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Abstract 

It is important that multidisciplinary community of scientists first investigate all the myriad potential directions that 
quantum machine learning might go to discover what it has to offer. Among these avenues, specified algorithms such 
as Variational Quantum Algorithms (VQAs) have been applied in different industries for simulation, optimization, 
and prediction purposes. The focus of this paper is to determine the principles associated with the use of VQAs in 
chemistry, machine leaning, and optimization, amongst many other developed algorithms. The key results indicated 
that VQAs can successfully be applied in the above-mentioned fields, with the goal to (1) find ground and excited 
energy states of different molecules in chemistry; (2) maximizing or minimizing an objective function under specified 
constraints in optimization; (3) developing trainable quantum models for accurate predictions of unknown and unseen 
datasets. After statistical analysis, it was discovered that the proportion of publications of VQAs for optimization, 
machine learning, and chemical purposes have been considerably high over the past 6 years. This is justified by the 
sparking attention that parametrized circuits have offered over the recent years. After comparing different size effects, 
it was discovered that the fields of application of VQAs are interconnected, since they presented a small effect size, 
with Cohen’s d value being less than 0.2. From these observations, it can be concluded that the lessons developed 
from one application can serve as direction for others. The metallurgical industry as a field of chemistry can benefit 
from the methods developed in VQAs for optimization, simulation, and development of novel materials.  
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Introduction 
Global optimization algorithms provide a much better chance of finding the global or near global optimum than their 
local counterparts (Venter 2010). It is important to note that no algorithm can guarantee convergence on a global 
optimum in the general sense, and it may be more accurate to refer to these algorithms as having global properties. 
Global optimization algorithms may be classified as either evolutionary algorithms or deterministic algorithms, of 
which Quantum Machine Learning (QML) algorithms are a good example of. 

An empirical methodology is what drives contemporary machine learning. While significant attempts are being made 
to develop theories, many of the phenomena seen in deep learning still lack a sufficient theoretical explanation. The 
strength of an algorithm is often tested by running practical benchmarks. Additionally, the computational complexity 
of a machine learning algorithm, the preferred tool in traditional quantum computing, does not always provide us with 
useful information because many of the issues that machine learning algorithms resolve, like non-convex optimization 
when training neural networks, are inherently computationally challenging (Schuld and Petruccione  2021). 

Both near-term quantum computing technologies and fault-tolerant machine learning algorithms face difficulties as a 
result of this circumstance. Researchers developed two design choices in response to this dilemma, which on the one 
hand, is the rigorously constructed computational complexity analysis to evaluate the adoption of fault tolerance.  On 
the other hand, near-term quantum computing enables a far more practical approach to quantum machine learning, 
which is one of the reasons it plays such a significant role in the area. However, even short-term viewpoints have 
issues. The designed solutions for the above-mentioned problems are: (1) hybrid quantum-classical algorithms which 
consider quick quantum calculations rather than outsourcing the entire machine learning pipeline to a quantum 
computer as constituents of more intricate classical ones. Thus, implementing the machine learning model as a 
quantum algorithm while leaving the training to a conventional co-processor is the most common division of labor. 
The second choice is (2) to research "quantum models" or general, hardware-tailored circuits as potential replacements 
for conventional models like neural networks or Gaussian processes. 

According to Cerezo et al. (2021), variational circuits, also known as parameterized circuits or quantum neural 
networks in the context of machine learning, are a great match for these needs. In fact, variational circuits include a 
"template" of parametrized and fixed quantum gates that defines the architecture of the circuit, similar to how the layer 
structure determines the architecture of a neural network. The parameters may be optimized by minimizing a cost 
function, which customizes the gates and subsequently the circuit to a specific issue. Using a traditional feedback 
loop, optimization is carried out. To iteratively enhance the parameters, either a black-box assessment of the model is 
used, or gradient characteristics of the model landscape are queried. 

VQAs, have become the most effective method for gaining a quantum advantage on Noisy Intermediate-Scale 
Quantum (NISQ) devices. An optimization-based or learning-based technique is required to account for all of the 
restrictions imposed by NISQ computers with a single approach, and this is exactly what VQAs do. In many ways, 
VQAs are the quantum equivalent of popular machine learning techniques like neural networks (Schuld and 
Petruccione 2021).  Furthermore, as VQAs employ parametrized quantum circuits to be performed on the quantum 
computer and subsequently outsource the parameter optimization to a classical optimizer, they make use of the toolbox 
of classical optimization. In contrast to quantum algorithms created for the fault-tolerant period, this technique 
provides the additional benefit of maintaining a small quantum circuit depth and so reducing noise. 

The fact that VQAs offer a broad framework that may be used to a number of challenges is one of its key benefits. 
Although this adaptability results in various algorithmic designs with various degrees of complexity, there are 
fundamental components that most (if not all) VQAs share. In this part, we go through the foundational elements of 
VQAs. These algorithms are mostly established on an architecture involving (1) a cost function, (2) Ansatzes, (3) 
gradients, and (4) optimizers, as per figure 1 below.  

After identification of the problem at hand, the definition of the cost (loss) function becomes a salient step. The next 
step is developing an ansatz, or a quantum operation that depends on a collection of continuous or discrete parameters, 
which may be optimized. The optimization task is then trained in this approach using a hybrid quantum-classical loop. 
The main applications of VQAs include, however are not limited to: 
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1. Optimization, wherein they are used to solve classical and quantum-enhanced problems.  
2. Chemistry, where their ability to estimate low-lying eigenstates and corresponding eigenvalues is applied 

for finding ground and excited energy states; and further applied for dynamic systems simulations. 
3. Machine Learning, where their application focuses on learning patterns in quantum data with the goal of 

making accurate predictions on unknown, and unseen data. 
 

