts 
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space may contain extraneous variances of process data, leading to ineffective quality prediction. Alternatively, CCA 
addresses this issue by maximizing their correlations, but it fails to make full use of the quality information (Liu et al. 
2018). LVR was proposed to maximize the prediction projection of quality data on the latent space, and it has shown 
superiority over PLS and CCA in the terms of quality-relevant modeling and monitoring (Zhu 2020).  
 
The aforementioned approaches have been established to deal with the complexity of the real-world industrial 
applications, involving nonlinearity, collinearity, and dynamics. However, several limitations are still involved in 
these methods, such as inadequate exploitation of process and quality data, incomplete decomposition of monitoring 
spaces, and prospects for further improvements on fault diagnosis. The main contributions of this work are outlined 
as follows: 

• A kernel LVR (KLVR) method is designed to handle nonlinearity by incorporating Gaussian kernel function 
with rLVR, and a concurrent modeling and monitoring framework is developed to obtain comprehensive 
monitoring performance.   

• A dynamic auto-regressive LVR (DALVR) method is constructed to fully utilize information in both process 
and quality data via an ARX model, and the corresponding concurrent modeling and monitoring scheme is 
also proposed. 

• A DALVR-based fault diagnosis and root cause identification framework is established to locate the root 
causes of the detected fault and to enhance the diagnosability and interpretability. 

• The proposed methods are tested for both simulation and industrial data. 
 
The remaining part of this thesis is organized as follows. Section 2 includes the literature review on nonlinear and 
dynamic MVA methods, as well as fault diagnosis. Section 3 presents the proposed CKLVR algorithm and its 
corresponding quality and process-related monitoring framework together with case studies to show the superiority of 
CKLVR. The details of DALVR with the corresponding concurrent monitoring scheme is elaborated in Section 4, and 
the DALVE-based fault diagnosis and root cause identification framework is also demonstrated in Section 4, together 
with the case studies to demonstrate the effectiveness of the proposed methods. Finally, conclusions are drawn in 
Section 5.  
 
2. Literature Review 
2.1 Nonlinear MVA Algorithms 
The typical MVA methods including PLS, CCA, and LVR are based on a linearity assumption, and their performance 
is usually poor in practical industrial processes, since nonlinearity is inevitable in these processes. To address it, 
researchers have explored their nonlinear extensions, such as kernel functions (Lai and Fyfe 2000), neural networks 
(NNs) (Alauddin et al. 2020), and support vector machine (SVM) (Liu et al. 2021).  
 
Kernel MVA approaches construct the kernel matrices with some selected kernels, such as linear kernel (Fomin and 
Thilikos 2004), polynomial kernel (Shashua 2009), and sigmoid kernel (Camps-Valls et al. 2004). They transform the 
nonlinear relations in the original space into the linear relations in the kernel space. A kernel PLS (KPLS) was 
proposed by Rosipal and Trejo (2001) via incorporating the reproducing kernel Hilbert space with PLS to project the 
original data into a higher-dimensional feature space. The multi-scale KPLS algorithm (Zhang and Hu 2011) was 
designed to investigate the multi-scale nature of nonlinear data by combining KPLS with the wavelet analysis. Zhou 
et al. (2020) put forward a novel fault detection and identification method for KPLS-based monitoring to handle the 
issue of strong nonlinearity and few faulty samples. Nonlinear counterparts have also been developed for CCA (Chen 
and Wang 2021). 
 
Qin and McAvoy (1992) investigated a neural net PLS algorithm by embedding multilayer NNs into PLS. A NN-
based soft sensor was designed by Shang et al. (2014) to model the massive nonlinear data. Alauddin et al. (2020) 
proposed a hybrid NN model for the fault detection and diagnosis of complex process systems. Compared with NNs, 
SVM eliminates the local minimum problems, thus giving rise to better generalization capacity. For instance, an SVM-
based algorithm designed for fault detection in high-speed trains was studied by Liu et al. (2021) with cost-sensitive 
strategy handling imbalanced data and weighted-feature strategy differentiating features. Other nonlinear methods 
such as k-nearest neighbor algorithm (Patrick and Fisher III 1970) and denoising autoencoder (Yu and Zhao 2019) are 
also applied for process monitoring. However, compared with kernel variants of MVA methods, these algorithms have 
high computation cost and low interpretability due to their complicated model structures. 
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2.2 Dynamic MVA Algorithms 
Dynamics is one of the typical characteristics of real-world processes, and two kinds of dynamics exist, namely the 
temporal dependence between adjacent samples, and the dynamic cross-correlations between various variables. It is 
of key importance to capture temporal relations, and various dynamic models were proposed, such as dynamic PLS 
(Dong and Qin 2015), dynamic CCA (Dong and Qin 2018), and dynamic rLVR (Zhu et al. 2020). These methods are 
effective to capture cross-correlations between the input and output data.  
 
2.3 Fault Diagnosis 
Once an anomaly is detected with the monitoring statistics, it is necessary to determine its assignable causes, and this 
task is called fault diagnosis. Several approaches are available for fault diagnosis, such as contribution plots (Ramaker 
et al. 2006), subspace extraction methods (Hu et al. 2021), and reconstruction-based contribution (RBC) (Alcala and 
Qin 2009).  
 
As one of the early proposed fault diagnosis methods, contribution plots diagnose the causes by identifying the 
corresponding contribution of each variable to the monitoring indices, with the assumption that faulty variables 
contribute more to the monitoring statistics.  A novel contribution plots method with a new indicator was developed 
by Wang et al. (2018) for quality relevant fault diagnosis. Bounoua and Bakdi (2021) improved the contribution plots 
to analyze the cause for abnormal process conditions, indicating more accurate information. Additionally, an enhanced 
comprehensive contribution plots approach was designed for Bayesian fusion based distributed multivariate statistical 
process monitoring, which improved its fault isolation efficiency (Mou et al. 2021). 
 
Subspace extraction methods are also developed for root cause analysis. For instance, a PCA-based subspace 
reconstruction approach was proposed by Dunia and Qin (1998) for multidimensional fault identification and 
reconstruction. Subsequently, Gertler et al. (1999) put forward an isolation enhanced PCA method. Based on a robust 
reconstruction error calculation, a novel fault identification method (Choi et al. 2005) was formulated to handle 
nonlinear relations by kernel PCA. Besides, to deal with inaccurate fault subspace extraction and unidentified false 
alarms, a modified PLS algorithm (Hu et al. 2021) was designed to gain a precise subspace through orthogonal 
decomposition and extract purer quality-related and quality-unrelated fault subspaces. 
 
To address the issues involving non-rigorous diagnosability analysis and inability to diagnose faults with unknown 
directions in the previous methods, Alcala and Qin (2009) proposed an RBC approach, which denotes the amount of 
reconstruction in the direction of each variable to minimize the fault detection statistics. Later, several variants of RBC 
have also been proposed. Specifically, a generalized RBC approach with a total PLS model was created by Li et al. 
(2010), showing its superiority to contribution plots-based diagnosis methods. To identify the variables that are the 
most responsible for the fault, He et al. (2012) established a generic reconstruction based multivariate contribution 
analysis framework for fault diagnosis with a branch and bound algorithm for the efficient solution to the 
combinatorial optimization problem. Two modified RBC approaches including a generalized RBC method and RBC 
ratio method were proposed by Mnassri and Ouladsine (2015) to tackle complex faults and remedy the defective of 
the traditional RBC method. 
 
Since RBC retains satisfactory fault diagnosis performance, it is used as the basis of our work, and its idea is reviewed 
briefly in the following. For a faulty sample 𝐱𝐱, a reconstructed vector along its fault direction 𝜉𝜉𝑖𝑖 with a fault magnitude 
of 𝑓𝑓𝑖𝑖 is expressed as 

𝐳𝐳𝑖𝑖 = 𝐱𝐱 − 𝜉𝜉𝑖𝑖𝑓𝑓𝑖𝑖 (2.1) 
where 𝐳𝐳𝑖𝑖 represents a fault-free sample. Then, the general form of a reconstructed fault detection index is constructed 
as 

Index(𝐳𝐳𝑖𝑖) = 𝐳𝐳𝑖𝑖⊤𝐌𝐌𝐳𝐳𝑖𝑖 = ‖𝐳𝐳𝑖𝑖‖M𝟐𝟐 = ‖𝐱𝐱 − 𝜉𝜉𝑖𝑖𝑓𝑓𝑖𝑖‖M2 (2.2) 
 
where 𝐌𝐌  is determined by the corresponding monitoring index. For instance, 𝐌𝐌  for 𝑇𝑇2  and  
𝑄𝑄 indices are 𝐑𝐑𝚲𝚲−1𝐑𝐑⊤ and  𝐈𝐈 − 𝐏𝐏𝐑𝐑⊤, respectively.  
 
RBC identifies the fault detection by minimizing Index(𝐳𝐳𝑖𝑖) for different variable directions, and it assumes that the 
direction with the largest fault magnitude is the faulty direction (Alcala and Qin 2009). Taking the first derivative of 
Index(𝐳𝐳𝑖𝑖) with regard to 𝑓𝑓𝑖𝑖 and making it equal to zero yield 
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𝑓𝑓𝑖𝑖 = (𝜉𝜉𝑖𝑖⊤𝐌𝐌𝜉𝜉𝑖𝑖)−1𝜉𝜉𝑖𝑖⊤𝐌𝐌𝐌𝐌. (2.3) 
Then the amount of reconstruction along the fault direction 𝜉𝜉𝑖𝑖, denoted as RBC𝑖𝑖Index, is 

RBC𝑖𝑖Index = ‖𝜉𝜉𝑖𝑖𝑓𝑓𝑖𝑖‖M2 = 𝐱𝐱⊤𝐌𝐌𝜉𝜉𝑖𝑖(𝜉𝜉𝑖𝑖⊤𝐌𝐌𝜉𝜉𝑖𝑖)−1𝜉𝜉𝑖𝑖⊤𝐌𝐌𝐌𝐌. (2.4) 
 
2.4 Root Cause Identification and Causal Analysis 
Root cause identification for quality-related problems is a key step to identify the main reason of the process faults or 
failures. To locate the causes of faults, causal analysis, which is also known as root cause analysis, is developed to 
explore causal relations between components of time series, and it has attracted plenty of attractions in the related 
fields including public health, policy, finance, physics, medicine, biology, environmental science, and public health 
(Liu et al. 2021). Many efficient methods have been designed for causal analysis, such as dynamic causal model 
(Friston et al. 2003), Granger causality (Granger 1969), transfer entropy (Vicente et al. 2011), randomization test (La 
Fond and Neville 2010), and phase slope index (Nolte et al. 2008). Among them, Granger causality and transfer 
entropy are the most commonly used and reliable approaches, but Granger causality is preferred in complex processes 
due to its computation efficiency (Lindner et al. 2019).  
 
Originated from econometrics, on the basis of linear vector-autoregressive (VAR) modeling, Granger causality 
(Granger 1969) was proposed to handle stochastic time-series datasets. Conceptually, as a measure of the predictive 
ability from a signal to another, if the predictive ability of the signal is statistically different from that in the opposite 
direction, there exists Granger causal relationship between these two signals. Due to its simplicity, usability, 
robustness, and extendibility (Brovelli et al. 2004), Granger causality has been attached great importance to by many 
researchers (Liu et al. 2021). At the early stage, focusing on linear relations, Geweke (1982) proposed the definition 
of causality for multiple time series, which was seen as the supplement and extension of Granger’s previous work. 
Later, to address early clarification of statistical issues, Granger causality was used for local-field potentials (LFPs) 
(Goebel et al. 2003).  
 
Since Granger causality can determine whether a signal Granger-causes another one, it is feasible to evaluate whether 
a set of variables includes valuable information that can be used to enhance the predictive performance of another set 
of variables for root cause analysis, which is meaningful for the causal analysis for dynamic systems (Yuan and Qin 
2014). Goebel et al. (Goebel et al. 2003) combined an adaptive multivariate VAR modeling technique with Granger 
causal analysis to capture fast-changing cortical dynamics. Incorporating sparse regression approaches with Granger 
causality, a modified Granger causality framework (Valdés-Sosa et al. 2005) was provided to estimate high-
dimensional dynamical models. In consideration of hemodynamics responses between regions in the brain, a measure 
of Granger causality was validated by David et al. (2008) to determine the connectivity from time series. Integrating 
explicit observation expressions for hemodynamics responses, Ryali et al. (2011) analyzed a state-space framework 
combined with Granger causality. Integrating the Geweke's spectral approach with the time-varying autoregressive 
with exogenous input (ARX) modeling method, a novel parametric scheme for conditional Granger causality was 
established by Li et al. (2019) to capture dynamic interaction relations in oscillatory neocortical sensorimotor networks. 
To reveal dynamic interaction patterns of cortical regions in surgical training on effective brain connectivity, dynamic 
spectral Granger causality was applied by Kamat et al. (2021) via the short-time Fourier transform approach. 
Considering the existence of nonlinear relations in datasets, Shen et al. (2021) proposed a root cause analysis 
framework which combines a recurrent NN with Granger causality test. 
 
In the following two subsections, two most frequently used Granger causality methods, namely time-domain Granger 
causality (TDGC) (Yuan and Qin 2014) and conditional spectral Granger causality (CSGC) (Claessen et al. 2019), are 
reviewed in details and will be adapted in the proposed work. 
 
Time-Domain Granger Causality 
Given two time series 𝐱𝐱1(𝑘𝑘) and 𝐱𝐱2(𝑘𝑘) in stationary stochastic processes, a bivariate auto-regressive (AR) model is 
constructed as (Yuan and Qin 2014) 

𝐱𝐱1(𝑘𝑘) = �𝑎𝑎11𝐱𝐱1(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ �𝑎𝑎12𝐱𝐱2(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ 𝒆𝒆1(𝑘𝑘)

𝐱𝐱2(𝑘𝑘) = �𝑎𝑎21𝐱𝐱1(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ �𝑎𝑎22𝐱𝐱2(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ 𝒆𝒆2(𝑘𝑘)

(2.5) 
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where 𝑟𝑟 defines the AR model order, 𝑎𝑎𝑖𝑖𝑖𝑖,𝑙𝑙 (𝑙𝑙 = 1,2, … , 𝑟𝑟) can represent the AR coefficients, and 𝒆𝒆𝑖𝑖(𝑘𝑘) is the residual 
or prediction error. 
To perform the AR model on each time series, one variable, 𝐱𝐱1 or 𝐱𝐱2, can be excluded. Therefore, Eq. (2.5) can be 
simplified into 

𝐱𝐱1(𝑘𝑘) = �𝑏𝑏1,𝑙𝑙𝐱𝐱1(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ 𝒆𝒆1(2)(𝑘𝑘)

𝐱𝐱2(𝑘𝑘) = �𝑏𝑏2,𝑙𝑙𝐱𝐱2(𝑘𝑘 − 𝑙𝑙)
𝑟𝑟

𝑙𝑙=1

+ 𝒆𝒆2(1)(𝑘𝑘)

(2.6) 

 
where 𝒆𝒆𝑖𝑖(𝑗𝑗)(𝑘𝑘) expresses the prediction error that excludes the 𝑗𝑗th variable to predict the 𝑖𝑖th variable, which can be 
used to determine whether a causal-and-effect relationship exists. 
It is defined that 𝐱𝐱𝑗𝑗  Granger-causes 𝐱𝐱𝑖𝑖  if the exclusion of 𝐱𝐱𝑗𝑗  reduces the ability to predict  𝐱𝐱𝑖𝑖  when all the other 
variables are involved in the regression model. The TDGC from Variable 𝑗𝑗 to Variable 𝑖𝑖 is measured by the index 
 

𝐹𝐹𝐱𝐱𝑗𝑗→𝐱𝐱𝑖𝑖 = ln
var�𝒆𝒆𝑖𝑖(𝑗𝑗)�

var(𝒆𝒆𝑖𝑖)
(2.7) 

 
where var(∙) denotes the variance. Thereafter, the statistical significance is assessed by an F test. 
 
• Conditional Spectral Granger Causality 
As the theoretical foundation of CSGC, it is necessary to review spectral Granger causality (SGC) first (Dhamala et 
al. 2008). Due to oscillating variables in real-world industrial processes, it is feasible and appropriate to use SGC to 
investigate cause-and-effect relationship among them. SGC is the spectral decomposition of TDGC for multiple time 
series. Compared with TDGC, SGC provides more information on the granger causality at a specific frequency range, 
so it can be used to combine with TDGC for Granger causality analysis. Theoretically, SGC is defined as 
 

SGC𝐱𝐱𝑗𝑗→𝐱𝐱𝑖𝑖(𝑓𝑓) = ln
𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) − �𝚪𝚪𝑗𝑗𝑗𝑗 −
𝚪𝚪𝑖𝑖𝑖𝑖2
𝚪𝚪𝑖𝑖𝑖𝑖
� �𝐇𝐇𝑖𝑖𝑖𝑖(𝑓𝑓)�2

(2.8)
 

where 𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓) defines the spectral density of the target variable 𝐱𝐱𝑖𝑖 at frequency 𝑓𝑓, which represents components in 
spectral density matrix 𝐒𝐒. Dhamala et al. (2008) provided the detailed calculation of 𝑆𝑆𝑖𝑖𝑖𝑖(𝑓𝑓).  
 
