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Abstract 

Big data has become a thrilling milestone for gaining new opportunities and improving performance. Recent research 
indicated that big data analytics—the fourth paradigm of science—has the potential to develop business practices and 
sustainable operations; yet, concerning its contribution to developing sustainable products, there is a notable lack of 
knowledge and uncertainty. Thus, this study aims to investigate the contribution of big data analytics to developing 
sustainable products; the products that benefit the triple bottom line, i.e., economy, environment, and society. As such, 
the method of the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution is employed. The findings 
revealed that big data analytics could make a considerable contribution to developing the efficiency of product end-
of-life management, among other product sustainability criteria identified. Such an appraisal, which is of critical 
importance to sustainable development, can be beneficial to decision makers and those who are keen to gain a better 
knowledge of big data analytics and its contribution to developing sustainable products. 
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1. Introduction
Big data has been viewed as a large volume of scientific data for visualization (Cox and Ellsworth 1997). According 
to Laney (2001), it is characterized by the 3Vs, i.e., Volume, Variety, and Velocity; however, there may be other 
characteristics needing to be considered (Ren et al. 2019), e.g., Value (Gantz et al. 2011), and/or Veracity referring to 
the unreliability and uncertainty inherent in some sources of data (Zikopoulos et al. 2012). Big Data Analytics (BDA) 
is hence regarded as the “next big thing” in managerial and developmental initiatives and/or in nurturing business 
opportunities (Kwon et al. 2014; Ali et al. 2020). It refers to vast and intricate data sets and analytical methods in 
applications that need the deployment of complex and unique technology for archiving, managing, analyzing, and 
visualizing. BDA's significant impact will be witnessed within the manufacturing context, specifically in R&D, 
production, customer service, maintenance/repair, and overhaul technical support, as well as recycling and 
remanufacturing. By providing insight into manufacturers, it enables them to understand their current and projected 
situations, and at the same time identify the requirements for achieving more optimal outcomes. It has the potential to 
drive the adoption of cleaner production methods and facilitate the progress of sustainable production and consumption 
practices (Zhang et al. 2017). Consequently, practitioners can enhance the value of various products through the 
utilization of this concept (Wang et al. 2021; Gholami et al. 2022). 

Recent research indicated that BDA has also the potential to develop sustainable products. In this regard, Ali et al. 
(2020) indicated the positive impact of big data analytics on sustainable product development is evident, and this 
development, in turn, significantly influences organizational performance. BDA is shifting the process of sustainable 
products development (Johnson et al. 2017). In pursuit of sustainability, organizations are harnessing the power of big 
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data by collecting valuable information to facilitate the process of sustainable product development (Tan and Zhan 
2017). Taking into account the environmental aspect, sustainable products can be designed and developed with a focus 
on minimizing negative environmental impacts through incorporating principles such as resource efficiency, 
renewable materials, energy conservation, waste reduction, and low emissions (Jawahir et al. 2006; De Silva et al. 
2009; Jayal et al. 2010; Shuaib et al. 2014; Letchumanan et al. 2022). Taking into account the social aspect, sustainable 
products take into account social facets of development by ensuring fair working conditions, respect for human rights, 
and social inclusion throughout the product lifecycle as well as by improving livelihoods and enhancing the quality 
of life for communities, especially in developing regions (Gholami et al. 2019; Jamil et al. 2020; Lee et al. 2021). 
Taking into account the economic aspect, sustainable products are not only environmentally and socially responsible 
but also economically viable; they can support the transition to a green economy by driving innovation generate 
economic growth while minimizing negative externalities, offering long-term economic benefits to individuals, 
businesses, and societies at large (Ren et al. 2019; Joshi et al. 2022; Gholami et al. 2023). 
 