 
Figure 1.  Variational Quantum Algorithm architecture. 

 
Objectives 
Machine learning is the art and science of teaching computers to solve problems via data analysis rather than through 
explicit programming. In view of this, quantum computing refers to the information processing of devices based on 
the principles of quantum theory. It is only logical to wonder how machine learning and quantum computing may be 
synergically coupled given that both are anticipated to have an impact on how society manages information in the 
future. This paper, pertaining to variational quantum algorithms used for process optimization, quantum chemistry 
and machine learning is an emerging masterpiece that investigates this query. The application of the Variational 
Quantum Algorithms will be the major objective of the study, wherein the focus will be on developing a meta-analytic 
and systematic review of its applications in the above-mentioned application fields. The developed review will offer 
background information on the development of parametrized quantum circuits fit for its various applications. The 
potential challenges and opportunities associated with the use of such algorithms will be discussed and possible 
solutions will be suggested. Since to date, the field of quantum machine learning still faces predicaments related to 
understanding its architecture and future uses in the metallurgical field.  
 
Methodology 
“Scientists have known for centuries that a single study will not resolve a major issue. Indeed, a small sample study 
will not even resolve a minor issue. Thus, the foundation of science is the cumulation of knowledge from the results 
of many studies” (Hunter et al. 1986) . An important finding to emerge in this study is the understanding of the 
different applications of the VQAs in different fields and for the development of a potential use in metallurgy by 
assessing the challenges and opportunities related to the implementation of this young, yet rapidly growing discipline 
into the metal extraction industry. As a result, rises the need for a meta-analysis review incorporating a systematic 
review of the literature. 
 
Meta-analysis literature review 
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According to Aguinis et al. (2011) and Kepes et al. (2013), in many scientific fields, meta-analysis is a key technique 
used for accumulating information. Its principle of operation revolves around an overview of a research question or 
field, much like a narrative review. A meta-analysis adds value by offering a quantitative evaluation of the relationship 
between two target variables or the efficacy of an intervention, going beyond a narrative description of important 
findings. Additionally, it may be used to test opposing theoretical hypotheses against one another or to pinpoint crucial 
moderators where the findings of various primary research diverge from one another. Meta-analysis, which has its 
roots in the 1970s synthesis of the efficacy of medical and psychological therapies, is now a standard technique in 
management research and related domains (Hansen et al. 2022). 
 
Steps for conducting a meta-analysis.  
As depicted in figure 1 below, the 8 main steps undertaken to generate a reliable and reputable meta-analysis involve 
the following points outlined in a study by Hansen et al. (2022), as per figure 2. 
 

 
Figure 2.  Summarized steps undertaken to compile and effectively develop a meta-analytic review. 

 
Defining the research question: for this study, the definition and design of the research questions enabled the realm 
of the topic under investigation, thereby clarifying its scope.  
The questions to be answered are as follows: 

i. What are the main applications of Variational Quantum Algorithms, and what criteria characterize/ 
differentiate them? 

ii. What specific methods or algorithms are used for each of the applications? 
iii. What outcomes can be obtained from parameterized models to answer the problem at hand? 
iv. What are the challenges and opportunities offered by VQAs? 
v. How strong are the effects of choosing specific algorithms over the outcomes they offer? 

vi. Does the choice of methods for VQAs relate to its applications? 
The above questions will be answered by analyses and discussions derived from the current paper. 
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Literature Search: according to Hansen et al. (2022), the search procedure for a meta-analysis should be methodical, 
repeatable, and transparent, producing a sample that contains all pertinent papers. 
 
Systematic techniques are used to gather, identify, and critically evaluate the research works that are already available 
such as articles, conference proceedings, books, and dissertations. A Systematic Literature Review provides the reader 
with the most recent research on a topic. Reviewing key areas of existing knowledge on a subject related to research 
questions is intended to identify areas that need additional investigation.  

 
Study inclusion criteria and sample composition are employed when the choice of studies to include in the meta-
analysis must then be made by researchers. To assure the quality of the findings, several recommendations for 
literature reviews advise restricting the sample to research published in reputable academic publications. For the 
literature review, inclusion and exclusion tables are used, coupled with Preferred Reporting Items for Systematic 
review and Meta-Analysis (PRISMA) diagrams for the justification of literature selection (Moher et al. 2009; Page et 
al. 2021). 

 
Choice of the effect size measure:   standardized mean differences and (z-transformed) correlation coefficients serve 
as the study's two main indicators of meta-analytical impact magnitude. Once the principal effect size measure for the 
meta-analysis has been established, it can be essential in the subsequent coding procedure to translate research results 
that are reported in effect sizes that differ from the primary effect size that was selected. The Cohen's d method of 
size effects is the tool to be applied in the current study (Aguinis, Dalton, et al., 2011; Geyskens et al., 2009). 

 
Choice of the analytical method used:  
the meta-analysis research topic directly affects the choice of meta-analytical methodology (Stanley and Jarrell, 1989; 
Wasserman et al., 1988; Wilson, 1999). In meta-analyses, research questions may address a general link between 
variables or the effect of an intervention, or they may concentrate on moderating or mediating influence. For this 
paper, the focus will be meta-regression, which will focus on establishing statistical correlations between the 
algorithm’s applications and its main outcomes. As a result, it seeks to test several putative modifiers at once to 
evaluate the heterogeneity between observed effect sizes. The dependent variable in meta-regression is the coded 
effect size, which is regressed on a set of moderator variables. 