In addition to the mutual relations between 𝐱𝐱𝑖𝑖 and 𝐱𝐱𝑗𝑗, other variables 𝐳𝐳1, 𝐳𝐳2, . . . , 𝐳𝐳𝑣𝑣 may also affect them, which should 
be included to analyze the causality. However, SGC fails to consider this effect. Alternatively, conditional SGC 
(CSGC) was developed (Claessen et al. 2019). With the spectral transformation and Wilson factorization (Wilson 
1972), a multivariate system with 𝑣𝑣 + 2 variables �𝐱𝐱𝑗𝑗 , 𝐱𝐱𝑖𝑖 , 𝐳𝐳1, . . . , 𝐳𝐳𝑣𝑣� is formulated as 
 

𝐒𝐒�𝐱𝐱𝑗𝑗 , 𝐱𝐱𝑖𝑖 , 𝐳𝐳1, … , 𝐳𝐳𝑣𝑣, 𝑓𝑓� = 𝐇𝐇(𝑓𝑓)𝚺𝚺𝐇𝐇∗(𝑓𝑓)
𝐔𝐔�𝐱𝐱𝑗𝑗 , 𝐳𝐳1, … , 𝐳𝐳𝑣𝑣, 𝑓𝑓� = 𝐆𝐆(𝑓𝑓)𝚪𝚪𝐆𝐆∗(𝑓𝑓)

(2.9) 

 
where 𝐳𝐳1, 𝐳𝐳2, . . . , 𝐳𝐳𝑣𝑣  are variables that may influence 𝐱𝐱𝑖𝑖  and 𝐱𝐱𝑗𝑗 . 𝐒𝐒 and 𝐔𝐔 define the spectral matrices of complete 
system and system with Variable 𝐱𝐱𝑖𝑖 excluded for the causality test. 𝐇𝐇 and 𝐆𝐆 represent the spectral transfer function 
matrices, while 𝚺𝚺 and 𝚪𝚪 are the error covariance matrix of complete and incomplete systems, respectively. Thus, the 
corresponding CSGC index can be computed as 
 

CSGC𝐱𝐱𝑗𝑗→𝐱𝐱𝑖𝑖|𝐳𝐳1,𝐳𝐳2,…,𝐳𝐳𝑣𝑣(𝑓𝑓) = ln
𝚪𝚪𝑖𝑖𝑖𝑖

�𝐐𝐐𝑖𝑖𝑖𝑖(𝑓𝑓)𝚪𝚪𝑗𝑗𝑗𝑗𝐐𝐐𝑖𝑖𝑖𝑖
∗ (𝑓𝑓)�

(2.10) 

where 
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𝐐𝐐 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐺𝐺
�𝑖𝑖𝑖𝑖 0 𝐺𝐺�𝑖𝑖𝐳𝐳1
0 1 0
𝐺𝐺�𝐳𝐳1𝑖𝑖 0 𝐺𝐺�𝐳𝐳1𝐳𝐳1

⋯ 𝐺𝐺�𝑖𝑖𝐳𝐳𝑣𝑣
⋯ 0
⋯ 𝐺𝐺�𝐳𝐳1𝐳𝐳𝑣𝑣

⋮ ⋮ ⋮
𝐺𝐺�𝐳𝐳𝑣𝑣𝑖𝑖 0 𝐺𝐺�𝐳𝐳𝑣𝑣𝐳𝐳1

⋱ ⋮
⋯ 𝐺𝐺�𝐳𝐳𝑣𝑣𝐳𝐳𝑣𝑣⎦

⎥
⎥
⎥
⎥
⎤
−1

×

⎣
⎢
⎢
⎢
⎡ 𝐻𝐻
�𝑖𝑖𝑖𝑖 𝐻𝐻�𝑖𝑖𝑖𝑖 ⋯
𝐻𝐻�𝑗𝑗𝑗𝑗 ⋯ ⋯
⋯ ⋯ ⋯

⋯ 𝐻𝐻�𝑖𝑖𝐳𝐳𝑣𝑣
⋯ ⋮
⋯ ⋮

⋮ ⋮ ⋮
𝐻𝐻�𝐳𝐳𝑣𝑣𝑖𝑖 0 𝐻𝐻�𝐳𝐳𝑣𝑣𝑗𝑗

⋱ ⋮
⋯ 𝐻𝐻�𝐳𝐳𝑣𝑣𝐳𝐳𝑣𝑣⎦

⎥
⎥
⎥
⎤

. 

 
The calculation of 𝐺𝐺�𝑖𝑖𝑖𝑖 can refer to literature (Physical Review Letters).  
If 𝐱𝐱𝑗𝑗 does not Granger-cause 𝐱𝐱𝑖𝑖 , but other variables among  𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑣𝑣  affect both 𝐱𝐱𝑗𝑗 and 𝐱𝐱𝑖𝑖 , 𝚪𝚪𝑖𝑖𝑖𝑖 will be equal to 
�𝐐𝐐𝑖𝑖𝑖𝑖(𝑓𝑓)𝚪𝚪𝑗𝑗𝑗𝑗𝐐𝐐𝑖𝑖𝑖𝑖

∗ (𝑓𝑓)� , thus leading to  CSGC𝐱𝐱𝑗𝑗→𝐱𝐱𝑖𝑖|𝐳𝐳1,𝐳𝐳2,...,𝐳𝐳𝑣𝑣(𝑓𝑓) = 0 ; if there is Granger causality between 𝐱𝐱𝑗𝑗  and 𝐱𝐱𝑖𝑖 , 
CSGC𝐱𝐱𝑗𝑗→𝐱𝐱𝑖𝑖|𝐳𝐳1,𝐳𝐳2,...,𝐳𝐳𝑣𝑣(𝑓𝑓) > 0 . Moreover, to determine whether 𝐱𝐱𝑗𝑗  Granger-causes 𝐱𝐱𝑖𝑖 , the robustness of CSGC is 
supposed to be tested against the null hypothesis. 
 
3. Nonlinear Latent Variable Regression for Process Monitoring 
With the advancement of modern science and technologies, the industrial processes tend to be increasingly complex, 
leading to collinearity and nonlinearity. Collinearity in collected adjacent samples can be solved by introducing a 
regularization term in matrix inversions, while nonlinearity can be handled via nonlinear variants of MVA 
approaches. However, the existing nonlinear MVA methods such as KPLS and KCCA suffer from the same issues 
as described in Section 2. Considering the advantage of LVR over PLS and CCA [14], a nonlinear extension of LVR 
is proposed in this chapter, and a concurrent decomposition with subsequent PCA operation is conducted to obtain a 
comprehensive modeling and monitoring performance. 
 
3.1 Kernel Latent Variable Regression and Its Monitoring Scheme 
Define 𝜙𝜙 as a nonlinear projection indicator to map process variables from the original space into the feature space 𝐹𝐹, 
which is a higher-dimensional feature space. The original process matrix 𝐗𝐗  is transformed into 𝚽𝚽 =
[𝜙𝜙(𝐱𝐱1),𝜙𝜙(𝐱𝐱2), … ,𝜙𝜙(𝐱𝐱𝑛𝑛)]⊤ ∈ ℝ𝑛𝑛×𝑚𝑚𝑓𝑓in the feature space. It is assumed that in the feature space, variables are linearly 
related with each other. The kernel matrix is constructed as 𝐊𝐊 = 𝚽𝚽𝚽𝚽⊤ ∈ ℝ𝑛𝑛×𝑛𝑛 , where 𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) =
〈𝜙𝜙(𝐱𝐱𝑖𝑖),𝜙𝜙(𝐱𝐱𝑗𝑗)〉 (𝑖𝑖, 𝑗𝑗 = 1, 2, . . . ,𝑛𝑛) , and 〈𝐚𝐚,𝐛𝐛〉  denotes the dot product between vectors 𝐚𝐚  and 𝐛𝐛 . For simplicity, a 
Gaussian kernel function is chosen in this work as:  

𝑘𝑘�𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗� = exp�−
�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�

2

𝑐𝑐
� (3.1) 

where 𝑐𝑐 represents the width of a Gaussian function, which determines the robustness of kernel mapping. With the 
kernel function in Eq. (3.1), the optimization objective of KLVR is designed as 
 

max
𝛂𝛂𝚽𝚽,𝐪𝐪

  𝐽𝐽 = 𝐪𝐪⊤𝐘𝐘⊤𝚽𝚽𝛂𝛂𝚽𝚽 −
𝛾𝛾
2 ‖𝛂𝛂𝚽𝚽‖

2

𝑠𝑠. 𝑡𝑡.  ‖𝚽𝚽𝛂𝛂𝚽𝚽‖ = 1, ‖𝐪𝐪‖ = 1
(3.2) 

 
where 𝛂𝛂𝚽𝚽 = 𝚽𝚽⊤𝛂𝛂 and 𝐪𝐪 are projection vectors for 𝚽𝚽 and 𝐘𝐘, respectively. Replacing the calculation of 𝚽𝚽 with kernel 
matrix 𝐊𝐊 simplifies Eq. (3.2), leading to 

max   
𝛂𝛂,𝐪𝐪

𝐽𝐽 = 𝐪𝐪⊤𝐘𝐘⊤𝐊𝐊𝐊𝐊 − 𝛾𝛾
2𝛂𝛂

⊤𝐊𝐊𝐊𝐊

𝑠𝑠. 𝑡𝑡.  ‖𝐊𝐊𝐊𝐊‖ = 1, ‖𝐪𝐪‖ = 1
(3.3) 

 
where 𝛂𝛂 and 𝐪𝐪 are weighting vectors for 𝐊𝐊 and 𝐘𝐘, respectively. In KLVR, the process score vector can be rewritten as 
𝐭𝐭 = 𝚽𝚽𝛂𝛂𝚽𝚽 = 𝐊𝐊𝐊𝐊.  
 

Lagrange multipliers are used to solve Eq. (3.3): 

ℒ = 𝐪𝐪⊤𝐘𝐘⊤𝐊𝐊𝐊𝐊 −
𝛾𝛾
2
𝛂𝛂⊤𝐊𝐊𝐊𝐊 +

𝜆𝜆𝛼𝛼
2

(1 −  𝛂𝛂⊤𝐊𝐊2𝛂𝛂) +
𝜆𝜆𝑞𝑞
2

(1 − 𝐪𝐪⊤𝐪𝐪). (3.4) 

After taking derivatives with respect to 𝛂𝛂 and 𝐪𝐪 and setting them equal to zero, the following expressions are retained 
from Eq. (3.4). 
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𝐊𝐊𝐊𝐊𝐊𝐊 = 𝜆𝜆𝛼𝛼(𝐊𝐊 + 𝜅𝜅𝐈𝐈)𝐊𝐊𝐊𝐊
𝐘𝐘⊤𝐊𝐊𝐊𝐊 = 𝜆𝜆𝑞𝑞𝐪𝐪                      (3.5) 

where 𝜅𝜅 = 𝛾𝛾/𝜆𝜆𝛼𝛼.  
Arrange terms in Eq. (3.5), obtaining 

(𝐊𝐊 + 𝜅𝜅𝐈𝐈)−1𝐘𝐘𝐘𝐘⊤𝐊𝐊𝐊𝐊 = 𝜆𝜆𝛼𝛼𝜆𝜆𝑞𝑞𝛂𝛂
𝐘𝐘⊤(𝐊𝐊 + 𝜅𝜅𝐈𝐈)−1𝐊𝐊𝐊𝐊𝐊𝐊 = 𝜆𝜆𝑞𝑞𝜆𝜆𝛼𝛼𝐪𝐪.

(3.6) 

 
Eq. (3.6) implies that 𝜆𝜆𝛼𝛼 and 𝜆𝜆𝑞𝑞 are eigenvalues of (𝐊𝐊 + 𝜅𝜅𝐈𝐈)−1𝐘𝐘𝐘𝐘⊤𝐊𝐊 and 𝐘𝐘⊤(𝐊𝐊 + 𝜅𝜅𝐈𝐈)−1𝐊𝐊𝐊𝐊, respectively, while 𝛂𝛂 and 
𝐪𝐪 are their corresponding eigenvectors. 
 
Accordingly, the outer structure of KLVR can be obtained by iterating the following relations until convergence. 
1. 𝛂𝛂 = (𝐊𝐊 + 𝜅𝜅𝐈𝐈)−1𝐮𝐮, 𝛂𝛂 = 𝛂𝛂/‖𝐊𝐊𝐊𝐊‖; 
2. 𝐭𝐭 = 𝐊𝐊𝐊𝐊; 
3. 𝐪𝐪 = 𝐘𝐘⊤𝐭𝐭, 𝐪𝐪 = 𝐪𝐪/‖𝐪𝐪‖; 
4. 𝐮𝐮 = 𝐘𝐘𝐘𝐘. 
 
Afterwards, perform deflation on 𝚽𝚽 and 𝐘𝐘 to remove the effects of the extracted latent variables. 

𝚽𝚽 ≔ (𝐈𝐈 − 𝐭𝐭𝐭𝐭⊤)𝚽𝚽
 𝐘𝐘 ≔ (𝐈𝐈 − 𝐭𝐭𝐭𝐭⊤)𝐘𝐘.

 

Given 𝐊𝐊 = 𝚽𝚽𝚽𝚽⊤, 𝐊𝐊 is deflated as 
𝐊𝐊 ≔ (𝐈𝐈 − 𝐭𝐭𝐭𝐭⊤)𝐊𝐊(𝐈𝐈 − 𝐭𝐭𝐭𝐭⊤). 

 
Due to the consistent inner and outer objectives, similar to LVR, inner model is not needed in KLVR. The detailed 
KLVR algorithm is summarized as follows: 
1. Pre-process process and quality matrices to obtain centered 𝐊𝐊 and scaled 𝐘𝐘.  
2. The iteration number is set as 𝑖𝑖 = 1, and initialize 𝐊𝐊 and 𝐘𝐘 as 𝐊𝐊1 = 𝐊𝐊, 𝐘𝐘1 = 𝐘𝐘, and 𝐮𝐮𝑖𝑖 as the first column of 𝐘𝐘. 
3. Perform the following (1)-(4) iteratively until convergence. 
(1) 𝛂𝛂𝑖𝑖 = (𝐊𝐊𝑖𝑖 + 𝜅𝜅𝐈𝐈)−1𝐮𝐮𝑖𝑖, 𝛂𝛂𝑖𝑖 = 𝛂𝛂𝑖𝑖/‖𝐊𝐊𝑖𝑖𝛂𝛂𝑖𝑖‖; 
(2) 𝐭𝐭𝑖𝑖 = 𝐊𝐊𝑖𝑖𝛂𝛂𝑖𝑖; 
(3) 𝐪𝐪𝑖𝑖 = 𝐘𝐘𝑖𝑖⊤𝐭𝐭𝑖𝑖, 𝐪𝐪𝑖𝑖 = 𝐪𝐪𝑖𝑖/‖𝐪𝐪𝑖𝑖‖; 
(4) 𝐮𝐮𝑖𝑖 = 𝐘𝐘𝑖𝑖𝐪𝐪𝑖𝑖. 
 
4. Perform deflation on 𝐊𝐊 and 𝐘𝐘 as 

𝐊𝐊𝑖𝑖+1 = (𝐈𝐈 − 𝐭𝐭𝑖𝑖𝐭𝐭𝑖𝑖⊤)𝐊𝐊𝑖𝑖(𝐈𝐈 − 𝐭𝐭𝑖𝑖𝐭𝐭𝑖𝑖⊤)
𝐘𝐘𝑖𝑖+1 = (𝐈𝐈 − 𝐭𝐭𝑖𝑖𝐭𝐭𝑖𝑖⊤)𝐘𝐘𝑖𝑖 .                 

 

5. Set 𝑖𝑖 ≔ 𝑖𝑖 + 1, and return to Step 3 until l latent variables are extracted.  
With KLVR, 𝚽𝚽 and 𝐘𝐘 are decomposed by KLVR as 

𝚽𝚽 = 𝐓𝐓𝐏𝐏⊤ + 𝚽𝚽𝑟𝑟
𝐘𝐘 = 𝐓𝐓𝐂𝐂⊤ + 𝐘𝐘𝑟𝑟

 

 
where 𝐏𝐏 = 𝚽𝚽⊤𝐓𝐓 and 𝐂𝐂 = 𝐘𝐘⊤𝐓𝐓 represent the loading matrices for 𝚽𝚽 and 𝐘𝐘, while 𝚽𝚽𝑟𝑟 and 𝐘𝐘𝑟𝑟 are residuals of 𝚽𝚽 and 𝐘𝐘, 
respectively.  
 
According to the score matrix 𝐓𝐓 = 𝚽𝚽𝐑𝐑, 

𝐑𝐑 = 𝐖𝐖(𝐏𝐏⊤𝐖𝐖)−1 = 𝚽𝚽⊤𝐀𝐀(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−1 (3.7) 
where 𝐀𝐀 = [𝛂𝛂1,𝛂𝛂2, … ,𝛂𝛂𝑛𝑛]⊤ ∈ 𝑅𝑅𝑛𝑛×𝑙𝑙, and 𝐖𝐖 = 𝚽𝚽⊤𝐀𝐀. 
 