Although anecdotal and theoretical studies have significantly contributed to enriching this research stream, to date, 
there has been a dearth of empirical evidence regarding the role of BDA in developing sustainable products (Johnson 
et al. 2017; Tan and Zhan 2017; Ali et al. 2020). Thus, the aim of this study is to investigate the contribution of big 
data analytics to developing sustainable products. To this end, product sustainability criteria are identified, and the 
Fuzzy-based Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is employed as a fuzzy 
modification of TOPSIS to address its limitations in dealing with ambiguity and uncertainty. This method is chosen 
due to its robust logic and ability to differentiate between criteria of cost and benefit, while also considering solutions 
that are close to the positive ideal solutions and distant from the anti-ideal solutions. 
 
To highlight the research contribution, this paper is structured as follows: Section 2 provides a review of the literature 
to offer an understanding of the subject matter; Section 3 details the methods used in the study; Section 4 delves into 
the analysis and results of the study's objective; and finally, Section 5 presents the conclusions. 
 
2. Literature Review  
Based on the 5Vs theory, the process of exploring extensive and diverse data sets in BDA aims to reveal concealed 
patterns, unidentified correlations, market trends, customer preferences, and other valuable information. This wealth 
of insights assists organizations in making well-informed business decisions, thereby enhancing sustainability 
performance and propelling society toward the circular economy (Ren et al. 2019). The capacity of BDA to offer 
valuable patterns and knowledge for exploring potential markets, enhancing sustainable operational efficiency, and 
ultimately fostering the development of sustainable products has garnered attention from both industry and academia 
(Ali et al. 2020; Gholami et al. 2021).  
 
From the perspective of illustrative examples, Siemens utilizes BDA to study operational behaviors by extracting 
insights from 100,000 measurements obtained from power plants worldwide, hence enabling the implementation of 
remote diagnostic services (Siemens 2014). Likewise, Ramco Cements Limited, an Indian manufacturing industry 
leader, leveraged BDA to make savvy business judgments on the development of products and management decisions 
in the logistics context (Dutta and Bose 2015). Analyzing big data derived from customer feedback, The SPEC, a 
prominent eyeglasses manufacturer in China, effectively utilized useful insights to generate innovative ideas for new 
product development (Tan et al. 2015). A specialized turbo machinery manufacturer in China (Shaanxi Blower 
Group), implemented a product health management center to improve their service quality by utilizing sensor-
collected lifecycle big data (Zhang et al. 2017). By employing Boeing's AHMS, real-time big data of in-air airplane 
operations are gathered and analyzed to proactively alert ground crews about potential maintenance issues prior to 
landing (Boeing 2017). BDA was employed by the Taiwanese light-emitting diode industry and a Chinese 
manufacturer of sanitary appliances to better understand the critical features of SCRU and boost their GSCM 
competence, both of which contributed to greater sustainability in the supply chain (Zhao et al. 2017).  
 
Going through the influential research relating to BDA for sustainable products, Tao et al. (2018) initiated a method 
for product design, manufacturing, and service driven by digital twins, exploring its application methods, frameworks, 
and future potential through three illustrative cases. El-Kassar and Singh (2019) developed and test a model 
demonstrating the relationships among green innovation, its drivers, and factors influencing performance and 
competitive advantage. Zhang et al. (2017) proposed an overall architecture of BDA for the product lifecycle. Nagy 
et al. (2018) examined how businesses understand and apply the concept of Industry 4.0 and its tools including IoT, 
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BDA, etc. Haseeb et al. (2019) identified and examined elements of Industry 4.0 including BDA, IoT, etc. to develop 
sustainable business performance. Bonilla et al. (2018) examined and discussed the sustainability impact and 
challenges of Industry 4.0 and its related technologies including BDA, IoT, etc. from four dissimilar scenarios. Ren 
et al. (2019) presented an extensive analysis of BDA in smart manufacturing and propose a product lifecycle-based 
framework. Diamantoulakis et al. (2015) shed light on the challenges and problems related to BDA encountered by 
the dynamic energy management employed in smart grid networks and offer an overview of the prevalent data 
processing techniques and a potential avenue. Bag et al. (2020) assessed the significance of BDA capability for 
enhancing sustainable supply chain performance using the dynamic capability theory. Kristoffersen et al. (2020) 
presented the smart circular economy framework, which helps manufacturers achieve SD by translating circular 
strategies into the business analysis requirements of digital technologies including BDA, IoT, etc. To summarize, 
there is a growing body of literature that highlights the rising interest in leveraging BDA to extract valuable 
knowledge, which, in turn, facilitates the development of sustainable products in various industries.  
 