 
Choice of software:  
software options for performing meta-analyses range from commercial to open-source, from built-in features to 
additional statistical software packages, then landing on software specifically designed for the task (Cheung and 
Vijayakumar, 2016). However, in addition to individual preferences, the complexity of the methods utilized and the 
dataset itself determines which software is best. Minitab version 21 and Excel will be used as the software for the 
meta-regression and statistical effect size tasks, respectively.  

 
Coding of Sheet Sizes: the coding sheet's design is the initial stage in the coding procedure. Because the design of 
the coding sheet relies on the techniques employed, the applicable software, and the complexity of the study design, 
there is no universal template. In its most basic form, the coding sheet would have columns for the research name or 
identifier, the effect size coded from the main study, and the study sample size when examining a correlational 
relationship between two variables using the univariate technique (Hansen et al., 2022).  

 
Analyses: the robustness of the meta-analytical conclusions should be ensured by doing some preliminary sensitivity 
studies prior to the principal analysis (Rudolph et al., 2020). First, if there are a small number of overall effect sizes, 
significant outlier observations may unintentionally influence the observed results. The primary analysis is the next 
stage in meta-analysis after controlling and correcting for the potential presence of influential outliers or publication 
bias. Here, meta-analysts must choose between two different types of models that are based on two different 
assumptions: random effects and fixed effects. 

 
Reporting Results:  
reporting the findings of a meta-analysis is the last stage in the process. Most importantly, the reader should be able 
to understand all actions and methodological choices (Appelbaum et al., 2018; DeSimone et al. 2021; Levitt et al. 
2018; Page et al 2021). 
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The PRISMA flow diagram (Fig. 3) is a tool used to clearly demonstrate how a researcher traveled from the databases 
searched to the publications they would discuss and to document distinct phases of the literature search process across 
many resources. It is a specific kind of flowchart that is utilized to present systematic reviews and meta-analyses. 
Through reporting on choices made at various phases of the systematic review, the PRISMA flow diagram clearly 
highlights the screening procedure and creates transparency in the selection process.  
 
Any form of research that investigates traits of a certain subset of a population must define inclusion and exclusion 
criteria. This aids in the constant, trustworthy, and impartial identification of the study population by researchers. 
Participants in the study are therefore more likely to possess the qualities necessary to adequately address the research 
issue. The major factors that influenced the choice of this decision-making tool involve the language, and publication 
content as a result of strict keyword search. The choice of search database was developed to ensure the reliability of 
the obtained information, thereby including publications from renowned journals. Given the young and relatively 
unclear growth of quantum machine learning, the choice of the publication years has been restricted to 24 years, from 
all authors of different geographical locations. The resulting inclusion table (see table 1), whose opposite is an 
exclusion table is displayed below. 

 
 

Figure 3.  PRISMA diagram showing the number of articles that were included in the study. 

 
 

N = 192 

N = 177 

N = 177 

N = 30 

N = 147 
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Table 1.  Inclusion table for literature search. 

 
Results and Discussion 
According to Biamonte (2021), task-oriented programming is made possible by the VQA paradigm, which is one of 
its key benefits. In other words, VQAs offer a framework that can be used for a variety of activities. In fact, it has 
been demonstrated that VQAs enable universal quantum computing, leading to the proposal of VQAs for nearly all 
applications envisioned for quantum computers. 
 
Chemistry applications 
In the beginning, variational algorithms were recommended as a method for locating the ground states, or lowest 
energy eigenstates, of quantum systems. According to the variational principle of quantum mechanics, the ground 
state |ψ⟩  minimizes the expectation ⟨ψ|H|ψ⟩  of the system's Hamiltonian H. Variational Quantum Eigensolvers 
(VQEs) are designed to create a state where |ψ (θ)⟩ = W (θ) using a parametrized ansatz W (θ). 

Instead of locating the ground state |ψ⟩ , we locate the parameters that reduce the aforementioned expectation, 
resulting in the energy of the system. In other words, the cost is determined by the Hamiltonian's anticipation in a 
VQA, where C (θ) =  ⟨ψ (θ)|H|ψ (θ)⟩  

Given an ansatz |ψ (θ)⟩, the ground state |ψ (θ∗)⟩ can be best approximated by minimising the expectation over all 
possible parameter configurations.  

The quantum computer is used to estimate C (θ) for successively improved candidate parameters θ in most variations 
of quantum eigensolvers. On a traditional processor, iterative optimization may be carried out using different training 
methods. 

Types of VQE approaches 

• Orthogonality constrained VQE 
• Subspace expansion method 
• Subspace VQE 
• Multistate contracted VQE 
• Adiabatically assisted VQE 
• Accelerated VQE 

Inclusions 

Years 24-year scale of studies (1999-2023) 

Language English only 

Sector All sectors (both private and public) 

Countries Any country 

Authors Any Author 

Publication All research articles that are published, journals, books, and conference articles 

Content 

The focus of articles include: 

 Quantum computing 

 Quantum Machine Learning algorithms 

 Optimization algorithms 

 Quantum chemistry and physics 

 Variational Quantum Algorithms (VQAs) 
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Variational Quantum Algorithms further found applications in chemistry wherein they were set for dynamical 
quantum simulation of chemical systems. According to Nielsen and Chuang (2011),  this application of VQAs has 
been developed since traditional quantum Hamiltonian simulation techniques often discretize time into tiny time steps 
and mimic each time evolution with a quantum circuit, such as the Trotter-Suzuki product formula. As a result, the 
circuit depth often grows polynomially as the system size and simulation duration rise. The cumulative hardware faults 
for such deep quantum circuits might be too great due to the noise present in NISQ devices. VQAs for dynamical 
quantum simulation only employ a shallow depth circuit as a solution to this problem, greatly minimising the effect 
of hardware noise. 
 