For test samples 𝐗𝐗𝑡𝑡, its kernel matrix 𝐊𝐊𝑡𝑡 should be first centered as 

𝐊𝐊𝑡𝑡 ≔ (𝐊𝐊𝑡𝑡 −
1
𝑛𝑛
𝟏𝟏𝑘𝑘𝟏𝟏𝑛𝑛⊤𝐊𝐊)(𝐈𝐈𝑛𝑛 −

1
𝑛𝑛
𝟏𝟏𝑛𝑛𝟏𝟏𝑛𝑛⊤) 

where 𝐊𝐊 is the kernel matrix of the training data 𝐗𝐗. 
For a single test sample 𝐱𝐱new,  its kernel is designed as 𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱new) = 〈𝜙𝜙(𝐱𝐱𝑖𝑖),𝜙𝜙(𝐱𝐱new)〉, where 𝐱𝐱𝑖𝑖 represents the 𝑖𝑖th 
sample of the training data. The score vector 𝐭𝐭new is calculated as 
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𝐭𝐭new = 𝐑𝐑⊤𝜙𝜙(𝐱𝐱new) = 𝚽𝚽⊤𝐀𝐀(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−1𝐤𝐤𝑡𝑡 (3.8) 
where 𝐤𝐤𝑡𝑡 = 𝚽𝚽𝜙𝜙(𝐱𝐱new). 
 
Two statistics, 𝑇𝑇2 and 𝑄𝑄, are employed to detect the variations in the principal component subspace and residual 
subspace, which are decomposed with KLVR. 𝑇𝑇2 and 𝑄𝑄 are defined as  
 

𝑇𝑇2 = 𝐭𝐭new⊤ 𝚲𝚲−1𝐭𝐭new  (3.9) 
𝑄𝑄 = ‖𝜙𝜙𝑟𝑟(𝐱𝐱new)‖2 (3.10) 

 
where 𝚲𝚲 = 1

𝑛𝑛−1
𝐓𝐓⊤𝐓𝐓 includes the variances of principal components, and 𝜙𝜙𝑟𝑟(𝐱𝐱new) = 𝜙𝜙(𝐱𝐱new) − 𝐏𝐏𝐭𝐭new represents 

the residual of 𝜙𝜙(𝐱𝐱new). With the model parameters obtained from KLVR model, the 𝑄𝑄 index is denoted as 
𝑄𝑄 = 𝜙𝜙(𝐱𝐱new)⊤ 𝜙𝜙(𝐱𝐱new) − 2𝐤𝐤𝑡𝑡⊤𝐓𝐓𝐭𝐭new + 𝐭𝐭new⊤ 𝐓𝐓⊤𝐊𝐊𝐊𝐊𝐭𝐭new (3.11) 

where 𝜙𝜙(𝐱𝐱new)⊤ 𝜙𝜙(𝐱𝐱new) = 1 − 2
𝑛𝑛
∑ 𝑘𝑘(𝐱𝐱𝑖𝑖 , 𝐱𝐱new)𝑛𝑛
𝑖𝑖=1 + 1

𝑛𝑛2
∑ ∑ 𝑘𝑘�𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗�𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1  (𝑖𝑖, 𝑗𝑗 = 1, 2, . . . ,𝑛𝑛).  

The control limits of 𝑇𝑇2 and 𝑄𝑄 indices are designed as [3] 

𝑇𝑇cl
2 =

𝑙𝑙(𝑛𝑛2 − 1)
𝑛𝑛(𝑛𝑛 − 𝑙𝑙)

𝐹𝐹𝑙𝑙,𝑛𝑛−𝑙𝑙,𝛼𝛼

𝑄𝑄cl = 𝑔𝑔𝜒𝜒ℎ,𝛼𝛼
2

(3.12) 

 
where 𝛼𝛼 is the confidence interval, and the confidence level is represented by (1 − 𝛼𝛼) × 100%. 𝐹𝐹𝑙𝑙,𝑛𝑛−𝑙𝑙  denotes an 𝐹𝐹-
distribution with l and 𝑛𝑛 − 𝑙𝑙 degrees of freedom. 𝜒𝜒ℎ,𝛼𝛼

2  defines a 𝜒𝜒2-distribution with h degrees of freedom, and g is a 
scaling factor [19]. The calculation of g and h are calculated according to Literature [17]. When the sample number n 
is large enough, 𝑇𝑇cl

2 can also be approximated by 𝑇𝑇cl
2 = 𝜒𝜒𝑙𝑙,𝛼𝛼2  [18]. 

 
3.2 Concurrent KLVR Based Monitoring 
KLVR-based monitoring only focuses on the monitoring of quality anomalies, failing to provide a comprehensive 
monitoring for variations in both process and quality variables. Thus, a concurrent modeling and fault detection 
framework is developed based on KLVR, which constructs a multilayer monitoring structure to capture and monitor 
variations in both quality and process spaces. The proposed method is named as concurrent KLVR (CKLVR). 
CKLVR decomposes the original data space into five subspaces, including covariation subspace (CVS), input-
principal subspace (IPS), input-residual subspace (IRS), output-principal subspace (OPS) and output-residual 
subspace (ORS). The details of CKLVR algorithm are outlined as follows. 
 
1. Scale 𝐗𝐗 and 𝐘𝐘 to zero mean and unit variance, and 𝐗𝐗 is processed to obtain the mean-centered 𝐊𝐊. 
2. Perform KLVR on the mean-centered 𝐊𝐊 and 𝐘𝐘 with l latent variables to obtain T, 𝐂𝐂, and R. 
3. Construct the predictable output matrix in CVS as 𝐘𝐘� =  𝐓𝐓𝐂𝐂⊤, and then perform singular value decomposition (SVD) 
on 𝐘𝐘� to capture the predictable variations with 𝑙𝑙𝑐𝑐 principal components as 
 

𝐘𝐘� = 𝐔𝐔𝑐𝑐𝐃𝐃𝑐𝑐𝐕𝐕𝑐𝑐⊤ ≡ 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐
⊤ (3.13) 

 
where 𝐔𝐔𝑐𝑐 reflects the covariations in 𝚽𝚽 which are predictable from 𝐘𝐘�.  𝐐𝐐𝑐𝑐 = 𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐 includes all 𝑙𝑙𝑐𝑐 nonzero singular 
values in descending order and their corresponding right singular vectors. Since 𝐕𝐕𝑐𝑐 is orthonormal,  
 

𝐔𝐔𝑐𝑐 = 𝐘𝐘�𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐
−1 = 𝐓𝐓𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐

−1 = 𝚽𝚽𝐑𝐑𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐
−1 ≡ 𝚽𝚽𝐑𝐑𝑐𝑐 (3.14) 

where 𝐑𝐑𝑐𝑐 =  𝐑𝐑𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐
−1 = 𝚽𝚽⊤𝐀𝐀(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−1𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐

−1. 
 
3. The unpredictable output matrix is denoted as 𝐘𝐘�𝑐𝑐 = 𝐘𝐘 − 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐

⊤ , and perform PCA on 𝐘𝐘�𝑐𝑐  with 𝑙𝑙𝑦𝑦  principal 
components 

𝐘𝐘�𝑐𝑐 = 𝐓𝐓𝑦𝑦𝐏𝐏𝑦𝑦⊤ + 𝐘𝐘� (3.15) 
 
where 𝐓𝐓𝑦𝑦 = 𝐘𝐘�𝑐𝑐𝐏𝐏𝑦𝑦  is the output-principal score matrix, 𝐏𝐏𝑦𝑦  denotes the output-principal loading matrix, and 𝐘𝐘� 
represents the output residual matrix. 
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4. Variations that are quality-irrelevant but process-relevant can be extracted by 𝚽𝚽�𝑐𝑐 = 𝚽𝚽−𝐔𝐔𝑐𝑐𝐑𝐑𝑐𝑐
† , where 𝐑𝐑𝑐𝑐

† =
(𝐑𝐑𝑐𝑐

⊤𝐑𝐑𝑐𝑐)−1𝐑𝐑𝑐𝑐
⊤. Theoretically, the next step is to perform PCA on 𝚽𝚽�𝑐𝑐 with 𝑙𝑙𝑥𝑥 principal components 

𝚽𝚽�𝑐𝑐 = 𝐓𝐓𝑥𝑥𝐏𝐏𝑥𝑥⊤ + 𝚽𝚽� (3.16) 
 
where 𝐓𝐓𝑥𝑥 = 𝚽𝚽�𝑐𝑐𝐏𝐏𝑥𝑥 denotes the input-principal score matrix, 𝐏𝐏𝑥𝑥 is the input-principal loading matrix, and 𝚽𝚽�  represents 
the input residuals.  
 
The explicit nonlinear calculation can be circumvented by performing PCA on 𝐊𝐊𝑐𝑐 = 𝚽𝚽�𝑐𝑐𝚽𝚽�𝑐𝑐⊤, and the input-principal 
score matrix 𝐓𝐓𝑥𝑥 can be expressed as 

𝐓𝐓𝑥𝑥 = 𝚽𝚽�𝑐𝑐𝐏𝐏𝑥𝑥 = 𝐊𝐊𝑐𝑐𝐖𝐖𝑥𝑥 (3.17) 
 
where 𝐖𝐖𝑥𝑥 contains scaled eigenvectors of 1

𝑛𝑛
𝚽𝚽�𝑐𝑐𝚽𝚽�𝑐𝑐⊤ corresponding to the 𝑙𝑙𝑥𝑥 largest eigenvalues. Besides, the input-

principal loading matrix 𝐏𝐏𝑥𝑥 can be represented as 𝐏𝐏𝑥𝑥 = 𝚽𝚽�𝑐𝑐⊤𝐖𝐖𝑥𝑥.  
 
Consequently, CKLVR decomposes the process and quality data as 

�
𝚽𝚽 = 𝐔𝐔𝑐𝑐𝐑𝐑𝑐𝑐

† + 𝐓𝐓𝑥𝑥𝐏𝐏𝑥𝑥⊤ + 𝚽𝚽�
𝐘𝐘 = 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐

⊤ + 𝐓𝐓𝑦𝑦𝐏𝐏𝑦𝑦⊤ + 𝐘𝐘�
(3.18) 

 
where 𝐔𝐔𝑐𝑐𝐑𝐑𝑐𝑐

† represents the predictable quality-relevant variations in process variables, showing the relations between 
process and quality variables, while 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐

⊤ includes predictable quality variations, and they build up CVS together.  
𝐓𝐓𝑥𝑥𝐏𝐏𝑥𝑥⊤ in IPS captures major process-relevant but quality-irrelevant variations, while 𝚽𝚽�  in IRS represents the process 
residuals. 𝐓𝐓𝑦𝑦𝐏𝐏𝑦𝑦⊤ in OPS contains major quality-relevant variations that are unobservable for the process data, and ORS 
is constructed by the residuals 𝐘𝐘�.  
 
For a new data sample pair (𝐱𝐱new,𝐲𝐲new) can be decomposed by CKLVR into 

�𝜙𝜙(𝐱𝐱new) = 𝐑𝐑𝑐𝑐
†⊤𝐮𝐮𝑐𝑐,new + 𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new + 𝜙𝜙�(𝐱𝐱new)

𝐲𝐲new = 𝐐𝐐𝑐𝑐𝐮𝐮𝑐𝑐,new + 𝐏𝐏𝑦𝑦𝐭𝐭𝑦𝑦,new + 𝐲𝐲�new
(3.19) 

where score vectors 𝐮𝐮𝑐𝑐,new = 𝐑𝐑𝑐𝑐
⊤𝜙𝜙�(𝐱𝐱new) , 𝐭𝐭𝑥𝑥,new = 𝐏𝐏𝑥𝑥⊤𝜙𝜙�𝑐𝑐(𝐱𝐱new) , and 𝐭𝐭𝑦𝑦,new = 𝐏𝐏𝑦𝑦⊤𝐲𝐲�𝑐𝑐,new  are calculated directly 

through the kernel form  𝐤𝐤𝑡𝑡 = 𝚽𝚽𝜙𝜙(𝐱𝐱new), which are specifically presented as follows: 
 

𝐮𝐮𝑐𝑐,new = 𝐃𝐃𝑐𝑐
−⊤𝐕𝐕𝑐𝑐⊤𝐂𝐂(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−⊤𝐀𝐀⊤𝐤𝐤𝑡𝑡                                               (3.20) 

𝐭𝐭𝑥𝑥,new = 𝐖𝐖𝑥𝑥
⊤�𝐤𝐤𝑡𝑡 − 𝐔𝐔𝑐𝑐𝚪𝚪𝐤𝐤𝑡𝑡 − 𝐊𝐊𝚪𝚪⊤𝐮𝐮𝑐𝑐,new + 𝐔𝐔𝑐𝑐𝚪𝚪𝐊𝐊𝚪𝚪⊤𝐮𝐮𝑐𝑐,new� (3.21) 

𝐭𝐭𝑦𝑦,new = 𝐏𝐏𝑦𝑦⊤𝐘𝐘 − 𝐏𝐏𝑦𝑦⊤𝐐𝐐𝑐𝑐𝐃𝐃𝑐𝑐
−⊤𝐕𝐕𝑐𝑐⊤𝐂𝐂(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−⊤𝐀𝐀⊤𝐤𝐤𝑡𝑡                     (3.22) 

 
where 𝚪𝚪 = (𝐃𝐃𝑐𝑐

−⊤𝐕𝐕𝑐𝑐⊤𝐂𝐂(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−⊤𝐀𝐀𝐀𝐀𝐀𝐀(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−1𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐
−1)−1𝐃𝐃𝑐𝑐

−⊤𝐕𝐕𝑐𝑐⊤𝐂𝐂(𝐓𝐓⊤𝐊𝐊𝐊𝐊)−⊤𝐀𝐀 is  
defined for ease of presentation. In addition, 𝜙𝜙�(𝐱𝐱new) and 𝐲𝐲�new can be attained by 
 

�
𝜙𝜙�(𝐱𝐱new) = 𝜙𝜙�𝑐𝑐(𝐱𝐱new) − 𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new

𝐲𝐲�new = �𝐈𝐈 − 𝐏𝐏𝑦𝑦𝐏𝐏𝑦𝑦⊤�𝐲𝐲�𝑐𝑐,new.
(3.23) 

 
Then, the monitoring statistic of each subspace is designed to indicate process and quality anomalies with different 
alarming levels.  
 
Since the predictable quality-relevant score vector 𝐮𝐮𝑐𝑐,new, process-relevant score vector 𝐭𝐭𝑥𝑥,new, and unpredictable 
quality-relevant score vector 𝐭𝐭𝑦𝑦,new  involves variations of the whole system, for a new testing sample pair 
(𝐱𝐱new,𝐲𝐲new), the Hotelling’s 𝑇𝑇2, 𝑇𝑇𝑐𝑐2, 𝑇𝑇𝑥𝑥2, and 𝑇𝑇𝑦𝑦2 are applied for monitoring: 

𝑇𝑇𝑐𝑐2 = (𝑛𝑛 − 1)𝐮𝐮𝑐𝑐,new
⊤ 𝐮𝐮𝑐𝑐,new (3.24) 

𝑇𝑇𝑥𝑥2 = 𝐭𝐭𝑥𝑥,new
⊤ 𝚲𝚲𝑥𝑥−1𝐭𝐭𝑥𝑥,new        (3.25) 

𝑇𝑇𝑦𝑦2 = 𝐭𝐭𝑦𝑦,new
⊤ 𝚲𝚲𝑦𝑦−1𝐭𝐭𝑦𝑦,new        (3.26) 

where 𝚲𝚲𝑥𝑥 = 1
𝑛𝑛−1

𝐓𝐓𝑥𝑥⊤𝐓𝐓𝑥𝑥 and 𝚲𝚲𝑦𝑦 = 1
𝑛𝑛−1

𝐓𝐓𝑦𝑦⊤𝐓𝐓𝑦𝑦 represent the variances of process and quality variables with respect to 
principal components 𝑙𝑙𝑥𝑥 and 𝑙𝑙𝑦𝑦, respectively. 
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The 𝑄𝑄𝑥𝑥 and  𝑄𝑄𝑦𝑦 indices are designed for residuals of process variations, where 𝑄𝑄𝑥𝑥 index is  
𝑄𝑄𝑥𝑥 = �𝜙𝜙�(𝐱𝐱new)�2 = �𝜙𝜙�𝑐𝑐(𝐱𝐱new) − 𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new�

2                                                  
= 𝜙𝜙�𝑐𝑐⊤(𝐱𝐱new)𝜙𝜙�𝑐𝑐(𝐱𝐱new) − 𝟐𝟐𝜙𝜙�𝑥𝑥⊤(𝐱𝐱new)𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new + 𝐭𝐭𝑥𝑥,new

⊤ 𝐏𝐏𝑥𝑥⊤𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new (3.27)
 

where 𝜙𝜙�𝑐𝑐(𝐱𝐱new) = 𝜙𝜙�(𝐱𝐱new) − 𝐑𝐑𝑐𝑐
†⊤𝐮𝐮𝑐𝑐,new = 𝜙𝜙(𝐱𝐱new) −𝚽𝚽⊤𝚪𝚪⊤𝐮𝐮𝑐𝑐,new, and every term in Eq. (2.26) can be computed 

as 
𝜙𝜙�𝑐𝑐⊤(𝐱𝐱new)𝜙𝜙�𝑐𝑐(𝐱𝐱new) = 1 − 𝟐𝟐𝐮𝐮𝑐𝑐,new

⊤  𝚪𝚪𝐤𝐤𝑡𝑡 + 𝐮𝐮𝑐𝑐,new
⊤ 𝚪𝚪𝐊𝐊𝚪𝚪⊤𝐮𝐮𝑐𝑐,new            

 𝜙𝜙�𝑥𝑥⊤(𝐱𝐱new)𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new = �𝐤𝐤𝑡𝑡⊤ − 𝐮𝐮𝑐𝑐,new
⊤ 𝚪𝚪𝐊𝐊�(𝐈𝐈 − 𝐔𝐔𝑐𝑐𝚪𝚪)⊤𝐖𝐖𝑥𝑥𝐭𝐭𝑥𝑥,new           