Sustainable products promote the triple bottom line (TBL) by benefiting the environment, society, and economy while 
ensuring public health, well-being, and environmental preservation throughout their lifespan (Shuaib et al. 2014). 
Adopting a holistic approach is imperative in the development of sustainable products, ensuring the inclusion of 
essential criteria from the TBL perspective. This necessitates having a holistic view from the premanufacturing, 
manufacturing, use, and post-use stages of the product's life cycle to this end (Ahmad et al. 2018; Gholami et al. 2022). 
Numerous notable initiatives have been undertaken to enhance the sustainability performance of products, with several 
primary studies uncovering the key indicators that influence sustainable product development (Jawahir et al. 2006; De 
Silva et al. 2009; Jayal et al. 2010; Haapala et al. 2013; Shuaib et al. 2014). As a whole, this progress has been mapped 
out through the clustering, evaluation, and enhancement of interconnected indicators (Shuaib et al. 2014). Among the 
various influential indicators, eleven key indications, depicted in Figure 1, have been primarily considered (Gholami 
et al. 2022). These encompass eleven distinct criteria, each identified by a unique code and name. The economic aspect 
includes initial investment, direct/indirect costs, and losses, all of which have a desired level of minimum. The 
environmental aspect includes material use, energy use, waste and emissions, and product end-of-life management 
efficiency, all of which have a desired level of minimum except for product end-of-life management efficiency, which 
has a desired level of maximum. Lastly, the social aspect includes product quality and durability, functional 
performance, safety and health impact, and regulations and certifications effectiveness, all of which have a desired 
level of maximum. These indicators, alongside the TBL, overtly incorporate the 6Rs (reduce, reuse, recover, redesign, 
remanufacture, and recycle) to facilitate sustainable production. They serve as attributes or variables that indicate the 
behavior or state of a system and require a metric for comparing against a baseline or sustainable benchmark. 
Nonetheless, going through the literature indicates that there has been no research conducted to analyze the extent of 
BDA's contribution to the development of sustainable products based on the mentioned criteria. 

 

Figure 1. Principal criteria affecting sustainable product development 
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3. Methods  
The dominant decision-making method utilized is TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution), originally introduced by Hwang and Yoon (1981) as a method to assess the alternatives’ performance based 
on their similarity to the ideal solution. Based on the theory underlying TOPSIS, the principle is to select an alternative 
that has the shortest distance from the positive ideal solution (PIS) and the longest distance from the negative ideal 
solution (NIS) when addressing a MCDM problem (Chen 2000). With its straightforward computation process, 
systematic procedure, and logical representation of human choice, TOPSIS eliminates the need for pair-wise 
comparisons generally adopted by methods like the AHP (Shen et al. 2013; Koyuncu et al. 2021; Gholami et al. 2022). 
A classical TOPSIS and a centroid-based FTOPSIS technique could not represent the preferences of decision makers, 
but employing an integral-based FTOPSIS might change the ranking of the evaluations. Correspondingly, regarding 
the knowledge management (KM) of experts, the FTOPSIS method was utilized to select and prioritize the KM 
strategies while the maturity level was taken into consideration. In this paper, the FTOPSIS method is employed due 
to the challenges of TOPSIS method in quantifying numerous decision criteria and the need to incorporate judgments 
expressed in numerical terms with linguistic values. Based on the nature of the problem, the FTOPSIS method offers 
the capability to evaluate and make decisions by providing both numerical and verbal expressions in a comprehensive 
manner (Chen 2000).  
 