The developed algorithms (methods) to achieve the above-mentioned task are: 

• Iterative approach 
• Subspace approach 
• Variational fast forwarding 
• Simulating open systems 

 
Optimisation Applications 
The Quantum Approximative Optimisation Algorithm (QAOA), the most well-known VQA for quantum-enhanced 
optimisation, was first developed by Farhi et al. (2014) to roughly tackle combinatorial issues like Constraint-
Satisfaction (SAT) and Max-Cut problems, as per the further findings by Lin and Zhu, (2016); and Wang et al., (2018).  
 
Farhi et al. (2014) alluded that combinatorial optimisation problems are usually defined by n bits and m clauses. These 
clauses are a restriction on a subset of the bits that is met by some assignments of those bits but not by others. The 
goal function is the number of fulfilled or satisfied clauses, defined on n bit strings, as per the equation below. 

𝐂𝐂 (𝐳𝐳) =  �𝐂𝐂𝛂𝛂(𝐳𝐳)                                         𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏            
𝐦𝐦

𝛂𝛂=𝟏𝟏

 

where z = z1z2 . . . zn is the bit string and Cα (z) = 1 if z satisfies clause α and 0 otherwise. 
Usually, just a small subset of the n bits is needed for C. A string must satisfy each requirement for satisfiability to 
exist. A string that maximizes the goal function is what MaxSat requests. 
A string z is needed for approximate optimization if C (z) is near to the C maximum.  By boosting each classical 
variable sj to a Pauli spin -1/2 operator σjz, QAOA encodes the objective function in a quantum Hamiltonian HP with 
the intention of setting up the ground state of HP.  The quantum adiabatic algorithm served as the inspiration for 
QAOA, which substitutes adiabatic evolution with p rounds of alternate time propagation between the problem 
Hamiltonian HP and a suitable mixer Hamiltonian HM. 
 
According to Shaydulin et al. (2019), finding the best values of the cost function is a challenging challenge since the 
QAOA optimization landscape is non-convex and has a large number of local optima. Therefore, significant work has 
gone into developing a good classical optimizer that uses the quantum computer as little as feasible. 
 
To provide a satisfactory performance for the QAOA, gradient-based, as per studies by Crooks (2018) and Romero et 
al., (2019); and derivative-free, as indicated by Wecker et al., (2016) and Yang et al. (2017) and reinforcement learning 
approaches were examined (Khairy et al. 2020) . This area of research is continuing to be active today (Cerezo, 
Arrasmith, et al. 2021). 
 
Although the qubit-and-gate circuit model is by far the most popular formalism, we wish to quickly highlight a few 
different computational models. There are now efficient translations between these that have been demonstrated to be 
equal up to a polynomial overhead.  
 
A method known as quantum annealing, which may be thought of as a heuristic to adiabatic quantum computing stated 
in the context of QAOA, was prominent in the early years of quantum machine learning literature. Adiabatic quantum 
computing, first outlined by Farhi et al. (2000), may be thought of as an analog form of quantum computing, where 
the answer to a computation issue is stored in the ground state of a Hamiltonian that governs the dynamics of a system 
of n qubits (Das and Chakrabarti 2008). 
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Starting with a quantum system that is relatively easy to realize in the context of a specific experimental setup and 
gradually changing it to be regulated by the required Hamiltonian assures that the system is ultimately discovered in 
the ground state. 
 
It turns out that for many problems, maintaining the system's ground state during the adjustment (the annealing 
schedule) necessitates a very gradual evolution from one Hamiltonian to the next and frequently requires a time scale 
that is exponential in the size of the problem. This confirms once more that nature appears to have established some 
general bounds for computation (Schuld and Petruccione 2021). 
 
A heuristic for the adiabatic method, whose dynamics closely resemble simulated annealing in computer science, is 
quantum annealing. The primary distinction between classical and quantum annealing is the substitution of quantum 
fluctuations for thermal fluctuations, allowing the system to tunnel through both thick and thin energy 
barriers.Although it is independent of the barrier's height, the likelihood of quantum tunneling diminishes 
exponentially with barrier width. As a result, issues with an objective function that is extremely ragged are particularly 
well-suited for quantum annealing.  
 
Schuld and Petruccione, (2021), outlined the fact that an annealing device was the first piece of commercially viable 
quantum computing hardware has led to the community of quantum machine learning's intense interest in quantum 
annealing. A procedure called quantum annealing (QA) uses quantum fluctuations to determine the global minimum 
of an objective function over a range of potential solutions (candidate states). The D-Wave quantum annealer has been 
used for machine learning demonstrations as early as 2009 (Neven et al. 2009). The only issue types that can currently 
be solved by quantum annealers are what are known as quadratic unconstrained binary optimization problems. 
Although the advantages of the quantum schemes have been shown in the literature mentioned above, measuring the 
performance of quantum annealing in comparison to classical annealing schemes is a challenging problem (Heim et 
al., 2015; Santoro and Tosatti 2006). Additionally, general statements about speedups and actual quantum behavior 
are still debatable. Further algorithms related to optimization such as gradient based optimization and linear systems 
optimization are discussed by (Ambainis 2012; Berry et al. 2017; Scherer et al. 2017; Subaşl et al. 2019). The 
interested reader is referred to these textbooks for additional references.  
 