 𝐭𝐭𝑥𝑥,new
⊤ 𝐏𝐏𝑥𝑥⊤𝐏𝐏𝑥𝑥𝐭𝐭𝑥𝑥,new = 𝐭𝐭𝑥𝑥,new

⊤ 𝐖𝐖𝑥𝑥
⊤(𝐈𝐈 − 𝐔𝐔𝑐𝑐𝚪𝚪)𝐊𝐊(𝐈𝐈 − 𝚪𝚪⊤𝐔𝐔𝑐𝑐⊤)𝐖𝐖𝑥𝑥𝐭𝐭𝑥𝑥,new 

 
where 𝚽𝚽�𝑐𝑐 = 𝚽𝚽−𝐔𝐔𝑐𝑐𝐑𝐑𝑐𝑐

† = 𝚽𝚽−𝐔𝐔𝑐𝑐 𝚪𝚪 𝚽𝚽, 𝐏𝐏𝑥𝑥 = 𝚽𝚽�𝑐𝑐⊤𝐖𝐖𝑥𝑥, and 𝚽𝚽�𝑐𝑐𝚽𝚽�𝑐𝑐⊤ = (𝐈𝐈 − 𝐔𝐔𝑐𝑐𝚪𝚪)𝐊𝐊(𝐈𝐈 − 𝚪𝚪⊤𝐔𝐔𝑐𝑐⊤). 
In addition, the 𝑄𝑄𝑦𝑦 statistic can be calculated as 
 

𝑄𝑄𝑦𝑦 = ‖𝐲𝐲�new‖2 = �𝐲𝐲�𝑐𝑐,new − 𝐏𝐏𝑦𝑦𝐭𝐭𝑦𝑦,new�
2 = 𝐲𝐲�𝑐𝑐,new

⊤ �𝐈𝐈 − 𝐏𝐏𝑦𝑦𝐏𝐏𝑦𝑦⊤�𝐲𝐲�𝑐𝑐,new

= �𝐲𝐲new − 𝐐𝐐𝑐𝑐𝐮𝐮𝑐𝑐,new�
⊤�𝐈𝐈 − 𝐏𝐏𝑦𝑦𝐏𝐏𝑦𝑦⊤��𝐲𝐲new − 𝐐𝐐𝑐𝑐𝐮𝐮𝑐𝑐,new�.          (3.28)

 

 
Table 1.  Concurrent monitoring statistics and corresponding control limits 

 
Statistics Control limits Alarming level 

𝑇𝑇𝑐𝑐2 𝑇𝑇𝑐𝑐,cl
2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑐𝑐

2  𝐿𝐿1 
𝑇𝑇𝑥𝑥2 𝑇𝑇𝑥𝑥,cl

2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑥𝑥
2  𝐿𝐿3 

𝑄𝑄𝑥𝑥 𝑄𝑄𝑥𝑥,cl = 𝑔𝑔𝑥𝑥𝜒𝜒𝛼𝛼,ℎ𝑥𝑥
2  𝐿𝐿2 

𝑇𝑇𝑦𝑦2 𝑇𝑇𝑦𝑦,cl
2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑦𝑦

2  𝐿𝐿2 
𝑄𝑄𝑦𝑦  𝑄𝑄𝑦𝑦,cl = 𝑔𝑔𝑦𝑦𝜒𝜒𝛼𝛼,ℎ𝑦𝑦

2  𝐿𝐿3 
 
The corresponding control limits of 𝑇𝑇𝑐𝑐2, 𝑇𝑇𝑥𝑥2, 𝑇𝑇𝑦𝑦2, 𝑄𝑄𝑥𝑥 , and 𝑄𝑄𝑦𝑦  indices are summarized in Table 1, where 𝑔𝑔𝑥𝑥  and 𝑔𝑔𝑦𝑦 
represent scaling factors of control limits, while ℎ𝑥𝑥 and ℎ𝑦𝑦 denote the degrees of freedom of 𝜒𝜒2-distribution used in 
the computation of 𝑄𝑄𝑥𝑥,cl and 𝑄𝑄𝑦𝑦,cl, respectively [99]. 
 
The CKLVR-based multilayer monitoring framework decomposes the original process and quality data into five 
subspaces, namely CVS, OPS, ORS, IPS, and IRS. Different fault alarms align with faults detected in different 
subspaces, which is founded on whether anomalies observed by statistics are quality-relevant or not. More concretely, 
𝐿𝐿1, 𝐿𝐿2, and 𝐿𝐿3 are attached for faults with descending importance. The monitoring procedure for a new sample is 
summarized. 
 
1. If 𝑇𝑇𝑐𝑐2 > 𝑇𝑇𝑐𝑐,cl

2 , the 𝐿𝐿1 fault alarm is fired in CVS with (1 − 𝛼𝛼) × 100% confidence, indicating that an output-relevant 
fault is detected. 
2. If 𝑇𝑇𝑦𝑦2 > 𝑇𝑇𝑦𝑦,cl

2  , a quality-relevant fault is detected with (1 − 𝛼𝛼) × 100% confidence, and it is attached with a 𝐿𝐿2 
alarming level. This fault is in OPS, and it is unpredictable from process variables. 
3. If 𝑄𝑄𝑦𝑦 > 𝑄𝑄𝑦𝑦,cl, a quality-irrelevant fault with a 𝐿𝐿3 alarming level is detected with (1 − 𝛼𝛼) × 100% confidence. 
4. If 𝑇𝑇𝑥𝑥2 > 𝑇𝑇𝑥𝑥,cl

2 , an output-relevant but input-irrelevant fault is detectable for IPS with (1 − 𝛼𝛼) × 100% confidence, 
showing that the fault is attached to the 𝐿𝐿3 alarming level. 
5. If 𝑄𝑄𝑥𝑥 > 𝑄𝑄𝑥𝑥,cl, a potentially output-relevant fault can be observed in IRS with  (1 − 𝛼𝛼) × 100% confidence, which 
implies the fault pertains to the 𝐿𝐿2 alarm.  
 
3.3 Tennessee Eastman Process Case Study 
In this section, the Tennessee Eastman Process (TEP) proposed by Downs and Vogel (1993) is used for case study to 
further investigate the effectiveness of the CKLVR-based multilayer monitoring framework. TEP is a benchmark 
industrial process to evaluate different methods of process monitoring. The whole process contains five major unit 
operation plants, involving a chemical reactor, product condenser, recycle compressor, vapor-liquid separator and 
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product stripper. Eight components (A-H) are included in TEP: four gaseous reactants (A, C, D, E), the inert material 
(B), and two liquid products (G,H) along with a by-product (F), which can be shown as follows: 
 

𝐴𝐴(𝑔𝑔) + 𝐶𝐶(𝑔𝑔) + 𝐷𝐷(𝑔𝑔) → 𝐺𝐺(𝑙𝑙)     (Product)
𝐴𝐴(𝑔𝑔) + 𝐶𝐶(𝑔𝑔) + 𝐸𝐸(𝑔𝑔) → 𝐻𝐻(𝑙𝑙)     (Product)
𝐴𝐴(𝑔𝑔) + 𝐸𝐸(𝑔𝑔) → 𝐹𝐹(𝑙𝑙)
3𝐷𝐷(𝑔𝑔) → 2𝐹𝐹(𝑙𝑙)                                       (By − product)

(𝐵𝐵𝐵𝐵 − 𝑝𝑝roduct)

 

 
Reactions involved in TEP are exothermic, irreversible and approximately 1-order with respect to concentrations of 
reactants. In addition, TEP is under closed-loop control.  
 
TEP is composed of two blocks of variables with a total number of 53, including 12 manipulated variables (XMV (1-
12)) and 41 measured variables (XMEAS (1-41)). Here, XMEAS (1-22) and XMV (1-11) are chosen as process 
variables to construct 𝐗𝐗, while XMEAS (35-36) are selected as quality variables to form 𝐘𝐘.  500 samples are simulated 
in TEP for training and 960 samples for testing. Process variables XMEAS (1-22) and XMV (1-11) are sampled at an 
interval of 3 minutes, while quality variables XMEAS (35-36) are sampled every 6 minutes, which gives rise to the 
irregular sampling intervals for process and quality variables. To balance the sampling discrepancy, data sampling is 
necessary, and only 1/2 samples without duplicate samples are employed (Zhu et al. 2017). Accordingly, only half of 
the data (250 normal samples and 480 faulty samples) are used for modeling and testing.  
 
By reference to the criteria established by Zhou et al. (2010), 15 disturbances (IDV (1-15)) can be classified into two 
categories, quality-relevant and quality-irrelevant disturbances. IDV (1-2, 5-8, 10, 12-13) are identified as quality-
relevant disturbances, while IDV (3-4, 9, 11, 14-15) are quality-irrelevant disturbances. For the purpose of better 
illustration, IDV (5, 11) are chosen as examples of two kinds of disturbances to show the monitoring performance of 
CKLVR in detail.  
 
By 10-fold cross validation, the numbers of principal components for CKLVR are determined as 𝑙𝑙 = 1, 𝑙𝑙𝑐𝑐 = 2, 𝑙𝑙𝑥𝑥 =
14, and 𝑙𝑙𝑦𝑦 = 2, while for KLVR, 𝑙𝑙 = 1. The width of Gaussian kernel function is 𝑐𝑐 = 5000. For CKLVR-based 
monitoring, 𝑄𝑄𝑦𝑦 is null, since 𝑙𝑙𝑦𝑦 = 2 while 𝑝𝑝 = 2. The control limit is selected to be 99 %. 
 
Fault detection rates (FDRs) and false alarm rates (FARs) of quality-relevant and quality-irrelevant disturbances (Zhu 
et al. 2017) are summarized in Tables 2 and 3, respectively. The FDR and FAR are defined on the premise of KPCA-
based monitoring which is considered as ground truth and taken as the criterion to n classify normal and faulty samples, 
where FDR is the ratio of number of actual faults that are detectable for the proposed algorithm and number of total 
faulty samples, while FAR is the ratio of number of normal samples that are incorrectly categorized as faults and 
number of total normal samples. 
 
To investigate quality-relevant monitoring performance, 𝑇𝑇2 of CKLVR is defined as a combination of 𝑇𝑇𝑐𝑐2 and 𝑇𝑇𝑦𝑦2, 
which illustrates the monitoring results of predictable and unpredictable quality-relevant disturbances. 
 

Table 2.  FDRs and FARs for quality-relevant disturbances in TEP 
 

Disturbance 
FDR  FAR  

 KLVR CKLVR KLVR CKLVR  
 𝑇𝑇2 𝑇𝑇2  𝑇𝑇𝑐𝑐2  𝑇𝑇𝑦𝑦2   𝑇𝑇𝑥𝑥2  𝑇𝑇2 𝑇𝑇2  𝑇𝑇𝑐𝑐2  𝑇𝑇𝑦𝑦2   𝑇𝑇𝑥𝑥2 

IDV (1) 0.8750 1 0.7639 0.9028 1 0.1397 0.0956 0.0931 0.0025 0.0122 
IDV (2) 0.9536 0.9969 0.8824 0.9907 1 0.1847 0.1083 0.1019 0.0064 0.0227 
IDV (5) 0.7778 1 0.7556 0.9778 0.9429 0.0920 0.0598 0.0552 0.0046 0.0187 
IDV (6) 0.0731 1 0.0705 1 0.8333 0.0825 0.0722 0.0722 0 0 
IDV (7) 0.8769 1 0.8462 0.9231 1 0.1687 0.1446 0.1398 0.0048 0.0125 
IDV (8) 0.8811 1 0.8238 0.9736 0.9974 0.4466 0.4229 0.4190 0.0079 0.0217 

IDV (10) 0.7308 1 0.6538 0.9615 0.8721 0.1740 0.1410 0.1410 0 0.0309 
IDV (12) 0.8371 1 0.7841 0.9773 0.9949 0.4213 0.3889 0.3843 0.0139 0 
IDV (13) 0.8697 1 0.8275 0.9718 0.9894 0.3469 0.3163 0.3163 0.0051 0 
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Table 3.  FARs for quality-irrelevant disturbances in TEP 

 
Disturbance 

KLVR CKLVR 
𝑇𝑇2 𝑇𝑇2 𝑇𝑇𝑐𝑐2  𝑇𝑇𝑦𝑦2   𝑇𝑇𝑥𝑥2 

IDV (3) 0.0972 0.0346 0.0302 0.0043 0.0128 
IDV (4) 0.0395 0.0148 0.0148 0 0.2578 
IDV (9) 0.1017 0.0297 0.0275 0.0021 0.0411 

IDV (11) 0.1199 0.0407 0.0321 0.0086 0.1446 
IDV (14) 0.0169 0.0021 0 0.0021 0.0361 
IDV (15) 0.1064 0.0489 0.0468 0.0021 0.0176 

 
As shown in Table 2, for quality-relevant disturbances in TEP, CKLVR achieves higher quality-relevant monitoring 
FDRs than KLVR, since it monitors quality-relevant anomalies that are both predictable and unpredictable from 
process variable, while KLVR only has the process information that are related with quality variables. In terms of 
FARs of quality-relevant disturbances, except IDV (13), the Hotelling's 𝑇𝑇2 statistics of CKLVR and subspaces are 
lower than 𝑇𝑇2 of KLVR, which indicates improved monitoring performance of CKLVR. For IDV (13), the difference 
of 𝑇𝑇2 between KLVR and CKLVR is in a reasonable range, which will not affect the advantage of CKLVR over 
KLVR. 
 
For quality-irrelevant disturbances, FARs are of the top priority to focus on, since the total number of faulty samples 
in FDR is close to zero and it is meaningless to calculate FDRs. As shown in Table 3, CKLVR gains better monitoring 
results than KLVR due to its smaller FARs for all cases. Furthermore, process-relevant FDRs and FARs are also 
available in CKLVR with 𝑇𝑇𝑥𝑥2, which yet attracts lower attention than 𝑇𝑇𝑐𝑐2 and 𝑇𝑇𝑦𝑦2. Consequently, it is concluded that 
CKLVR is superior to KLVR because of its comprehensive monitoring ability and fault detection performance. 
 
3.4 Dow's Refining Process Case Study 
The Dow's refining process was presented by Braun et al. (2020) as a data science challenge problem, and the variables 
are anonymized due to privacy issues. The whole process consists of three distillation columns, including Primary 
Column, Feed Column and Secondary Column, and the Primary Column unit is controlled based on the reflux to feed 
ratio. 45 variables are collected from the process, including 44 process variables (𝑥𝑥1-𝑥𝑥44) and a quality variable (𝑦𝑦). 
Among the process variables, Variables 𝑥𝑥1-𝑥𝑥21 and 𝑥𝑥41-𝑥𝑥44 are from the Primary Column, Variables 𝑥𝑥22-𝑥𝑥35 are 
from the Secondary Column, and 𝑥𝑥36-𝑥𝑥40 are from the Feed Column. The quality variable y is the impurity level 
sampled from the Primary Column. The sampling interval of the dataset is one per hour.  
 
In this case study, the dataset is first preprocessed to remove outliers and missing values. Then 3000 samples are 
selected as training data, and 1753 samples are chosen as test data, among which the first 1153 samples are normal 
data, while the latter 600 are faulty samples. KLVR, KPLS, rLVR and PLS models are developed with the training 
data, and their parameters are determined by cross-validation, which are listed in Table 4. The mean squared errors 
(MSEs) (Braun et al. 2020) of KLVR, KPLS, rLVR and PLS for normal test samples are also summarized in Table 4. 
For KLVR and rLVR, 𝜅𝜅 =  0.005. As shown in the table, KLVR and KPLS obtain lower MSEs than rLVR and PLS, 
implying the importance to employ kernel techniques for nonlinear processes. Further, KLVR has the lowest MSE, 
which indicates the superiority of KLVR in terms of prediction performance over KPLS.  
 

Table 4.  Parameters and MSEs of KLVR, KPLS, rLVR and PLS in Dow's refining process 
 

Algorithm   KLVR KPLS rLVR PLS  
Principal component number 𝑙𝑙 4 5 2 1 

Kernel width 𝑐𝑐 900 2000 - - 
MSEs 0.5647 0.6496 1.1427 4.2561 

 
Table 5 summarizes the FDRs and FARs of CKLVR, CKPLS, KLVR, KPLS, rLVR and PLS for faulty test samples. 
For both CKLVR and CKPLS, 𝑙𝑙𝑐𝑐 = 1, 𝑙𝑙𝑥𝑥 = 5, and 𝑙𝑙𝑦𝑦 = 1. As shown in Table 6, the concurrent decomposition divides 
the input and output data into different subspaces including CVS, OPS, IPS and IRS, and of 𝑇𝑇𝑐𝑐2, 𝑇𝑇𝑦𝑦2, 𝑇𝑇𝑥𝑥2, and 𝑄𝑄𝑥𝑥 
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indices present their monitoring performance, respectively. It is noted that the ORS subspace does not exist since the 
output only has one variable in this case study. Due to the subsequent decomposition, concurrent kernel algorithms 
retain more comprehensive monitoring results than others. In addition, as shown in Table 5, CKLVR performs better 
than CKPLS with lower FARs, while its FDRs are comparable to those of CKPLS.  
 