Due to the subjective, uncertain, and ambiguous nature of human judgments and preferences, exact numerical values 
are often insufficient for modeling real-life situations under various conditions. To address the uncertainties and 
ambiguities inherent in human cognition and reasoning, Zadeh (1965) introduced fuzzy set theory as a mathematical 
framework for processing data. It offers the capability to handle vagueness by allowing partial set membership instead 
of crisp set membership, thereby providing mathematical tools to tackle such uncertainties. In this paper, the utilization 
of triangular fuzzy numbers for preference assessment is based on their ease of use and calculation, facilitating 
decision-makers in their evaluation process. A triangular fuzzy number is indicated as (a, b, c) where a ≤ b ≤ c, 
encompasses the parameters a, b, and c, representing the smallest possible value, the most promising value, and the 
largest possible value, respectively. Let X represent a collection of objects defined as the universe, and let x represent 
its constituents. A membership function 𝑓𝑓𝐴𝐴(𝑥𝑥) demonstrates a fuzzy subset A in X and each element x in A is 
connected with a real integer between 0 and 1. As seen in Figure 2, a fuzzy set is defined by its membership function 
as follows: 
 

𝑓𝑓𝐴𝐴(𝑥𝑥) = �   

𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

    𝑥𝑥 < 𝑎𝑎, 𝑥𝑥 < 𝑐𝑐,𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

    𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐                         
                                                                                                      (1)    

 
 

Figure 2. Membership function of triangular fuzzy number A 
 
The following are a few fundamental definitions of fuzzy concepts that are utilized in the proposed fuzzy TOPSIS 
approach (Zadeh 1965). Consider A = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) while B = (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1) to be two triangular fuzzy numbers. Therefore, 
the basic operations of triangular fuzzy numbers are expressed as follows: 

𝐴𝐴(+)𝐵𝐵 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)(+)(𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1) = (𝑎𝑎 + 𝑎𝑎1, 𝑏𝑏 + 𝑏𝑏1, 𝑐𝑐 + 𝑐𝑐1)                                                                                (2) 
𝐴𝐴(−)𝐵𝐵 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)(−)(𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1) = (𝑎𝑎 − 𝑎𝑎1, 𝑏𝑏 − 𝑏𝑏1, 𝑐𝑐 − 𝑐𝑐1)                                                                                (3) 
𝐾𝐾𝐴𝐴 = (𝑘𝑘𝑎𝑎, 𝑘𝑘𝑏𝑏, 𝑘𝑘𝑐𝑐)                                                                                                                                                            (4) 

(𝐴𝐴)−1  =  (
1
𝑎𝑎

,
1
𝑏𝑏

,
1
𝑐𝑐

)                                                                                                                                                           (5) 
To calculate the distance between fuzzy numbers A and B, the equation below is used: 
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𝑑𝑑(𝐴𝐴,𝐵𝐵) = �1
3

[(𝑎𝑎 − 𝑎𝑎1)2 + (𝑏𝑏 − 𝑏𝑏1)2 + (𝑐𝑐 − 𝑐𝑐1)2                                                                                                  (6) 

With the assumption of K decision makers in a decision group, the fuzzy rating of each decision maker Dk (k = 1, 2, 
3, 4, …, K) can be represented as a positive triangular fuzzy number Rk (k = 1, 2, 3, 4, …, K) with membership 
function FRK (x). The aggregated fuzzy rating can therefore be characterized as: 

𝑅𝑅 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)             𝑘𝑘 = 1, 2, 3,4, . . . ,𝐾𝐾                                                                                                                       (7) 
Where 𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘{𝑎𝑎𝑘𝑘}, 𝑏𝑏 = 1/𝑘𝑘 ∑ 𝑏𝑏𝑘𝑘𝑘𝑘

𝑘𝑘=1 , and c= 𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘{𝑐𝑐𝑘𝑘}  

 
Following the establishment of the decision group, the next step involves the selection of verbal variables used for 
evaluating the alternatives and determining the significance weights of the criteria. Subsequently, decision makers 
assess the alternatives and criteria utilizing these chosen verbal variables. Outlined below are the logical and 
straightforward steps of the implementation process in FTOPSIS (Hwang and Yoon 1981; Chen et al. 2006; Shen et 
al. 2013). 
 