Machine Learning (ML) Applications 
Biamonte et al. (2017) explained that generally, "quantum machine learning" is the process of employing a quantum 
computer to identify patterns in quantum data in order to make precise predictions about yet-to-be-observed data. For 
the purpose of the current paper, the few tasks that will be focused on are related to classification, autoencoding, and 
quantum neural networks. This relationship between VQAs and (typical) QML applications demonstrates how lessons 
learnt in one area may be very helpful in another, thereby fostering a close relationship between these two disciplines 
(Cerezo, Arrasmith, et al. 2021). 
 
In machine learning, the categorization of data is a common problem. The objective is to train a classifier to correctly 
predict the label of each input given training data of the form �x(i); y(i)�, where x(i) are inputs and y(i) are labels. Since 
the non-linearity of classical neural networks is essential to their effectiveness, one might anticipate that a quantum 
classifier will likewise exhibit this characteristic. As demonstrated by Schuld et al. (2020), parametrized quantum 
circuits may enable linear transformations, and non-linearity can be accessed via a quantum system's tensor product 
structure. 
 
Here, a parametrized quantum circuit 𝑈𝑈 (𝜃𝜃) 𝑉𝑉 (𝑥𝑥) |𝜓𝜓0⟩ is used to conduct a linear transformation after embedding the 
input data x into the quantum state. The difference between the expected value of a readily measurably observable and 
the real label is then used to establish the cost function. This method has been applied to classification and 
generalization tasks (Mitarai et al., 2018; Schuld et al., 2020). The discussion of various methods of embedding 
classical data into quantum states (such as data re-uploading) has been thoroughly explained by Lloyd et al., (2020); 
Mitarai et al., (2018); Pérez-Salinas et al., (2020); and Schuld et al., (2021). Furthermore, (Havlíček et al., 2019) 
provides an example of variational classification in practice to deepen the understanding associated with the 
application of VQAs in machine learning classification through Supervised learning with quantum-enhanced feature 
spaces.  
 
An autoencoder is traditionally a particular type of artificial neural network (ANN) architecture that has been taught 
to return its input as its output while undergoing a critical degree-of-freedom funneling process (Heaton, 2018). 
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Through this funneling procedure, data points that are a member of a certain set of data are produced as compressed 
representations. The autoencoder for data compression is a crucial machine learning component. The goal is to push 
data through a bottleneck while preserving its ability to be recovered. (Romero et al., 2017) presented a VQA for 
quantum autoencoding as a quantum analogue with the intention of compressing quantum data. (For alternate 
strategies for quantum autoencoders), as per findings from Verdon et al., (2018); and Wan et al., (2017). 
 
According to Cerezo, Arrasmith, et al., (2021), the input to the algorithm is an ensemble of pure quantum states 
�pμ�|ψμ�� on a bipartite system AB, where pμare real and positive coefficients such that ∑ ;  pμ = 1μ . The objective is 
to train a given ansatz U (θ) to compress this ensemble into the A subsystem, such that one can recover each state 
|ψμ� with high fidelity from subsystem A, with the B subsystem being discarded and thus being thought of as the 
"trash". Evidence from (Romero et al., 2017) explain that the cost function is based on the overlap between the output 
state on B and a predetermined pure state due to the strong relationship between data compression and decoupling. 
 
Studies by Beer et al., (2020); Diep, (2020); Farhi and Neven (2018) revealed that there have been several suggested 
Quantum Neural Network (QNN) designs, including perceptron based QNNs. Each node of the neural network in 
these topologies represents a qubit, and the connections between them are provided by parameterized unitaries 
operating on the input states in the form of U (θ) =  UL(θL) … U2(θ2)U1(θ1);  where U(θ) can be generically 
expressed as the product of L sequentially applied unitaries. In addition, Quantum Convolutional Neural Networks 
(QCNNs) were introduced by Cong et al., (2019) and have been applied to image identification, error correction, and 
the discrimination of quantum states belonging to various topological phases. Furthermore, Pesah et al., (2021) Zhang 
et al., 2021)  have been demonstrated that QCNNs and QNNs with tree tensor network designs do not have barren 
plateaus (which will be described later), making them potentially a trainable architecture that may be used for large-
scale implementations. 
 
One of the further objectives of the current paper is to identify the potential link of the applications to fit purposes in 
the extraction metallurgy and mineral processing field. In addition to the applications outlined in the previous lines, 
the metallurgy industry may further benefit of VQAs in the following points: 
 
1.Molecular structure determination: there have been significant advancements in the traditional treatment of the 
structure of molecular systems during the last several decades. Among these are techniques that are approximate, like 
Hartree-Fock or density functional theory (DFT), or approaches that are intimately related to quantum information, 
such the density matrix renormalization group approach that makes use of matrix product states as an ansatz. The 
works by Chan and Sharma, (2011), and White, (1992) can be considered precursors of the suggested application in 
extractive metallurgy, wherein the determination of molecular structures play a crucial role. 
 