Table 5.  FDRs and FARs of algorithms for faulty case in Dow's refining process 
 

Algorithm 
FDR FAR 

𝑇𝑇2 𝑇𝑇𝑐𝑐2 𝑇𝑇𝑦𝑦2  𝑇𝑇𝑥𝑥2 𝑄𝑄𝑥𝑥 𝑇𝑇2 𝑇𝑇𝑐𝑐2 𝑇𝑇𝑦𝑦2  𝑇𝑇𝑥𝑥2 𝑄𝑄𝑥𝑥 
CKLVR 0.9921 0.9868 0.9553 0.9868 0 0.1545 0 0.1545 0 0 
CKPLS 0.9921 0.9842 0.9263 0.9973 0.0297 0.2773 0 0.2773 0 0.0076 
KLVR 0.9921 - - - - 0 - - - - 
KPLS 0.9816 - - - - 0.0182 - - - - 
rLVR 0.9829 - - - - 0 - - - - 
PLS 0.9816 - - - - 0 - - - - 

 
4. Dynamic Latent Variable Modeling for Temporal Modeling and Monitoring 
Due to the advancement of industrial technologies, another typical characteristic involved in the process and quality 
data is the complicated dynamics. The dynamic MVA methods reviewed in Section 2 focus only on capturing the 
dynamic cross-correlations between process and quality variables, leaving the dynamics in remaining spaces 
unexploited. However, both dynamic cross-correlations and auto-correlations are important for accurate dynamic 
quality modeling.  Thus, inspired by the work of Xu and Zhu (2021), a dynamic auto-regressive model is developed 
for LVR, namely dynamic auto-regressive LVR (DALVR), which realizes a comprehensive exploitation of 
dynamics in quality data.   
 
4.1 Dynamic Auto-Regressive Latent Variable Regression 
Different from the dynamic algorithms reviewed in Section 2, DALVR considers both the dynamic cross-correlations 
between process variations and quality variations, and the dynamic relations among quality variables. With the same 
denotations as in DrLVR, the score vectors 𝑡𝑡𝑘𝑘 and 𝑢𝑢𝑘𝑘 for (𝐱𝐱𝑘𝑘, 𝐲𝐲𝑘𝑘) are 
 

𝑡𝑡𝑘𝑘 = 𝐱𝐱𝑘𝑘⊤𝐰𝐰 
𝑢𝑢𝑘𝑘 = 𝐲𝐲𝑘𝑘⊤𝐪𝐪.

(4.1) 

DALVR assumes that the current output scores 𝑢𝑢𝑘𝑘 are dependent on the past output scores and input scores. 
 

𝑢𝑢𝑘𝑘 = 𝛽𝛽0𝑡𝑡𝑘𝑘 + 𝛽𝛽1𝑡𝑡𝑘𝑘−1 + ⋯+ 𝛽𝛽𝑠𝑠𝑡𝑡𝑘𝑘−𝑠𝑠 + 𝛿𝛿1𝑢𝑢𝑘𝑘−1 + ⋯+ 𝛿𝛿𝑑𝑑𝑢𝑢𝑘𝑘−𝑑𝑑 + 𝜀𝜀𝑘𝑘 (4.2) 
 
where 𝑠𝑠  and 𝑑𝑑  represent the dynamic orders for input and output variables, respectively. 𝛽𝛽𝑖𝑖 (𝑖𝑖 = 0,1, . . . , 𝑠𝑠)  and 
𝛿𝛿𝑖𝑖 (𝑖𝑖 = 0,1, . . . ,𝑑𝑑) are weighting parameters for input and output scores. 𝜀𝜀𝑘𝑘 is the regression error. The prediction of 
𝑢𝑢𝑘𝑘 can be presented as  

𝑢𝑢�𝑘𝑘 = �  𝛽𝛽𝑗𝑗

𝑠𝑠

𝑗𝑗=1

𝑡𝑡𝑘𝑘−𝑗𝑗 + �  𝛿𝛿𝑗𝑗

𝑑𝑑

𝑗𝑗=1

𝑢𝑢𝑘𝑘−𝑗𝑗 = [𝐱𝐱𝑘𝑘⊤, 𝐱𝐱𝑘𝑘−1⊤ , … , 𝐱𝐱𝑘𝑘−𝑠𝑠⊤ ](𝜷𝜷⊗𝐰𝐰) + [𝐲𝐲𝑘𝑘−1⊤ , … , 𝐲𝐲𝑘𝑘−𝑑𝑑⊤ ](𝜹𝜹⊗ 𝐪𝐪) (4.3) 

 
where 𝜷𝜷 = [𝛽𝛽0,𝛽𝛽1, . . . ,𝛽𝛽𝑠𝑠]⊤  is the weighting coefficient vector for 𝐰𝐰  and 𝜹𝜹 = [𝛿𝛿1,𝛿𝛿2, . . . , 𝛿𝛿𝑑𝑑]⊤  is the weighting 
coefficient vector for  𝐪𝐪 . Eq. (4.3) can be transformed into a matrix form for the whole training data X =
�𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑔𝑔+𝑁𝑁+1�

⊤
 and Y = �y1,𝐲𝐲2, … , y𝑔𝑔+𝑁𝑁+1�

⊤
, which is 

 
𝐮𝐮�𝑔𝑔 = 𝐙𝐙𝑥𝑥(𝜷𝜷⊗𝐰𝐰) + 𝐙𝐙𝑦𝑦(𝜹𝜹⊗ 𝐪𝐪) (4.4) 

where 𝑔𝑔 = max(𝑠𝑠,𝑑𝑑), and  
𝐙𝐙𝑥𝑥 = �𝐗𝐗𝑔𝑔,𝐗𝐗𝑔𝑔−1, … ,𝐗𝐗𝑔𝑔−𝑠𝑠� ∈ ℝ𝑁𝑁×(𝑠𝑠+1)𝑚𝑚

𝐙𝐙𝑦𝑦 = �𝐘𝐘𝑔𝑔−1,𝐘𝐘𝑔𝑔−2, … ,𝐘𝐘𝑔𝑔−𝑑𝑑� ∈ ℝ𝑁𝑁×𝑑𝑑𝑑𝑑    
𝐗𝐗𝑖𝑖 = [𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑖𝑖+1, … , 𝐱𝐱𝑖𝑖+𝑁𝑁]⊤ ∈ ℝ𝑁𝑁×𝑚𝑚

𝐘𝐘𝑖𝑖 = [𝐲𝐲𝑖𝑖 ,𝐲𝐲𝑖𝑖+1, … , 𝐲𝐲𝑖𝑖+𝑁𝑁]⊤ ∈ ℝ𝑁𝑁×𝑝𝑝  
        

(4.5) 
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𝑖𝑖 = 0,1,2, … ,𝑔𝑔. It is also noted that the score vectors 𝐭𝐭𝑖𝑖 and 𝐮𝐮𝑖𝑖 can be calculated for each 𝐗𝐗𝑖𝑖 and 𝐘𝐘𝑖𝑖. 

𝐭𝐭𝑖𝑖 = 𝐗𝐗𝑖𝑖𝐰𝐰
𝐮𝐮𝑖𝑖 = 𝐘𝐘𝑖𝑖𝐪𝐪. (4.6) 

DALVR is designed to maximize the covariance between 𝐮𝐮𝑔𝑔 and 𝐮𝐮�𝑔𝑔, and its objective is  

max
𝐰𝐰,𝐪𝐪,𝜷𝜷,𝜹𝜹

  𝐪𝐪⊤𝐘𝐘𝑔𝑔⊤�𝐙𝐙𝑥𝑥(𝜷𝜷⊗𝐰𝐰) + 𝐙𝐙𝑦𝑦(𝜹𝜹⊗ 𝐪𝐪)� −
𝛾𝛾𝑤𝑤
2
‖𝐰𝐰‖2 −

𝛾𝛾𝛽𝛽
2
‖𝜷𝜷‖2 −

𝛾𝛾𝛿𝛿
2
‖𝜹𝜹‖2

𝑠𝑠. 𝑡𝑡.  ‖𝜷𝜷⊗𝐰𝐰‖ = 1, ‖𝜹𝜹⊗ 𝐪𝐪‖ = 1, ‖𝐪𝐪‖ = 1
(4.7) 

 
where 𝛾𝛾𝑤𝑤, 𝛾𝛾𝛽𝛽 and 𝛾𝛾𝛿𝛿 are regularized parameters to handle collinearity issues. For ease of presentation, define 𝐗𝐗𝛽𝛽, 𝐓𝐓𝑠𝑠, 
𝐘𝐘𝛿𝛿, and 𝐔𝐔𝑑𝑑 as 

𝐗𝐗𝛽𝛽 = 𝐙𝐙𝑥𝑥(𝜷𝜷⊗ 𝐈𝐈𝑚𝑚) = �𝛽𝛽𝑖𝑖𝐗𝐗𝑔𝑔−𝑖𝑖

𝑠𝑠

𝑖𝑖=0

𝐓𝐓𝑠𝑠 = 𝐙𝐙𝑥𝑥(𝐈𝐈𝑠𝑠+1 ⊗𝐰𝐰) = �𝐭𝐭𝑔𝑔, 𝐭𝐭𝑔𝑔−1, … , 𝐭𝐭𝑔𝑔−𝑠𝑠�

𝐘𝐘𝛿𝛿 = 𝐙𝐙𝑦𝑦�𝜹𝜹⊗ 𝐈𝐈𝑝𝑝� = �𝛿𝛿𝑖𝑖𝐘𝐘𝑔𝑔−𝑖𝑖

𝑑𝑑

𝑖𝑖=1

𝐔𝐔𝑑𝑑 = 𝐙𝐙𝑦𝑦(𝐈𝐈𝑑𝑑 ⊗ 𝐪𝐪) = �𝐮𝐮𝑔𝑔−1,𝐮𝐮𝑔𝑔−2, … ,𝐮𝐮𝑔𝑔−𝑑𝑑�.

(4.8) 

 
Then the objective in Eq. (4.7) can be rewritten as 

max
𝐰𝐰,𝐪𝐪,𝜷𝜷,𝜹𝜹

  𝐪𝐪⊤𝐘𝐘𝑔𝑔⊤(𝐓𝐓𝑠𝑠𝜷𝜷 + 𝐔𝐔𝑑𝑑𝜹𝜹) − 𝛾𝛾𝑤𝑤
2
‖𝐰𝐰‖2 −

𝛾𝛾𝛽𝛽
2
‖𝜷𝜷‖2 − 𝛾𝛾𝛿𝛿

2
‖𝜹𝜹‖2

𝑠𝑠. 𝑡𝑡.  ‖𝐓𝐓𝑠𝑠𝜷𝜷‖ = 1, ‖𝐔𝐔𝑑𝑑𝜹𝜹‖ = 1, ‖𝐪𝐪‖ = 1
(4.9)

which defines the outer structure of DALVR. 
 
The Lagrange multipliers 𝜆𝜆𝑞𝑞𝑞𝑞, 𝜆𝜆𝑤𝑤𝑤𝑤, and 𝜆𝜆𝑞𝑞 are employed to solve the objective in Eq. (4.7): 

ℒ = 𝐪𝐪⊤𝐘𝐘𝑔𝑔⊤(𝐓𝐓𝑠𝑠𝜷𝜷 + 𝐔𝐔𝑑𝑑𝜹𝜹) −
𝛾𝛾𝑤𝑤
2
‖𝐰𝐰‖2 −

𝛾𝛾𝛽𝛽
2
‖𝜷𝜷‖2 −

𝛾𝛾𝛿𝛿
2
‖𝜹𝜹‖2 +

 𝜆𝜆𝑤𝑤𝑤𝑤
2

(1 −  𝜷𝜷⊤𝐓𝐓𝑠𝑠⊤𝐓𝐓𝑠𝑠𝜷𝜷)

+
 𝜆𝜆𝑞𝑞𝑞𝑞

2
(1 −  𝜹𝜹⊤𝐔𝐔𝑑𝑑⊤𝐔𝐔𝑑𝑑𝜹𝜹) +

𝜆𝜆𝑞𝑞
2

(1 − 𝐪𝐪⊤𝐪𝐪).            (4.10)
 

Take derivatives with regard to 𝐰𝐰, 𝐪𝐪, 𝜷𝜷, and 𝜹𝜹 and set these equations to zero, leading to 
    �𝐗𝐗𝛽𝛽⊤𝐗𝐗𝛽𝛽 + 𝜅𝜅𝑤𝑤𝐈𝐈�

−1𝐗𝐗𝛽𝛽⊤𝐮𝐮𝑔𝑔 = 𝜆𝜆𝑤𝑤𝑤𝑤𝐰𝐰 (4.11) 

�𝐘𝐘𝛿𝛿⊤𝐘𝐘𝛿𝛿 + 𝜅𝜅𝑞𝑞𝐈𝐈�
−1�𝐘𝐘𝑔𝑔⊤𝐓𝐓𝑠𝑠𝜷𝜷 + 𝐘𝐘𝑔𝑔⊤𝐔𝐔𝑑𝑑𝜹𝜹 + 𝐘𝐘𝛿𝛿⊤𝐮𝐮𝑔𝑔� = 𝜆𝜆𝑞𝑞𝑞𝑞𝐪𝐪                                      (4.12) 

     �𝐓𝐓𝑠𝑠⊤𝐓𝐓𝑠𝑠 + 𝜅𝜅𝛽𝛽𝐈𝐈�
−1𝐓𝐓𝑠𝑠⊤𝐮𝐮𝑔𝑔 = 𝜆𝜆𝑤𝑤𝑤𝑤𝜷𝜷 (4.13) 

  (𝐔𝐔𝑑𝑑⊤𝐔𝐔𝑑𝑑 + 𝜅𝜅𝛿𝛿𝐈𝐈)−1𝐔𝐔𝑑𝑑⊤𝐮𝐮𝑔𝑔 = 𝜆𝜆𝑞𝑞𝑞𝑞𝜹𝜹 (4.14) 
where 𝜅𝜅𝑤𝑤 = 𝛾𝛾𝑤𝑤/𝜆𝜆𝑤𝑤𝑤𝑤 , 𝜅𝜅𝛽𝛽 = 𝛾𝛾𝛽𝛽/𝜆𝜆𝑤𝑤𝑤𝑤 , 𝜅𝜅𝛿𝛿 = 𝛾𝛾𝛿𝛿/𝜆𝜆𝑞𝑞𝑞𝑞 , and  𝜅𝜅𝑞𝑞 = 𝜆𝜆𝑞𝑞𝑞𝑞/𝜆𝜆𝑞𝑞 . 𝜅𝜅𝑤𝑤 , 𝜅𝜅𝛽𝛽 , and 𝜅𝜅𝛿𝛿  can be processed by the 
iteration calculation of Eqs. (4.11) - (4.14).  
As shown in Eqs. (4.11) - (4.14), the compact form of 𝐰𝐰, 𝐪𝐪, 𝜷𝜷, and 𝜹𝜹 cannot be obtained. Thus, the model parameters 
are calculated iteratively as follows.  
 
1. Scale 𝐗𝐗 and 𝐘𝐘 to zero mean and unit variance. 
2. Initialize 𝐮𝐮 as some column of 𝐘𝐘, 𝐮𝐮𝑔𝑔 as some column of 𝐘𝐘𝑔𝑔, 𝜷𝜷 and 𝜹𝜹 as unit random vectors. 
3. Repeat the following relations iteratively until convergence. 
 
(1) Construct 𝐗𝐗𝛽𝛽 = ∑ 𝛽𝛽𝑖𝑖𝐗𝐗𝑔𝑔−𝑖𝑖𝑠𝑠

𝑖𝑖=0 , 𝐘𝐘𝛿𝛿 = ∑ 𝛿𝛿𝑖𝑖𝐘𝐘𝑔𝑔−𝑖𝑖𝑑𝑑
𝑖𝑖=1 , and 𝐔𝐔𝑑𝑑 = �𝐮𝐮𝑔𝑔−1,𝐮𝐮𝑔𝑔−2, . . . ,𝐮𝐮𝑔𝑔−𝑑𝑑�; 

(2) 𝐰𝐰 = �𝐗𝐗𝛽𝛽⊤𝐗𝐗𝛽𝛽 + 𝜅𝜅𝑤𝑤𝐈𝐈�
−1𝐗𝐗𝛽𝛽⊤𝐮𝐮𝑔𝑔; 

(3) 𝐭𝐭 = 𝐗𝐗𝐗𝐗, and form 𝐓𝐓𝑠𝑠 = �𝐭𝐭𝑔𝑔, 𝐭𝐭𝑔𝑔−1, . . . , 𝐭𝐭𝑔𝑔−𝑠𝑠�; 
(4) 𝐪𝐪 = �𝐘𝐘𝛿𝛿⊤𝐘𝐘𝛿𝛿 + 𝜅𝜅𝑞𝑞𝐈𝐈�

−1�𝐘𝐘𝑔𝑔⊤𝐓𝐓𝑠𝑠𝜷𝜷 + 𝐘𝐘𝑔𝑔⊤𝐔𝐔𝑑𝑑𝜹𝜹+ 𝐘𝐘𝛿𝛿⊤𝐮𝐮𝑔𝑔�, and 𝐪𝐪 = 𝐪𝐪/‖𝐪𝐪‖; 
(5) 𝐮𝐮𝑔𝑔 = 𝐘𝐘𝑔𝑔𝐪𝐪; 
(6) 𝜷𝜷 = �𝐓𝐓𝑠𝑠⊤𝐓𝐓𝑠𝑠 + 𝜅𝜅𝛽𝛽𝐈𝐈�

−1𝐓𝐓𝑠𝑠⊤𝐮𝐮𝑔𝑔, and 𝜷𝜷 = 𝜷𝜷/‖𝐓𝐓𝑠𝑠𝜷𝜷‖; 
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(7) 𝜹𝜹 = (𝐔𝐔𝑑𝑑⊤𝐔𝐔𝑑𝑑 + 𝜅𝜅𝛿𝛿𝐈𝐈)−1𝐔𝐔𝑑𝑑⊤𝐮𝐮𝑔𝑔, and 𝜹𝜹 = 𝜹𝜹/‖𝐔𝐔𝑑𝑑𝜹𝜹‖. 
 