Step 1: The fuzzy-decision matrix which has been normalized is defined as: 
𝑅𝑅 = [ 𝑟𝑟𝑖𝑖𝑖𝑖]𝑚𝑚.𝑛𝑛 
where B indicates the benefit criteria and C indicates the cost criteria 

𝑟𝑟𝑖𝑖𝑖𝑖 =  �
𝑎𝑎𝑖𝑖𝑖𝑖
𝑐𝑐𝑖𝑖

,
𝑏𝑏𝑖𝑖𝑖𝑖
𝑐𝑐𝑖𝑖

,
𝑐𝑐𝑖𝑖𝑖𝑖
𝑐𝑐𝑖𝑖
�   , 𝑗𝑗 ∈ 𝐵𝐵                                                                                                                                          (8) 

𝑐𝑐𝑖𝑖  = 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝑗𝑗 ∈ 𝐵𝐵  

𝑟𝑟𝑖𝑖𝑖𝑖 = �
𝑎𝑎𝑖𝑖−

𝑐𝑐𝑖𝑖𝑖𝑖
,
𝑎𝑎𝑖𝑖−

𝑏𝑏𝑖𝑖𝑖𝑖
,
𝑎𝑎𝑖𝑖−

𝑐𝑐𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖
�                                                                                                                                                   (9) 

𝑎𝑎𝑖𝑖− = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 a𝑖𝑖𝑖𝑖, 𝑗𝑗 ∈ 𝐶𝐶 
 
Step 2: By multiplying the weights of the criteria to the normalized matrix, the weighted normalized decision matrix 
𝑣𝑣𝑖𝑖𝑖𝑖 can be obtained: 

𝑉𝑉 = �𝑣𝑣𝑖𝑖𝑖𝑖�𝑚𝑚𝑚𝑚      𝑚𝑚 = 1,2,3,4, . . . ,𝑚𝑚 ; 𝑗𝑗 = 1,2,3,4, . . . ,𝑚𝑚                                                                                          (10) 
where 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖· 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑖𝑖 represents the weight of the jth attribute or criterion. 
 
Step 3: Equations below are used to calculate the positive-ideal solution (PIS, A*) and negative-ideal solution (NIS, 
A−): 

𝐴𝐴∗ = (𝑣𝑣1∗,𝑣𝑣2∗, . . . , 𝑣𝑣𝑛𝑛∗)                                                                                                                                                     (11) 
𝐴𝐴− = (𝑣𝑣1−, 𝑣𝑣2−, . . . , 𝑣𝑣𝑛𝑛−)                                                                                                                                                  (12) 

where 𝑣𝑣𝑖𝑖∗ = maxi { vija } and 𝑣𝑣𝑖𝑖− = mini{ vija }, i = 1, 2, 3, 4, …, m, j = 1, 2, 3, 4, …, n. 
 
Step 4: The distance between PIS and NIS for each alternative is computed as below: 

𝑑𝑑𝑖𝑖∗ = �𝑑𝑑𝑣𝑣(𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑖𝑖∗)
𝑛𝑛

𝑖𝑖=1

,             𝑚𝑚 = 1, 2, 3, 4, . . . ,𝑚𝑚                                                                                                     (13) 

 

𝑑𝑑𝑖𝑖− = �𝑑𝑑𝑣𝑣(𝑣𝑣𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖−)
𝑛𝑛

𝑖𝑖=1

,            𝑚𝑚 = 1, 2, 3, 4, . . . ,𝑚𝑚                                                                                                     (14) 

 
Step 5: Equation below is used to calculate the closeness coefficient (CCi) of each alternative: 