2.Material sciences applications: when dealing with weakly correlated materials, traditional approaches for materials 
simulations often combine density-functional theory with approximation techniques, such as the local density 
approximation (Jung et al. 2006). However, many effects resulting from highly coupled systems are not amenable to 
such conventional techniques. These are outside the purview of near-term devices since long-term methods for 
material modelling need phase estimation, as mentioned by Babbush et al. (2018); Bauer et al. (2016) and Berry et 
al.(2018). In contrast, near-term VQAs for strong correlation issue analysis work to minimize the circuit depth through 
the use of clever initializations  (Dallaire-Demers et al. 2019) or by circuit structure optimization (Grimsley et al. 
2019; Tang et al. 2021). 
 
The ability to process voluminous datasets while ensuring the most reliable and quickest solution to a given set of 
objective functions from a larger set of candidate solutions subjected to constraints has made the application of 
quantum machine learning concepts and related algorithms adequate for mineral processing and metal extraction 
processes. Furthermore, quantum machine learning algorithms have been advertised as capable of solving the global 
minimum of combinatorial problems such as discrete search space optimization wherein the objective function 
outcomes many local minima. This is made possible using peculiar quantum properties such as superposition, 
entanglement, teleportation, and speedup. The development and practical applicability of basic quantum circuits with 
numerous quantum gates integrated with machine learning algorithms and related postulates for different possible 
process optimization avenues therefore make VQAs a tool of outstanding performance in the metallurgy and minerals 
industry. The design and development of novel materials for chemistry-related applications is now being investigated 
by employing quantum algorithms to optimize and simulate. 
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After thorough understanding of the different methods (algorithms) parented by VQAs, the diagram below 
summarizes the applications of VQAs, and the respective algorithms developed and considered fit for their 
applications. The results are displayed in figure 4 below. 
 
 

 
Figure 4.  Summary of the various applications of VQAs and their potential point of contact for suggested 

applications in the metallurgy field. 

 
Potential Opportunities and Challenges for VQAs :  
Although it is still a relatively new field of study, quantum machine learning has made significant progress. It is 
moving in an exciting but also difficult place, as we have noted throughout this book. The primary driver behind this 
is the intention to show that certain approaches work better than others, even if we now only have limited practical 
access to them. Other aspects of quantum computing may not be hampered by this since computational complexity 
theory is a potent tool that researchers have perfected. However, because machine learning is a mathematical 
abstraction of challenging real-world issues, theoretical research is made much more difficult. The use of data in 
machine learning provides highly specific difficulties, even when contrasted to other near-term applications like 
optimization and quantum chemistry (Schuld and Petruccione, 2021). 
 
The following may be considered as a few potential challenges that VQAs are facing and some of the suggested 
solutions. 
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Table 2.  The different challenges of VQAs and their explanations, with a set of suggested solutions. 

Challenge Description Suggested Solution 

Efficiency 

The ability to estimate expectation values (and more generic cost 
functions) efficiently is a prerequisite for VQAs to offer a 
quantum advantage. As noted in the section on BPs, the presence 
of BPs might exponentially raise the precision requirements 
necessary for the optimisation phase of VQAs, but even in the 
absence of such BPs, these expectation value estimations are not 
certain to be efficient (Cerezo, Arrasmith, et al., 2021). 

The plausible solutions: 
 Commuting sets of 

operators 
 Optimized sampling 
 Classical shadows 
 Neural network 

tomography 

Trainability 

The high expressibility of the quantum ansatz U is necessary to 
ensure that the variational quantum algorithm (VQA) result is 
sufficiently near to the precise solution for the target issue. To 
boost expressibility, we may theoretically add more quantum 
gates and training parameters to the PQC, or we can use post-
processing modules for neural networks. The trainability is a 
significant consideration for VQAs using actual quantum 
hardware. Unfortunately, there is a trade-off between 
expressibility and trainability in VQA, and optimisation problems 
such barren plateaus, which may be brought on by entanglement 
in the quantum circuit and noise on NISQ devices, significantly 
restrict the performance of VQAs (Liu et al., 2023). 
 

 Barren plateaus 
 Ansatz and 

initialization strategies 
 

Accuracy 

The ability to put NISQ devices to work practically is one of the 
key objectives of VQAs. VQAs, which may be able to reduce 
quantum circuit depth, offer a method to deal with hardware noise 
to achieve this aim. Furthermore, as will be covered below, VQAs 
can be used with error mitigation techniques to further boost 
accuracy. However, the question of how hardware noise may 
affect a VQA's accuracy remains (Cerezo, Arrasmith, et al., 2021). 
 

 Impact of hardware 
noise 

 Noise resilience 
 Error mitigation 

 
 
The publications that were used and the primary goals of the study that was reported in the articles are summarized in 
table 3 below. This table also demonstrates how the articles were organized as a function of applications. 
 

Table 3.  Applications of VQAs in different fields suggested with findings and publication details. 