To align with the modeling of dynamic outer structure, a dynamic inner structure is built based on the latent variable 
modeling structure to describe the relations among 𝐮𝐮𝑔𝑔, 𝐓𝐓𝑠𝑠 and 𝐔𝐔𝑑𝑑: 

𝐮𝐮𝑔𝑔 = 𝐓𝐓𝑠𝑠𝜻𝜻 + 𝐔𝐔𝑑𝑑𝝍𝝍 + 𝜺𝜺𝑔𝑔 (4.15) 
 
where 𝜻𝜻 = [𝜁𝜁0, 𝜁𝜁1, . . . , 𝜁𝜁𝑠𝑠]⊤ and 𝝍𝝍 = [𝜓𝜓1,𝜓𝜓2, . . . ,𝜓𝜓𝑑𝑑]⊤ are weighting vectors of input and output matrices respectively, 
and 𝜺𝜺𝑔𝑔 is the regression error. With the obtained 𝜻𝜻 and 𝝍𝝍,  𝐮𝐮𝑔𝑔 can be predicted by 

𝐮𝐮�𝑔𝑔 = 𝐓𝐓𝑠𝑠𝜻𝜻 + 𝐔𝐔𝑑𝑑𝝍𝝍. (4.16) 
 
After the outer and inner models are obtained, deflation should be performed on 𝐗𝐗 and Y to eliminate the effects of 
the extracted latent variables. The input matrix 𝐗𝐗 can be deflated by 

𝐗𝐗 ≔ 𝐗𝐗 − 𝐭𝐭𝐩𝐩⊤ (4.17) 
where 𝐩𝐩 = 𝐗𝐗⊤𝐭𝐭/𝐭𝐭⊤𝐭𝐭. 
 
The deflation of Y needs to be partitioned into two parts: the static part 𝐘𝐘0:𝑔𝑔−1 ≡ {𝐲𝐲𝑖𝑖}𝑖𝑖=0

𝑔𝑔−1 and the dynamic part 𝐘𝐘𝑔𝑔 ≡
{𝐲𝐲𝑖𝑖}𝑖𝑖=𝑔𝑔𝑛𝑛 . 𝐘𝐘0:𝑔𝑔−1 is deflated by 

𝐘𝐘0:𝑔𝑔−1 ≔ 𝐘𝐘0:𝑔𝑔−1 −  𝐭𝐭𝐜𝐜𝑠𝑠𝑠𝑠⊤ (4.18) 
where 𝐜𝐜𝑠𝑠𝑠𝑠 = 𝐘𝐘0:𝑔𝑔−1

⊤ 𝐭𝐭/𝐭𝐭⊤𝐭𝐭; while 𝐘𝐘𝑔𝑔 is deflated by 
𝐘𝐘𝑔𝑔 ≔ 𝐘𝐘𝑔𝑔 − 𝐮𝐮�𝑔𝑔𝐜𝐜⊤ (4.19) 

where 𝐜𝐜 = 𝐘𝐘𝑔𝑔⊤𝐮𝐮�𝑔𝑔/𝐮𝐮�𝑔𝑔⊤𝐮𝐮�𝑔𝑔. 
After modeling with DALVR, 𝐗𝐗 and 𝐘𝐘𝑔𝑔 are decomposed as 

⎩
⎪
⎨

⎪
⎧ 𝐗𝐗 = �𝐭𝐭𝑖𝑖𝐩𝐩𝑖𝑖⊤

𝑙𝑙

𝑖𝑖=1

+ 𝐗𝐗� = 𝐓𝐓𝐏𝐏⊤ + 𝐗𝐗�

𝐘𝐘𝑔𝑔 = �𝐮𝐮�𝑔𝑔,𝑖𝑖𝐜𝐜𝑖𝑖⊤
𝑙𝑙

𝑖𝑖=1

+ 𝐘𝐘�𝑔𝑔 = 𝐔𝐔�𝑔𝑔𝐂𝐂⊤ + 𝐘𝐘�𝑔𝑔

(4.20) 

where 𝐔𝐔�𝑔𝑔 = �𝐮𝐮�𝑔𝑔,1,𝐮𝐮�𝑔𝑔,2, . . . ,𝐮𝐮�𝑔𝑔,𝑙𝑙� ∈ ℝ𝑁𝑁×𝑙𝑙, and 𝐗𝐗� and 𝐘𝐘�𝑔𝑔 are residuals of 𝐗𝐗 and 𝐘𝐘𝑔𝑔. 𝐭𝐭𝑖𝑖, 𝐩𝐩𝑖𝑖, 𝐮𝐮�𝑔𝑔,𝑖𝑖, and 𝐜𝐜𝑖𝑖 correspond to the 
𝑖𝑖th latent variable (𝑖𝑖 = 1, 2, . . . , 𝑙𝑙), respectively. 
 
4.2 Concurrent Dynamic Decomposition 
To realize a comprehensive modeling and monitoring of the process and quality spaces as for KLVR in Section 3, 
the modified concurrent dynamic modeling framework is also developed for DALVR, which is summarized as 
follows. 
 
1. DALVR is performed on scaled 𝐗𝐗 and Y for the modeling parameters 𝐑𝐑, 𝐐𝐐, 𝐂𝐂, 𝜻𝜻 and 𝝍𝝍. 
2. Divide the dynamic predictable output 𝐘𝐘�𝑔𝑔 into the dynamic cross-correlation output part 𝐘𝐘�𝑥𝑥𝑥𝑥 and dynamic auto-
correlation output part 𝐘𝐘�𝑦𝑦𝑦𝑦:  

𝐘𝐘�𝑔𝑔 = 𝐘𝐘�𝑥𝑥𝑥𝑥 + 𝐘𝐘�𝑦𝑦𝑦𝑦 = [𝐙𝐙𝑥𝑥(𝜻𝜻⊗ 𝐑𝐑)]𝐂𝐂⊤ + �𝐙𝐙𝑦𝑦(𝝍𝝍⊗𝐐𝐐)�𝐂𝐂⊤ (4.21) 
where 𝐘𝐘�𝑥𝑥𝑥𝑥 are the quality variations that can be predicted from input variables, and 𝐘𝐘�𝑦𝑦𝑦𝑦 are auto-regressive quality 
variations. 
(1) SVD is performed on 𝐘𝐘�𝑥𝑥𝑥𝑥 to capture the dynamic cross-correlations that are observable from input variables: 

𝐘𝐘�𝑥𝑥𝑥𝑥 = 𝐔𝐔𝑐𝑐𝐃𝐃𝑐𝑐𝐕𝐕𝑐𝑐 ≡ 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐
⊤ (4.22) 

where 𝐔𝐔𝑐𝑐 represents the covariations in 𝐗𝐗 that are relevant to 𝐘𝐘�𝑥𝑥𝑥𝑥; 𝐐𝐐𝑐𝑐 = 𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐 contains all non-zero singular values in 
a descending order and the corresponding right singular vectors. Due to the orthogonality of 𝐕𝐕𝑐𝑐, 𝐔𝐔𝑐𝑐 can be rewritten 
as 

𝐔𝐔𝑐𝑐 = 𝐘𝐘�𝑥𝑥𝑥𝑥𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐
−1 ≡ 𝐗𝐗𝜁𝜁𝐑𝐑𝑐𝑐 (4.23) 

where 𝐗𝐗𝜁𝜁 = [𝐙𝐙𝑥𝑥(𝜻𝜻⊗ 𝐈𝐈)] = ∑ 𝜁𝜁𝑖𝑖𝐗𝐗𝑠𝑠−𝑖𝑖𝑠𝑠
𝑖𝑖=0 , and 𝐑𝐑𝑐𝑐 = 𝐑𝐑𝐂𝐂⊤𝐕𝐕𝑐𝑐𝐃𝐃𝑐𝑐

−1. 
(2) Define 𝐔𝐔�𝜓𝜓 = �𝐙𝐙𝑦𝑦(𝝍𝝍⊗𝐐𝐐)�, and the auto-regressive part 𝐘𝐘�𝑦𝑦𝑦𝑦 can be written as 

𝐘𝐘�𝑦𝑦𝑦𝑦 = �𝐙𝐙𝑦𝑦(𝝍𝝍⊗𝐐𝐐)�𝐂𝐂⊤ ≡ 𝐔𝐔�𝜓𝜓𝐂𝐂⊤. (4.24) 

606

Qinqin Zhu
Note: �You need to point out the differences between this one and the previous one. Otherwise, it’s just one piece of work. 



Proceedings of the 6th European Conference on Industrial Engineering and Operations Management 
Lisbon, Portugal, July 18-20, 2023 

© IEOM Society International 

3. The quality residual 𝐘𝐘𝑐𝑐 = 𝐘𝐘 − 𝐘𝐘�𝑥𝑥𝑥𝑥 − 𝐘𝐘�𝑦𝑦𝑦𝑦 only contain static variations, and thus perform static PCA on  𝐘𝐘𝑐𝑐  to 
extract static principal variations: 

𝐘𝐘𝑐𝑐 = 𝐓𝐓𝑠𝑠𝑠𝑠𝐏𝐏𝑠𝑠𝑠𝑠⊤ + 𝐘𝐘� (4.25) 
where 𝐓𝐓𝑠𝑠𝑠𝑠 and 𝐏𝐏𝑠𝑠𝑠𝑠 are the score and loading matrices of static output principal variations, respectively.  𝐘𝐘� is the static 
output residual. 
 
4. Dynamic inner PCA (DiPCA) (Dong and Qin 2018) is performed on 𝐗𝐗 to capture both dynamic and static input 
variations simultaneously: 

𝐗𝐗 = 𝐓𝐓�𝑑𝑑𝑑𝑑𝐏𝐏𝑑𝑑𝑑𝑑⊤ + 𝐓𝐓𝑠𝑠𝑥𝑥𝐏𝐏𝑠𝑠𝑥𝑥⊤ + 𝐗𝐗�𝑠𝑠 (4.26) 
where 𝐓𝐓�𝑑𝑑𝑑𝑑 is the score matrix of dynamic input variations and 𝐏𝐏𝑑𝑑𝑑𝑑 is the loading matrix of dynamic input variations, 
which are predictable for the past input scores. 𝐓𝐓𝑠𝑠𝑥𝑥 is the score matrix of static input variations and 𝐏𝐏𝑠𝑠𝑥𝑥  is the loading 
matrix of static input variations, and 𝐗𝐗�𝑠𝑠 represents the static input residuals.  
 
For better understanding, the concurrent DALVR (CDALVR) based modeling framework is summarized in Figure 1, 
where the subspaces names are also defined.  
 

 
 

Figure 1.  CDALVR-based monitoring framework 
 
With CDALVR, 𝐗𝐗 and 𝐘𝐘 are decomposed as 

�
𝐗𝐗 = 𝐓𝐓�𝑑𝑑𝑑𝑑𝐏𝐏𝑑𝑑𝑑𝑑⊤ + 𝐓𝐓𝑠𝑠𝑥𝑥𝐏𝐏𝑠𝑠𝑥𝑥⊤ + 𝐗𝐗�𝑠𝑠
𝐘𝐘𝑔𝑔 = 𝐔𝐔𝑐𝑐𝐐𝐐𝑐𝑐

⊤ + 𝐔𝐔�𝜓𝜓𝐂𝐂⊤ + 𝐓𝐓𝑠𝑠𝑠𝑠𝐏𝐏𝑠𝑠𝑠𝑠⊤ + 𝐘𝐘�.
(4.27) 

After the DALVR model is obtained with training data, it can be employed for online modeling, and it decomposes a 
new test sample (𝐱𝐱𝑘𝑘, 𝐲𝐲𝑘𝑘) into 

�
𝐱𝐱𝑘𝑘 = 𝐏𝐏𝑑𝑑𝑑𝑑𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘 + 𝐏𝐏𝑠𝑠𝑥𝑥𝐭𝐭𝑠𝑠𝑥𝑥,𝑘𝑘 + 𝐱𝐱�𝑘𝑘
𝐲𝐲𝑘𝑘 = 𝐐𝐐𝑐𝑐𝐮𝐮𝑐𝑐,𝑘𝑘 + 𝐂𝐂𝐮𝐮�𝜓𝜓,𝑘𝑘 + 𝐏𝐏𝑠𝑠𝑦𝑦𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘 + 𝐲𝐲�𝑘𝑘

(4.28) 

where for 𝐱𝐱𝑘𝑘, 𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘 is the score vector in DIPS, 𝐭𝐭𝑠𝑠𝑥𝑥,𝑘𝑘 is the score vector in SIPS, and 𝐱𝐱�𝑘𝑘 is the residual vector in SIRS, 
which are obtained by 

𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘 = �𝚯𝚯𝑥𝑥,𝑖𝑖𝐭𝐭𝑑𝑑𝑑𝑑,𝑘𝑘−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

    (4.29) 

 𝐭𝐭𝑠𝑠𝑥𝑥,𝑘𝑘 = 𝐏𝐏𝑠𝑠𝑥𝑥𝐱𝐱�𝑐𝑐                     (4.30) 
 𝐱𝐱�𝑘𝑘 = (𝐈𝐈 − 𝐏𝐏𝑠𝑠𝑥𝑥𝐏𝐏𝑠𝑠𝑥𝑥⊤ )𝐱𝐱�𝑐𝑐 (4.31) 

where 𝐭𝐭𝑑𝑑𝑑𝑑,𝑘𝑘 = 𝐑𝐑𝑥𝑥𝐱𝐱𝑘𝑘, and 𝐱𝐱�𝑐𝑐 = 𝐱𝐱𝑘𝑘 − 𝐏𝐏𝑑𝑑𝑑𝑑𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘. 𝐏𝐏𝑑𝑑𝑑𝑑, 𝐏𝐏𝑠𝑠𝑥𝑥, 𝚯𝚯𝑥𝑥, and 𝐑𝐑𝑥𝑥 are parameters determined by DiPCA (Dong and 
Qin 2018). 
For the decomposition of 𝐲𝐲𝑘𝑘 in Eq. (4.28), 𝐮𝐮𝑐𝑐,𝑘𝑘 is the score vector in DCVS, 𝐮𝐮�𝜓𝜓,𝑘𝑘 is the score vector in DAOS, 𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘 
is the score vector in SOPS, and 𝐲𝐲�𝑘𝑘 is residual vector in SORS, which are  

𝐮𝐮𝑐𝑐,𝑘𝑘 = 𝐑𝐑𝑐𝑐
⊤𝐱𝐱𝜁𝜁,𝑘𝑘                (4.32) 
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𝐮𝐮�𝜓𝜓,𝑘𝑘 = �𝜓𝜓𝑖𝑖𝐲𝐲𝑘𝑘−𝑖𝑖𝐐𝐐
𝑠𝑠

𝑖𝑖=1

       (4.33) 

 𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘 = 𝐏𝐏𝑠𝑠𝑠𝑠⊤ 𝐲𝐲�𝑐𝑐                     (4.34) 
  𝐲𝐲�𝑘𝑘 = �𝐈𝐈 − 𝐏𝐏𝑠𝑠𝑦𝑦𝐏𝐏𝑠𝑠𝑠𝑠⊤ �𝐲𝐲�𝑐𝑐 (4.35) 

where 𝐱𝐱𝜁𝜁,𝑘𝑘 = ∑ 𝜁𝜁𝑖𝑖𝐱𝐱𝑘𝑘−𝑖𝑖𝑠𝑠
𝑖𝑖=0 , and 𝐲𝐲�𝑐𝑐 = 𝐲𝐲𝑘𝑘 − 𝐐𝐐𝑐𝑐𝐮𝐮𝑐𝑐,𝑘𝑘 − 𝐂𝐂𝐮𝐮�𝜓𝜓,𝑘𝑘. 

 
 
4.3 Comprehensive Dynamic Monitoring Scheme 
To develop a comprehensive dynamic monitoring scheme for the extracted subspaces, their monitoring statistics are 
designed. 
 
For a test sample pair (𝐱𝐱𝑘𝑘,𝐲𝐲𝑘𝑘), the dynamic output-relevant score vector 𝐮𝐮𝑐𝑐,𝑘𝑘 is monitored with the 𝑇𝑇𝑐𝑐2 index in DCVS. 

𝑇𝑇𝑐𝑐2 = 𝐮𝐮𝑐𝑐,𝑘𝑘
⊤ 𝚲𝚲𝑐𝑐−1𝐮𝐮𝑐𝑐,𝑘𝑘 = 𝐱𝐱𝜁𝜁,𝑘𝑘

⊤ 𝐑𝐑𝑐𝑐𝚲𝚲𝑐𝑐−1𝐑𝐑𝑐𝑐
⊤𝐱𝐱𝜁𝜁,𝑘𝑘 (4.36) 

where 𝚲𝚲𝑐𝑐 is the variance matrix of 𝐔𝐔𝑐𝑐. Note that the variations in this subspace are predictable from input variables.  
For the auto-regressive output score vector 𝐮𝐮�𝜓𝜓,𝑘𝑘, which is not predictable from input, its corresponding statistic 𝑇𝑇𝑑𝑑𝑦𝑦2  is 

𝑇𝑇𝑑𝑑𝑦𝑦2 = 𝐮𝐮�𝜓𝜓,𝑘𝑘
⊤ 𝚲𝚲𝑑𝑑𝑑𝑑−1𝐮𝐮�𝜓𝜓,𝑘𝑘 (4.37) 

where 𝚲𝚲𝑑𝑑𝑑𝑑 is the variance matrix of 𝐔𝐔�𝜓𝜓. 
 