𝐶𝐶𝐶𝐶𝑖𝑖 =
𝑑𝑑𝑖𝑖−

𝑑𝑑𝑖𝑖− + 𝑑𝑑𝑖𝑖∗
                  𝑚𝑚 = 1, 2, 3, 4, . . . ,𝑚𝑚                                                                                                        (15) 

 
Step 6: By comparing the CCi values at the end of the analysis, the ranking for all alternatives can be identified. 
Alternative Ai is closer to the FPIS (A*) and farther from FNIS (A−) as CC1 approaches to 1. By arranging the 
alternatives in descending order of CC1, the ranking order of all alternatives is determined. 
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4. Results and Discussion 
The employed research methods effectively fulfill the research purpose, shedding light on various implications for 
decision-makers seeking to understand the potential contribution of BDA in developing sustainable products within 
the automotive manufacturing context. These considerations arise from the mounting pressure on automotive 
industries in recent decades to enhance their sustainability performance, driven by concerns over environmentally and 
socially harmful products and practices (Lee et al. 2023). Notably, the adoption of sustainability standards in the 
development of automotive products remains rare, as highlighted by Ahmad et al. (2018) and Ali et al. (2020). 
 
After establishing product sustainability criteria (see Figure 1), the decision-making team is made to further evaluation. 
The linguistic variables are accordingly applied (Chen et al. 2000; Koyuncu et al. 2021; Gholami et al. 2022); where 
very low (VL), low (L), medium-low (ML), medium (M), medium-high (MH), high (H), very high (VH) represent the 
fuzzy numbers (0,0,0.1), (0,0.1,0.3), (0.1,0.3,0.5), (0.3,0.5,0.7), (0.5,0.7,0.9), (0.7,0.9,1.0), (0.9,1.0,1.0) respectively 
for the relative importance weights of eleven criteria as well as very poor (VP), poor (P), medium poor (MP), fair (F), 
medium good (MG), good (G), very good (VG) represent the fuzzy numbers (0,0,1), (0,1,3), (1,3,5), (3,5,7), (5,7,9), 
(7,9,10), (9,10,10) for the ratings. The fuzzy numbers represent the degree of membership of the variable in its 
corresponding fuzzy set; a set of values that have some degree of membership, rather than a precise value (Zadeh, 
1965). The fuzzy numbers in this study are represented using three values in parentheses: the lower bound–the 
minimum degree of membership for the variable, modal value–the highest degree of membership for the variable, and 
upper bound–the maximum degree of membership for the variable. These values represent the degree of membership 
of the corresponding linguistic variable in its fuzzy set. According to the linguistic variables applied, the decision 
makers evaluate the importance of the criteria and the contributory ratings of BDA to the criteria. 
 
Table 1 displays the appraisal information contributed by the decision-making group, where aggregated fuzzy numbers 
are derived by averaging the group’s fuzzy judgments. The fuzzy-decision matrix lists various criteria (Cr1 through 
Cr11) and their respective importance weights. The importance weights are represented as aggregated fuzzy weights, 
which are numerical values that indicate the degree of importance assigned to each criterion. The fuzzy weights are 
represented as three values within parentheses, which correspond to low, medium, and high importance, respectively. 
The importance of different criteria related to BDA, their normalized fuzzy weights, and their closeness coefficient 
(CC) indicating the contributory ratings of BDA to the overall set of criteria are also demonstrated in the table. The 
CC value is represented as a numerical value between 0 and 1, with higher values indicating greater contribution. 
 
As a whole, the analyses and outcomes indicate that Cr7, representing product end-of-life management efficiency 
(Figure 1), boasts the highest closeness coefficient of 0.79. It is followed by Cr8 and Cr9 with coefficients of 0.58 and 
0.52, respectively. Consequently, the ranking of BDA's contribution to each indicator, which signifies a higher rank 
for a greater perceived level of contribution, highlights the significant potential of BDA in advancing product end-of-
life management efficiency. The examination and evaluation of such aspects hold significant value in the realm of 
sustainable development, providing invaluable insights for decision-makers and policymakers seeking an 
understanding of the role of big data analytics in the development of sustainable products. This analysis serves as a 
valuable resource for those striving to make informed decisions and formulate effective policies that align with the 
principles of sustainability. By delving into the intricacies of big data analytics and its impact on the creation of 
sustainable products, this assessment empowers stakeholders with the knowledge and perspective necessary to 
navigate the complex landscape of sustainable product development. 
 