Application Author, Year Purpose of study and 
algorithm (methods) used 

Chemistry 

(AI Quantum, 2020; Babbush et al., 2018; Bakulin et al., 2013; Bauer 
et al., 2016; Benedetti et al., 2019; Berry et al., 2018; Bravo-Prieto 
et al., 2019; Bravyi et al., 2020; Cao et al., 2019; Carolan et al., 2020; 
Chen et al., 2020; Cong et al., 2019; Coyle et al., 2020; Dallaire-
Demers et al., 2019; Du et al., 2020; Farhi et al., 2014; Franken and 
Georgiev, 2020; Hastings, 2019; Heya et al., 2018; Jones et al., 2019; 
Khatri et al., 2019; Küchlin and Sinz, 2000; Liu and Wang, 2018; 
Lubasch et al., 2020; McArdle et al., 2019, 2020; McClean et al., 
2017; O’Brien et al., 2019; Outeiral et al., 2021; Peruzzo et al., 2014; 
Romero and Aspuru-Guzik, 2021; Sharma et al., 2020, 2022; Subaşl 
et al., 2019; Wang et al., 2019; Wang, Koh, et al., 2021a, 2021b; 
Weinberg et al., 2012; White, 1992; Xu et al., 2021; Yang et al., 
2017; Zhou et al., 2020) 

The papers here outlined 
focused on developing 
specified algorithms that 
can used for either 
determining the ground 
energy state of particles/ 
molecules or in dynamic 
simulation of chemical 
systems. The main 
algorithms applied are 
Variational Quantum 
Eigensolvers (VQEs) in 
various forms, and 
simulation approaches 
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relying on variation or 
iterations. 

Optimisation 

(Acar et al. 2021; Amaro et al., 2022; Ambainis, 2012; Barthelemy 
and Haftka, 1993; Berry et al., 2017; Biamonte, 2021; Cao and 
Wang, 2021; Cerezo, Arrasmith, et al., 2021; Cerezo, Sone, et al., 
2021; Cincio et al., 2018; Cîrstoiu et al., 2020; Crooks, 2018; Das 
and Chakrabarti, 2008; “Design Optimization”, 2007; Du et al., 
2022; Endo et al., 2020; Fontalvo, 2019; Friedrich and Maziero, 
2023; Garcia-Saez and Latorre, 2018; Gibbs et al., 2021; Glos et al., 
2022; Grimsley et al., 2019; Havlíček et al., 2019; Heim et al., 2015; 
Higgott et al., 2019; Huang et al., 2021; Innocenti et al., 2022; 
Kandala et al., 2019; Khairy et al., 2020; Li and Benjamin, 2017; Lin 
and Zhu, 2016; McClean et al., 2018, 2021; Moll et al., 2018; 
Morales et al., 2020; Nakanishi et al., 2019; Neven et al., 2009; 
Parrish et al., 2019; Pérez-Salinas et al., 2020; Peruzzo et al., 2014; 
Peters et al., 2021; Rattew et al., 2019; Romero et al., 2017, 2019; 
Saleem et al., 2023; Santoro and Tosatti, 2006; Scherer et al., 2017; 
Schuld et al., 2019, 2020; Schuld and Killoran, 2019; Shaydulin et 
al., 2019; Sim et al., 2019; Steinbrecher et al., 2019; Stoudenmire 
and Schwab, 2016; Tang et al., 2021; Verdon et al., 2018; Wan et al., 
2017; Wang, Fontana, et al., 2021; Wang et al., 2022, 2018; Wecker 
et al., 2016; Yuan et al., 2019; Zhou et al., 2020) 

From this set of applications 
of VQAs, the main purpose 
of the study is to optimise 
different processes using 
specified sets of algorithms 
such as Quantum 
Annealing, Quantum 
Approximative 
Optimisation, gradient, and 
linear methods. The 
optimisation task is 
achieved by developing a 
parametrised circuit, where 
the objective function is set 
to constraints. This 
approach has been found 
successful in the 
minimisation of many 
functions, thereby resolving 
the problem at hand. 

 

Machine 
Learning 

(Abrams and Lloyd, 1999; Ban et al., 2021; Beer et al., 2020; 
Biamonte, 2021; Biamonte et al., 2017; Cao and Wang, 2021; 
Cerezo, Arrasmith, et al., 2021; Cincio et al., 2018; Cîrstoiu et al., 
2020; Crooks, 2018; Diep, 2020; Endo et al., 2020; Farhi and Neven, 
2018; Fontalvo, 2019; Friedrich and Maziero, 2023; Gibbs et al., 
2021; Glos et al., 2022; Hansen et al., 2022; Havlíček et al., 2019; 
Huang et al., 2021; Innocenti et al., 2022; Kandala et al., 2019; 
Khairy et al., 2020; Kusumoto et al., 2019; Li and Benjamin, 2017; 
Lloyd et al., 2020; McClean et al., 2018, 2021; Mitarai et al., 2018; 
Moll et al., 2018; Nakaji and Yamamoto, 2021; Nielsen and Chuang, 
2011; Pérez-Salinas et al., 2020; Pesah et al., 2021; Peters et al., 
2021; Rattew et al., 2019; Romero et al., 2017, 2019; Saleem et al., 
2023; Schuld et al., 2019, 2020, 2021; Schuld and Killoran, 2019; 
Shaydulin et al., 2019; Sim et al., 2019; Steinbrecher et al., 2019; 
Stoudenmire and Schwab, 2016; Verdon et al., 2018; Wan et al., 
2017; Wang, Fontana, et al., 2021; Wecker et al., 2016; Zhang et al., 
2021) 

The use of machine learning 
methods such as 
Classification 
Autoencoding, Generative 
modelling, Variational 
Quantum Generation, has 
been taken into advantage 
for the development of 
robust, accurate and reliable 
machine learning 
algorithms that can be 
trained, validated, and 
tested for future purposes. 