The static output score vector 𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘 and the static output residual vector 𝐲𝐲�𝑘𝑘 are monitored by 

𝑇𝑇𝑠𝑠𝑠𝑠2 = 𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘
⊤ 𝚲𝚲𝑠𝑠𝑠𝑠−1𝐭𝐭𝑠𝑠𝑠𝑠,𝑘𝑘                         (4.38) 

𝑄𝑄𝑠𝑠𝑠𝑠 = ‖𝐲𝐲�𝑘𝑘‖2 = 𝐲𝐲�𝑐𝑐⊤�𝐈𝐈 − 𝐏𝐏𝑠𝑠𝑦𝑦𝐏𝐏𝑠𝑠𝑠𝑠⊤ �𝐲𝐲�𝑐𝑐 (4.39) 
where 𝚲𝚲𝑠𝑠𝑠𝑠 is the variance matrix of 𝐓𝐓𝑠𝑠𝑠𝑠. 
 
For the decomposed input subspaces, variations in DIPS, SIPS and SIRS are captured by 𝜑𝜑𝑑𝑑𝑥𝑥 , 𝑇𝑇𝑠𝑠𝑥𝑥2  and 𝑄𝑄𝑠𝑠𝑥𝑥 
respectively, which are defined as 

𝜑𝜑𝑑𝑑𝑥𝑥 = 𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘
⊤ 𝚽𝚽𝑑𝑑𝑥𝑥𝐭̂𝐭𝑑𝑑𝑑𝑑,𝑘𝑘 =

𝑇𝑇𝑑𝑑𝑑𝑑2

𝑇𝑇𝑑𝑑𝑑𝑑,cl
2 +

𝑄𝑄𝑑𝑑𝑥𝑥
𝑄𝑄𝑑𝑑𝑥𝑥,cl

(4.40) 

𝑇𝑇𝑠𝑠𝑥𝑥2 = 𝐭𝐭𝑠𝑠𝑥𝑥,𝑘𝑘
⊤ 𝚲𝚲𝑠𝑠𝑥𝑥−1𝐭𝐭𝑠𝑠𝑥𝑥,𝑘𝑘                                (4.41) 

𝑄𝑄𝑠𝑠𝑥𝑥 = ‖𝐱𝐱�𝑘𝑘‖2 = 𝐱𝐱�𝑐𝑐⊤(𝐈𝐈 − 𝐏𝐏𝑠𝑠𝑥𝑥𝐏𝐏𝑠𝑠𝑥𝑥⊤ )𝐱𝐱�𝑐𝑐      (4.42) 
 
where 𝜑𝜑𝑑𝑑𝑥𝑥 is a combined index integrating Hotelling's 𝑇𝑇2 with 𝑄𝑄 statistics (Qin 2003), and 𝚽𝚽𝑑𝑑𝑥𝑥 is  

𝚽𝚽𝑑𝑑𝑥𝑥 =
𝐏𝐏𝑑𝑑𝑥𝑥𝚲𝚲𝑑𝑑𝑥𝑥−1𝐏𝐏𝑑𝑑𝑥𝑥⊤

𝑇𝑇𝑑𝑑𝑑𝑑,cl
2 +

𝐈𝐈 − 𝐏𝐏𝑑𝑑𝑥𝑥𝐏𝐏𝑑𝑑𝑥𝑥⊤

𝑄𝑄𝑑𝑑𝑥𝑥,cl
(4.43) 

 
where 𝚲𝚲𝑑𝑑𝑥𝑥  is the variance matrix of 𝐓𝐓�𝑑𝑑𝑑𝑑 , 𝐏𝐏𝑑𝑑𝑥𝑥  is the loading score matrix of 𝐓𝐓�𝑑𝑑𝑑𝑑 , and 𝑇𝑇𝑑𝑑𝑑𝑑,cl

2  and 𝑄𝑄𝑑𝑑𝑥𝑥,cl  are the 
corresponding control limits (Zhu et al.. 2017). 𝚲𝚲𝑠𝑠𝑥𝑥 in Eq. (4.41) represents the variance matrix of 𝐓𝐓𝑠𝑠𝑥𝑥. 
The details of the control limits of the aforementioned statistics are summarized in Table 7, where 𝑙𝑙, 𝑙𝑙𝑑𝑑𝑑𝑑, 𝑙𝑙𝑠𝑠𝑠𝑠, and 𝑙𝑙𝑠𝑠𝑥𝑥 
denote the number of latent variables for 𝐮𝐮𝑐𝑐,𝑘𝑘, 𝐮𝐮�𝜓𝜓,𝑘𝑘, 𝐲𝐲�𝑐𝑐 and 𝐱𝐱�𝑐𝑐, respectively. 
 
To differentiate the importance of detected anomalies, as shown in Table 6, different alarming levels 𝐿𝐿1, 𝐿𝐿2, and 𝐿𝐿3 
are attached to faults or disturbances observed in subspaces decomposed by CDALVR, where  𝐿𝐿1 and 𝐿𝐿3 represent 
the highest and lowest alarming level, respectively. More concretely, the faults with 𝐿𝐿1 alarming level will affect 
output variables, the 𝐿𝐿2 alarming faults have potential influence on the output, and the 𝐿𝐿3 alarms are raised for the 
input-relevant and output-irrelevant faults. 
 

Table 6.  Monitoring statistics and control limits for CDALVR 
 

Subspace Characteristics Statistics Control limit Alarming level 

Output 
DCVS Dynamic; predictable from input 𝑇𝑇𝑐𝑐2 𝑇𝑇𝑐𝑐,cl

2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑐𝑐
2  𝐿𝐿1 

DAOS Auto-regressive; unpredictable from input 𝑇𝑇𝑑𝑑𝑦𝑦2  𝑇𝑇𝑑𝑑𝑑𝑑,cl
2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑑𝑑𝑑𝑑

2  𝐿𝐿1 
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SOPS Static; unpredictable from input 𝑇𝑇𝑠𝑠𝑠𝑠2  𝑇𝑇𝑠𝑠𝑠𝑠,cl
2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑠𝑠𝑠𝑠

2  𝐿𝐿1 
SORS Static; unpredictable from input 𝑄𝑄𝑠𝑠𝑠𝑠  𝑄𝑄𝑠𝑠𝑠𝑠,cl = 𝑔𝑔𝑦𝑦𝜒𝜒𝛼𝛼,ℎ𝑠𝑠𝑠𝑠

2  𝐿𝐿3 

Input 
DIPS Dynamic 𝜑𝜑𝑑𝑑𝑥𝑥 𝜑𝜑𝑑𝑑𝑥𝑥,cl = 𝑔𝑔𝑑𝑑𝑑𝑑𝜒𝜒𝛼𝛼,ℎ𝑑𝑑𝑑𝑑

2  𝐿𝐿3 
SIPS Static 𝑇𝑇𝑠𝑠𝑥𝑥2  𝑇𝑇𝑠𝑠𝑠𝑠,cl

2 = 𝜒𝜒𝛼𝛼,𝑙𝑙𝑠𝑠𝑠𝑠
2  𝐿𝐿3 

SIRS Static 𝑄𝑄𝑠𝑠𝑥𝑥 𝑄𝑄𝑠𝑠𝑠𝑠,cl = 𝑔𝑔𝑦𝑦𝜒𝜒𝛼𝛼,ℎ𝑠𝑠𝑠𝑠
2  𝐿𝐿2 

4.4 Additional Tennessee Eastman Process Case Study 
In this section, the additional simulation data of TEP (Rieth, et al. 2017) is utilized to investigate the modeling and 
monitoring performance of DALVR and CDALVR. The dataset contains 50,000 training samples and 96,000 testing 
samples for each disturbance. 500 simulation runs are included in the dataset, and each run contains 41 measured 
variables (XMEAS (1-41)) and 11 manipulated variables (XMV (1-11)). To illustrate the dynamic modeling 
performance of DALVR, XMEAS (1-22) and XMV (1-11) are selected as input variables 𝐗𝐗, while XMEAS (38) is 
chosen as the output variable 𝐘𝐘. Note that the variables in 𝐗𝐗 are sampled with an interval of 3 minutes, while the output 
variable 𝐘𝐘 is sampled every 15 minutes. Thus, to address the irregular sampling frequency, the filtering approach 
described by Zhu et al. (Zhu et al. 2017) is employed to balance the sampling discrepancy. 
 
 

Table 7.  MSEs for DrLVR and DALVR in additional simulation of TEP 
 

Variable DrLVR DALVR 
XMEAS (38) 0.3570 0.3308 

 
In terms of modeling performance, determined by the cross-validation method, the modeling parameters for DALVR 
are 𝑙𝑙 = 2, 𝑠𝑠 = 2, and 𝑑𝑑 = 2; for DrLVR, 𝑙𝑙 = 5 and 𝑠𝑠 = 1. The regularized parameters for DALVR are 𝛾𝛾𝑤𝑤 = 0.005, 
𝛾𝛾𝛽𝛽 = 0.005, and 𝛾𝛾𝛿𝛿 = 0.005, while for DrLVR, 𝜅𝜅 = 0.005. The prediction performance is measured by MSEs, which 
are summarized in Table 7, and the output variations predicted by DALVR and DrLVR are presented in Figure 2. 
Compared with DrLVR, DALVR achieves a more comprehensive exploitation on the quality space, and thus as shown 
in Table 7, its MSE is lower than that of DrLVR, which is in line with the predictive performance shown in Figure 2. 
 

 
 

Figure 2.  Predicted output variations for normal case in additional simulation of TEP 
 
For concurrent monitoring performance, the TEP simulates 20 disturbances, and the first 15 known disturbances (IDV 
(1-15)) are adopted for analysis in this case study. With the control limit selected as 99%, the FDRs and FARs [100] 
results of output-relevant and output-irrelevant disturbances are summarized in Tables 8 and 9, respectively. Note that 
the 𝑻𝑻𝟐𝟐 statistic of CDALVR in these two tables is the combination of the 𝑇𝑇𝑐𝑐2, 𝑇𝑇𝑑𝑑𝑑𝑑2 , and 𝑇𝑇𝑠𝑠𝑠𝑠2  statistics, which is for 
output-relevant anomaly detection, including both predictable and unpredictable, dynamic and static faults. The 𝑻𝑻𝟐𝟐 
statistic realizes a comprehensive monitoring for output relevant data.  
 
As shown in Table 8, CDALVR achieves comparable FDRs with DrLVR, with better performance for IDV (7) and 
IDV (10), and its false alarms are raised much less than DrLVR. Furthermore, CDALVR-based monitoring provides 
detailed information for each subspace, monitoring dynamic and static variations in both input and output data. For 
output-irrelevant disturbances, only FARs are listed in Table 9, since there are few faulty samples and FDRs are noisy. 
As shown in the table, in most cases, CDALVR achieves better monitoring results than DrLVR with smaller FARs. 
The input-relevant FARs are also available in CDALVR with 𝑻𝑻𝒔𝒔𝒔𝒔𝟐𝟐 , which yet should receive lower attention than 
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output-related monitoring indices. As observed, CDALVR shows superiority to DrLVR due to its comprehensive 
monitoring ability and improved anomaly detection performance. 
 

Table 8.  FDRs and FARs for output-relevant disturbances in additional simulation of TEP 
 

Disturbance 
FDR FAR 

DrLVR CDALVR DrLVR CDALVR 
 𝑇𝑇2 𝑇𝑇2  𝑇𝑇𝑐𝑐2  𝑇𝑇𝑑𝑑𝑑𝑑2   𝑇𝑇𝑠𝑠𝑠𝑠2    𝜑𝜑𝑑𝑑𝑑𝑑 𝑇𝑇𝑠𝑠𝑠𝑠2    𝑇𝑇2 𝑇𝑇2  𝑇𝑇𝑐𝑐2  𝑇𝑇𝑑𝑑𝑑𝑑2   𝑇𝑇𝑠𝑠𝑠𝑠2    𝜑𝜑𝑑𝑑𝑑𝑑 𝑇𝑇𝑠𝑠𝑠𝑠2   

IDV (1) 1 0.9600 0.8429 0.4411 0.3711 0.8229 0.9998 0.9282 0.3723 0.1956 0 0.2501 0 0.1672 
IDV (2) 1 0.8696 0.7446 0.0365 0.1394 0.7912 0.9998 0.9034 0.3556 0.1267 0 0.2899 0 0.1707 
IDV (5) 1 0.9986 0.5994 0.2470 0.9951 0.6667 0.6783 0.9455 0.9428 0.9126 0 0.9380 0.2143 0.0261 
IDV (6) 1 1 0.9689 0.8585 0.9468 0.9583 0.9934 0.6970 0.4457 0.3783 0.5556 0.3065 0 0.2888 
IDV (7) 0.9497 0.9749 0.9421 0.5014 0.2703 0.8958 1 0.4395 0.1703 0.1241 0 0.0793 0.3846 0.0202 
IDV (8) 0.9940 0.9741 0.9374 0.5892 0.2602 0.8077 0.9831 0.7742 0.2325 0.1755 0.3000 0.1267 0.3636 0.1383 
IDV (10) 0.9001 0.9565 0.8195 0.1435 0.7580 0.3585 0.2824 0.7418 0.7081 0.5625 0.1667 0.6691 0.1489 0.0311 
IDV (12) 0.9950 0.9876 0.8670 0.6576 0.6759 0.7952 0.9746 0.8092 0.6175 0.4327 0.3333 0.5613 0.2353 0.1812 
IDV (13) 0.9993 0.9946 0.8040 0.6721 0.7802 0.9451 0.9732 0.6194 0.4907 0.3565 0.3846 0.4546 0 0.1134 

 
Table 9.  FARs for output-irrelevant disturbances in additional simulation of TEP 

 
Disturbance 

DrLVR CDALVR 
𝑇𝑇2 𝑇𝑇2 𝑇𝑇𝑐𝑐2 𝑇𝑇𝑑𝑑𝑑𝑑2  𝑇𝑇𝑠𝑠𝑦𝑦2  𝜑𝜑𝑑𝑑𝑥𝑥 𝑇𝑇𝑠𝑠𝑠𝑠2  

IDV (3) 0.0123 0.0161 0.0100 0 0.0072 0 0.0067 
IDV (4) 0.1907 0.0178 0.0106 0 0.0077 0 0.2253 
IDV (9) 0.0124 0.0196 0.0118 0 0.0077 0 0.2253 

IDV (11) 0.3765 0.0208 0.0133 0 0.0080 0 0.0768 
IDV (14) 0.9595 0.0814 0.0260 0 0.0590 0 0.0752 
IDV (15) 0.0145 0.0211 0.0144 0 0.0070 0 0.0096 

 

 
 

Figure 3. PCA-based process and quality monitoring results for IDV (1) 
 

For better illustration, IDV (1) (an output-relevant disturbance) and IDV (14) (an output-irrelevant disturbance) are 
chosen to visualize the monitoring performance of CDALVR and DrLVR. The first 100 samples are training data, 
while the 101st-200th samples are the first round of testing data. 
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Figure 4.  CDALVR-based monitoring results for IDV (1) 
 

IDV (1) introduces a step change of A/C feed ratio in Stream 4 (Downs and Vogel 1993), and as shown in the PCA-
based monitoring results in Figure 3, it affects the output variable transiently. Specifically, output variable is abnormal 
in the interval [110th, 174th], while for input variables, 𝑇𝑇𝑥𝑥2   and 𝑄𝑄𝑥𝑥  detect the faults from 106th and 105th sample 
respectively. 
 
The monitoring results of CDALVR and DrLVR are presented in Figures 4 and 5, respectively. Figure 5 shows that 
all quality relevant monitoring indices of CDALVR detect the anomalies, and they return to normal conditions later, 
which is consistent with the PCA-based monitoring results in Figure 4. 𝑇𝑇𝑐𝑐2 is constructed by the predictable dynamic 
output-relevant variations, and in it captures the anomalies in DCVS for the 111st-150th faulty samples. 𝑇𝑇𝑑𝑑𝑑𝑑2  detects 
dynamic output-relevant faulty samples that are unpredicted from the input in the range of [112nd, 175th]. 𝑇𝑇𝑠𝑠𝑦𝑦2  also 
successfully detects additional static output-relevant anomalies in the interval of [118th, 173rd].  
 