Table 1. Fuzzy-decision matrix weighted and normalized 
  

Criteria  Criteria importance  BDA importance normalized fuzzy weights and contribution to the criteria 
 Aggregated fuzzy weight  Aggregation Normalized fuzzy weight CC 
Cr1 (0.83,0.96,1.00)   (2.33, 4.33, 6.33)  (0.04, 0.06, 0.14) 0.09 
Cr2 (0.83,0.96,1.00)   (0.33, 1.66, 3.66) (0.07, 0.18, 1.00) 0.44 
Cr3 (0.83,0.96,1.00)   (0.66, 2.33, 4.33)  (0.05, 0.13, 0.50) 0.27 
Cr4 (0.83,0.96,1.00)   (3.66, 5.66, 7.66) (0.03, 0.05, 0.09) 0.06 
Cr5 (0.56,0.76,0.93)   (3.66, 5.66, 7.66) (0.02, 0.04, 0.08) 0.05 
Cr6 (0.76,0.93,1.00)   (0.33, 1.66, 3.66) (0.07, 0.17, 1.00) 0.45 
Cr7 (0.76,0.93,1.00)   (9.00,10.0,10.00)  (0.60, 0.90, 1.00) 0.79 
Cr8 (0.83,0.96,1.00)   (4.33, 6.33, 8.33) (0.35, 0.60, 0.83) 0.58 
Cr9 (0.83,0.96,1.00)   (3.66, 5.66, 7.66) (0.29, 0.53, 0.76) 0.52 
Cr10 (0.63,0.83,0.96)   (1.00, 3.00, 5.00) (0.06, 0.24, 0.48) 0.29 
Cr11 (0.63,0.83,0.96)   (0.33, 1.66, 3.66) (0.02, 0.13, 0.34) 0.20 

202



Proceedings of the 6th European Conference on Industrial Engineering and Operations Management 
Lisbon, Portugal, July 18-20, 2023 

© IEOM Society International 

5. Conclusion 
Big data analytics is experiencing rapid global growth as organizations pursue maximum value and sustainable 
competitive advantage. However, when it comes to its role in developing sustainable products, there is a lack of 
knowledge and certainty, which calls for innovative research. As such, this study is aimed at investigating the potential 
contribution of BDA to the development of sustainable products. To this end, a Fuzzy TOPSIS approach is employed 
to analyze the subject based on a set of respective criteria. The analyses and findings demonstrated that the criterion 
‘product end-of-life management efficiency’ has the highest closeness coefficient of 0.79, revealing that BDA could 
make a considerable contribution to developing product end-of-life management efficiency, among other product 
sustainability criteria identified. The findings would significantly contribute to the body of BDA knowledge as this 
study stands as the primary empirical investigation exploring the contribution of BDA in the development of 
sustainable products on the basis of product sustainability criterion. The significance of this research lies in its ability 
to bridge the gap between data-driven insights and sustainable practices, ultimately paving the way for a more 
sustainable future. The enriched insights provided by this study may open up new possibilities and avenues for further 
exploration and innovation in the field of BDA for sustainable products. Further studies are recommended to 
extensively investigate and delve deeper into the findings, and to also explore a broader range of criteria that have the 
potential to influence the development of sustainable products within the realm of BDA. The vastness and complexity 
of this research domain call for continuous exploration and scholarly inquiry to unlock new insights and push the 
boundaries of knowledge in this field. It is imperative to expand our understanding and uncover hidden dimensions to 
fully grasp the transformative potential of BDA in fostering sustainable products development, which is of vital 
importance to sustainable development. 
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