 

   
 
Statistical analysis 
The meta-analysis related to the collected results from the different sources is assessed in this section of the paper.  
Table 4 below presents the number of articles as per the different applications as a function of time. From these results, 
it is observed that VQAs have a relatively low existence (less than 24 years). This is because the application of 
quantum machine learning for these purposes’ dates to recent years. It is further observed that the number of articles 
increases as a function of time for all three areas of application of VQAs, thereby indicating a spark of interest in the 
application of these algorithms in the different fields.   
 
According to Cerezo et al. (2021), the connection between VQAs and (typical) QML applications shows that the 
lessons learned in one field can be of great use in the other, hence providing a close connection between these two 
fields. This correlation is observed in the results depicted in table 4.  
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Table 4.  Increasing application of VQAs in the targeted field over the years. 

Years under study 
Application of VQAs 1999 - 2004 2005 - 2010 2011 - 2016 2017 - 2023 

Optimization 1 4 5 44 
Machine Learning 1 0 2 51 

Chemistry 2 0 4 38 
 
The graphical representation of the relationship between the different algorithms governed by the number as a function 
of time shows that more interest has been given to VQAs over the recent years (see figure 4). This is attributed to the 
observations made by Schuld and Petruccione (2021), stating that there are high hopes for quantum machine learning 
algorithms because of its parent fields (quantum mechanics and machine learning). On the one hand, there is a 
burgeoning commercial interest in quantum technology, which is beyond the sphere of a purely academic interest and 
is approaching the key point of becoming available for the implementation of quantum algorithms. On the other side, 
machine learning and artificial intelligence are promoted as a key (if not the key) future technology that businesses 
must invest in to stay competitive. When these two worlds collide, there is typically a tremendous amount of interest 
in quantum machine learning from the IT sector. However, this excitement is not necessarily matched by the scientific 
difficulties that academics are only now starting to investigate. 
 

 
Figure 5.  Publication proportions of VQAs, showing interest in the recent years in the targeted fields. 

 The nature of many statistical tests makes it possible for researchers to alter findings, whether consciously or 
accidentally, hence effect sizes are valuable to report on. Many people would view more samples when thinking about 
data analysis as good. However, it can be simple to distort the truth of the relationships in the data since many statistical 
tests are biased towards bigger samples, meaning larger samples are more likely to provide statistically significant 
findings. As effect sizes seek to quantify and conceptualize the links that this statistical significance is testing, they 
become crucial at this point (King 2019).  
 
As a result of the above, Cohen’s d standardized effect size values are reported in table 5 below. From table 5, it is 
observed that the values of Cohen’s d were varying between 0.27 and 0.36, thereby indicating a small size effect 
between the different applications of VQAs. The rule of thumb related to Cohen’s d results is mainly associated with 
the following size effect interpretations 
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Table 5.  Statistical effect size calculated for Cohen's d values of the different applications of VQAs. 

:Small effect, d = 0.2 
• Medium Effect, d = 0.5 
• Large Effect, d = 0.8 

 
 
 
 

 

 

The observations from the figure above may be explained by the fact that the applications emanate from the same 
mother algorithm known as VQA. Furthermore, the information from table 1 can further explain the proportions 
observed in terms of an evenly distributed interest for the development of these algorithms. 

 

 
Figure  6.  Standardized effect sizes of the different VQA applications. 

 
The measured effect sizes may carry a further explanation related to the explanation problem, wherein the main 
question asked is associated to whether the effect is big enough to mean something. The answer to this question is 
yes, when looking at the proportion of data collected from this study, although VQAs can find further applications in 
other fields. 
 
4. Conclusions 
The current paper focused on systematically reviewing the application of VQAs in chosen study fields. The motivation 
towards this was as a result of the attention that these algorithms attract in many fields. To ensure reliability and 
avoiding biases, the obtained results were meta analytically analyzed, and the following were drawn as conclusions: 
 
VQAs can be applied in the chemistry field for finding energy states and simulating dynamic chemical systems with 
VQEs being the most applied algorithm applied in different methods, such that provided an ansatz |ψ (θ)⟩, the 
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ground state |ψ (𝛉𝛉∗)⟩ can be best approximated by minimising the expectation over all possible parameter 
configurations.  
 
Applications in optimization rely on maximizing or minimizing an objective hybrid quantum-classical function set to 
specified constraints, with QAOA being the algorithm with the most effect. The primary goal of the objective function 
is the number of fulfilled or satisfied clauses, defined on n bit strings. 
 
In the machine learning field, VQAs have been of thorough application for development of models that can be 
trained and optimized for further applications, where quantum classifiers and quantum neural networks are the most 
used. The goal is to train a classifier to accurately predict each input's label using training data with input and labels. 
One may assume that a quantum classifier will also have this property as the non-linearity of conventional neural 
networks is crucial to their success.  
 
In the metallurgy industry, as a branch of chemistry and in need of optimization, there may be a need to bring together 
all the above-mentioned applications, to develop, optimize, and simulate accurate models which can be used to better 
explain metallurgical scenarios. The rising need for design and development of novel materials for chemistry-related 
applications is already upon us, and therefore should employ quantum algorithms to optimize and simulate them.  
 
The statistical analysis shows relationship amongst the different methods used in VQAs for various applications, 
thereby revealing a small effect size. There has been a skyrocketing increase in terms of the development and 
implementation of VQAs in the last 6 years as compared to any time before this time, thereby showing an increase in 
publications related to the chemistry, optimization, and machine learning fields. 
 
The Cohen’s d value indicates a small effect size amongst the different applications of VQAs, which is attributed to 
the proportion of publications observed over the assessed time period.   
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