 
 

Figure 5.  DrLVR-based monitoring results for IDV (1) 
 

The monitoring results of output-relevant statistics in CDALVR are in line with the 𝑇𝑇𝑦𝑦2 of PCA-monitoring in Figure 
4. In addition to quality-relevant anomalies, CDALVR also detects anomalies in the input data with 𝜑𝜑𝑑𝑑𝑑𝑑 from the 
109th sample, 𝑇𝑇𝑠𝑠𝑠𝑠2  from the 107th sample and 𝑄𝑄𝑥𝑥 from the 106th sample. It is observed that IDV (1) affects input data 
longer than quality variables. In contrast, both monitoring indices of DrLVR keep alarming from the 105th sample, 
and it cannot provide a detailed analysis for the sources of the detected faults. 
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Figure 6.  PCA-based process and quality monitoring results for IDV (14) 
 

 
 

Figure 7.  CDALVR-based monitoring results for IDV (14) 
 

The IDV (14) disturbance is caused by the sticking issue of the reactor cooling water valve (Downs and Vogel 1993). 
The PCA-based monitoring in Figure 6 indicates that it affects 𝑇𝑇𝑥𝑥2 and 𝑄𝑄𝑥𝑥 statistics from the 105th sample, while its 
𝑇𝑇𝑦𝑦2 index remains unaffected, showing that this disturbance is input-relevant and output-irrelevant. Figures 7 and 8 
summarize the CDALVR-based and DrLVR-based monitoring results, respectively. CDALVR 's monitoring results 
generally align with Figure 6: 

 

 
 

Figure 8. Dr LVR-based monitoring results for IDV (14) 
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only the input-relevant statistics 𝑇𝑇𝑠𝑠𝑠𝑠2  and 𝑄𝑄𝑥𝑥  raise the  𝐿𝐿3 -level alarms from the 105th and 106th faulty samples, 
respectively, and quality-relevant indices 𝑇𝑇𝑐𝑐2 , 𝑇𝑇𝑑𝑑𝑑𝑑2 , 𝑇𝑇𝑠𝑠𝑦𝑦2  and dynamic input-relevant index 𝜑𝜑𝑑𝑑𝑑𝑑  are within their 
corresponding control limits. DrLVR has both monitoring indices exceeding their control limit, and it is hard to collect 
any further information from Figure 8. Thus, DrLVR based monitoring method is less informative than CDALVR. 

 
5. Dynamic Latent Variable Modeling for Further Fault Diagnosis 
 
5.1 Root Cause Identification and Causal Analysis Framework 
The monitoring scheme based on DALVR includes 𝑇𝑇2 and 𝑄𝑄 statistics, which can be obtained in a similar way. To 
ensure the monitoring and diagnosis efficiency, a combined monitoring index 𝜑𝜑 is first designed by integrating 𝑇𝑇2 
and 𝑄𝑄 indices as 

𝜑𝜑 =
𝑇𝑇2

𝑇𝑇cl
2 +

𝑄𝑄
𝑄𝑄cl

= 𝐱𝐱⊤𝚽𝚽𝐱𝐱 (5.1) 

 
where 

𝚽𝚽 =
𝐑𝐑𝚲𝚲−1𝐑𝐑⊤

𝑇𝑇cl
2 +

 𝐈𝐈 − 𝐏𝐏𝐑𝐑⊤

𝑄𝑄cl
. 

𝜑𝜑 follows a 𝜒𝜒2-distribution approximately, and its control limit is obtained by 
𝜑𝜑cl = 𝑔𝑔𝜑𝜑𝜒𝜒ℎ𝜑𝜑,𝛼𝛼

2 (5.2) 
where 

𝑔𝑔𝜑𝜑 =
𝑡𝑡𝑡𝑡(𝐒𝐒𝑥𝑥𝚽𝚽)2

𝑡𝑡𝑡𝑡(𝐒𝐒𝑥𝑥𝚽𝚽) ,ℎ𝜑𝜑 =
[𝑡𝑡𝑡𝑡(𝐒𝐒𝑥𝑥𝚽𝚽)]2

𝑡𝑡𝑡𝑡(𝐒𝐒𝑥𝑥𝚽𝚽) . 

and 𝐒𝐒𝑥𝑥 is the covariance matrix of input 𝐗𝐗. 
 
Then, RBC is adopted and modified as the first step of root cause analysis. As discussed in Section 2, RBC is an 
effective approach for fault diagnosis, but it is not reliable, since the RBC values of normal samples are different for 
various variables, and thus it is difficult to interpret the RBC results for abnormal samples. To alleviate these effects 
that potentially weaken the performance of RBC, a relative RBC index is designed and employed to identify variables 
with largest fault amplitudes as contributing variables in the proposed framework. The relative RBC index rRBC𝑖𝑖Index 
is defined as the ratio of  RBC𝑖𝑖Index to the average values calculated with the normal data RBCavgIndex; 
 that is 

rRBC𝑖𝑖Index =
RBC𝑖𝑖Index

RBCavgIndex =
𝐱𝐱⊤𝐌𝐌𝜉𝜉𝑖𝑖(𝜉𝜉𝑖𝑖⊤𝐌𝐌𝜉𝜉𝑖𝑖)−1𝜉𝜉𝑖𝑖⊤𝐌𝐌𝐌𝐌

RBCavgIndex (5.3) 

 
where other symbols have the same meaning as those in Eq. (2.4). rRBC𝑖𝑖Index can be used to select contributing 
variables to the faults, and it successfully removes the interference brought by the correlations among various variables. 
The variables that have larger rRBC𝑖𝑖Index values are regarded as the main contributing variables, which are applied for 
root cause identification. 
Accordingly, rRBC𝑖𝑖

𝜑𝜑 is formulated as 

rRBC𝑖𝑖
𝜑𝜑 =

RBC𝑖𝑖
𝜑𝜑

RBCavg,𝑖𝑖
𝜑𝜑 =

𝐱𝐱⊤𝚽𝚽𝜉𝜉𝑖𝑖(𝜉𝜉𝑖𝑖⊤𝚽𝚽𝜉𝜉𝑖𝑖)−1𝜉𝜉𝑖𝑖⊤𝚽𝚽𝐱𝐱
RBCavg,𝑖𝑖

𝜑𝜑 (5.4) 

 
rRBC𝑖𝑖

𝜑𝜑 can remove the interference brought by the correlations among various variables. The variables that have larger 
rRBC𝑖𝑖

𝜑𝜑 values are regarded as the main contributing variables, which are used for further root cause identification. To 
further attribute the root causes of the detected fault, TDGC (Yuan and Qin 2014) and CSGC (Claessen et al. 2019) 
described in Section 2 are employed to identify the causal relations of the contributing variables identified by RBC.  
 
TDGC is easy to implement and understand, so it is extensively used in root cause analysis. However, sometimes it 
fails to provide enough information to locate the root causes due to the existence of other potential causes. Thus, it is 
necessary to enhance reliability. In this work, we integrate another causality approach with TDGC to address this 
issue. CGSC has good causal inference performance since it can identify the causal relationship in the frequency 
domain, providing strong support for further root cause analysis. However, its computational cost is relatively large. 

613



Proceedings of the 6th European Conference on Industrial Engineering and Operations Management 
Lisbon, Portugal, July 18-20, 2023 

© IEOM Society International 

If the range of variables is narrowed down, it will be more efficient. To combine their advantages and improve the 
performance of causal analysis, the integration of TDGC and CSGC will lead to the improvement of reliability and 
effectiveness. 
 
In the integrated framework, DALVR is first performed on historical normal data to obtain model parameters, and 
fault detection and diagnosis statistics are developed with DALVR. For online monitoring, new samples are processed 
and monitored with the established statistics. Once a faulty sample is identified, relative RBC is conducted to obtain 
contributing variables, which will then be employed for further root cause identification with TDGC and CSGC. 
 
5.2 Tennessee Eastman Process Case Study 
The Tennessee Eastman Process (TEP) (Downs and Vogel 1993) is analyzed to show the efficacy of the proposed 
framework. In this work, XMEAS (1-22) and XMV (1-11) are selected as input variables (Variables 1-33), while 
XMEAS (38) serves as the output variable. 
 
The modelling performance of DrLVR and DALVR are first compared, which are trained with 500 normal samples. 
With the cross-validation method, the parameters are determined as 𝑙𝑙 = 1, 𝑠𝑠 = 1, 𝑑𝑑 = 1, 𝛾𝛾𝜔𝜔 = 0.005, 𝛾𝛾𝛽𝛽 = 0.005, 
and 𝛾𝛾𝛿𝛿 = 0.005 for DALVR; and 𝑙𝑙 = 1, 𝑠𝑠 = 3, and 𝜅𝜅 = 0.005 for DrLVR. Apart from DrLVR, DAPLS is also used 
to reflect the effectiveness of DALVR on prediction. For DAPLS, 𝑙𝑙 = 3 , 𝑠𝑠 = 3 , and 𝑑𝑑 = 1 . The prediction 
performance is evaluated with MSEs, which are summarized in Table 10. 
 

Table 10.  MSEs for DrLVR, DAPLS, and DALVR in TEP 
 

Variable DrLVR DAPLS DALVR 
XMEAS (38) 0.3872 0.1726 0.1464 

 
Compared with DrLVR, DALVR achieves a much lower MSE than DrLVR, since it exploits more information with 
the aid of historical quality data. The MSEs of DALVR, its cross-correlation part, and auto-correlation part are 
shown in Table 11. As shown in Table 11, both cross-correlation part and auto-correlation part have higher MSEs 
than the overall MSE value of DALVR, which implies that the modelling performance with past process samples 
only or past quality samples only is not satisfactory.  

 
Table 11.  MSEs for different parts of DALVR in TEP 

 
Variable DALVR Cross-correlation part Auto-correlation part 

XMEAS (38) 0.1464 0.6799 0.1920 
 
15 disturbances (IDV (1–15)) are simulated in TEP (Downs and Vogel 1993), and based on the criterion proposed in 
the work of Zhou et al. (2010), they can be classified into two categories: quality-relevant and quality-irrelevant 
disturbances. IDV (1, 2, 5–8, 10, 12, and 13) are identified as quality-relevant disturbances, while IDV (3, 4, 9, 11, 
14, and 15) are quality-irrelevant disturbances.  
 

Table 12.  Monitoring metrics of 𝑻𝑻𝟐𝟐 for quality-relevant disturbances in TEP 
 

Faulty type FDR FAR AR PR 
DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR DrLVR DAPLS DALVR 

IDV (1) 0.7826 1 0.8261 0.1575 0.7808 0.1370 0.8281 0.4063 0.8542 0.6102 0.2875 0.6552 
IDV (2) 0.9167 1 1 0.7667 0.7889 0.7389 0.2760 0.2604 0.2969 0.0738 0.0779 0.0764 
IDV (5) 1 0.8414 1 0.8025 0.0896 0.7963 0.3187 0.5000 0.3240 0.1815 0.3256 0.1826 
IDV (6) 0.9905 1 1 0.2818 0.2364 0.2773 0.9281 0.9458 0.9533 0.9220 0.9343 0.9436 
IDV (7) 0.8182 0.9273 0.8364 0.3431 0.2336 0.1387 0.7031 0.8125 0.8542 0.4891 0.6145 0.6970 
IDV (8) 0.8860 0.9485 0.9051 0.3263 0.5158 0.1789 0.7708 0.7188 0.8125 0.7304 0.6525 0.8298 
IDV (10) 0.5818 0.7091 0.7818 0.3577 0.2774 0.2818 0.6250 0.7188 0.6938 0.3951 0.5065 0.4538 
IDV (12) 0.7964 0.9273 0.8291 0.5244 0.4878 0.4268 0.7010 0.7500 0.7281 0.7145 0.7183 0.6796 
IDV (13) 0.8145 0.9274 0.8306 0.2353 0.3676 0.1018 0.7969 0.8229 0.8333 0.8632 0.8214 0.9035 

 
With the control limit selected as 99%, the fault detection rates (FDRs) and false alarm rates (FARs) of these two 
categories are summarized in Tables 12 and 13, respectively. FDR is the ratio of the number of actual faults that are 
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detected with the selected algorithm and the number of total faulty samples, while FAR is the ratio of the number of 
normal samples that are incorrectly categorized as faults and the number of total normal samples. 
FDR and FAR are used to measure the monitoring performance of algorithms. The larger the FDR is, the better the 
monitoring performance is, while the smaller the FAR is, the better the monitoring performance is. Compared with 
DrLVR, DALVR can capture more variance of the data, leading to better modelling performance. In this case, 
theoretically, the performance of DALVR on fault detection and alarm will be better than DrLVR. 
 
Apart from FDR and FAR, accuracy rate (AR) and precision rate (PR) can be also used as measures of observational 
error to compare the monitoring performance. AR is the percentage of correct predictions for a given dataset, which 
evaluates how close or far off the samples are to their true values. PR measures that fraction of examples classified as 
faulty samples that are truly faulty, which measures how close or dispersed the samples are to each other (Davis and 
Goadrich 2006).  
 

Table 13.  FARs of 𝑻𝑻𝟐𝟐 for quality-irrelevant disturbances in TEP 
 

Fault Type DrLVR DAPLS DALVR 
IDV (3) 0.0957 0.0213 0.0319 
IDV (4) 0.2116 0.0212 0.0847 
IDV (9) 0.0851 0.0319 0.0266 

IDV (11) 0.1341 0.0391 0.0391 
IDV (14) 0.4063 0.0885 0.0521 
IDV (15) 0.0737 0.0105 0.0211 

 
As shown in Table 12, for output-relevant disturbances, for IDV (1, 5, 8, 12, and 13), DALVR achieves the smallest 
FARs and the largest ARs and PRs, while its FDRs are comparable to those of DrLVR and DAPLS. For IDV (2, 6, 7, 
and 10), FDRs of DALVR are largest among these algorithms, while their ARs and PRs are either the largest or 
relatively large, and FARs are either the smallest or relatively small. Thus, in general, DALVR has better fault 
detection ability, accuracy, and precision performance in quality-relevant monitoring, since compared with other static 
and dynamic algorithms, DALVR employs both past process and quality information for predictive modelling, and it 
can capture the data variations more accurately. 
 
For output-irrelevant disturbances, only FARs are listed in Table 13, since there are few faulty samples and FDRs, 
ARs, and PRs are noisy. As shown in Table 13, DALVR obtains comparable or smaller FARs compared with other 
algorithms. FARs of DALVR are comparable or smaller compared to other algorithms, which means that there are 
only a few normal samples classified as faulty samples erroneously. Thus, as observed, DALVR shows superiority 
due to its comprehensive monitoring ability and improved anomaly detection performance. 
 

 
 

Figure 9. DALVR-based monitoring result for IDV (8) 
 
One of the quality-relevant faults, IDV (8), is selected as an instance to illustrate the proposed fault diagnosis and root 
cause identification framework. IDV (8) contains a disturbance caused by a random variation of A, B, C Feed 
composition in Stream 4 with standard derivation of A, B feed as 3% and 0.3%, which will directly affect Stream 4 
and the stripper (Liu et al. 2021). Besides, other variables are influenced by the flows or feedback control. 
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Figure 10.  Relative reconstruction-based contribution results for IDV (8) 
 
The DALVR-based monitoring result with the combined index 𝜑𝜑 is illustrated in Figure 9. It is shown that, from the 
176th sample, the disturbance is detected by the combined index 𝜑𝜑. As is shown in Figure 10, the corresponding 
relative RBC identifies many faulty variables due to the interrelations among variables, including Variables 3, 5-7, 8-
13, 15-23, 25, 27-33. To further accurately locate the root causes, these variables are selected as the potential 
contributing candidates in the subsequent Granger causal analysis. 
 

 
 

Figure 11.  Time-domain Granger causality map for IDV (8) 
 
 

Figure 11 shows the TDGC map of the 176th sample in IDV (8), where V1, V4, V7, V13, V16, V20-21, V25, and V27 
represent Variables 1, 4, 7, 13, 16, 20-21, 25, and 27, respectively.  In Figure 11, the green arrows connecting two 
nodes represent the causality between these two variables, while the blue lines denote the mutual effects between those 
two variables, failing to provide evidence of their causal relations. Moreover, by reference to the definition of causal 
flow in a node as the number of outgoing flows minus that of incoming flows,[31] the causal flows of each variable 
are shown in Figure 12. 

 

 
 

Figure 12.  Causal flow results for IDV (8) 
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Figure 13.  Conditional spectral Granger causality results for IDV (8) 
 

It can be seen that Variables 7, 13, 20, and 27 have a positive causal flow, so they are potentially supposed to be the 
root causes, while Variables 1, 16, 21 and 25 have a negative causal flow, indicating that they are less likely to be the 
faulty variables. However, the TDGC map fails to provide further information on their causal relations. Thus, CSGC 
is further applied on these contributing variables. Figure 13 depicts the CSGC graph for these variables of the 176th 
sample. As illustrated in Figure 13, the subplots under Column V7 on Row V13, V20, and V27 do not have strong 
peak, and so do the subplots under Column V27 on Row V7, V13, and V20. Thus, V7 and V27 are not considered as 
the root cause. The subplot under Column V13 on Row V20 has strong variations, while the fluctuations of the subplot 
under Column V20 on Row V13 are smaller, which indicates that V13 has larger causal effect than V20. Therefore, 
it is concluded that Variable 13 is the root cause of IDV (8). 
 
6. Conclusions 
In this work, CKLVR is proposed by incorporating the concurrent modeling of process and quality variables with 
KLVR algorithm, which improves the nonlinear modeling performance and enhances the comprehensiveness of data 
exploitation. After performing CKLVR, the process and quality data are concurrently projected into five subspaces, 
and their corresponding indices designed for comprehensive process monitoring. In addition, DALVR method is 
developed by modeling both dynamic cross-correlations and dynamic auto-correlations simultaneously, leading to the 
enhancement of ability to handle dynamic relations. On this basis, a dynamic comprehensive modeling and monitoring 
framework based on DALVR is proposed with subsequent decompositions, while a DALVR-based root cause 
identification and causal analysis scheme is put forward as well for better fault diagnosis. The superiority of the 
aforementioned proposed methods is shown by case studies on simulation and industrial datasets. 
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