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Abstract  
 
In order to comply with the minimum safety requirements imposed by the Directive 2004/54/EC it is of paramount 
importance to correctly manage the operation and maintenance of road tunnels. This research describes how Artificial 
Intelligence techniques can play a supportive role both for maintenance operators in monitoring tunnels and for safety 
managers in operation. It is possible to extract relevant information from large volumes of data from sensor equipment 
in an efficient, fast, dynamic and adaptive way and make it immediately usable by those who manage machinery and 
services to aid quick decisions. Carrying out an analysis based on sensors in motorway tunnels, represents an important 
technological innovation, which would simplify tunnels management activities and therefore the detection of any 
possible deterioration, while keeping the risk within tolerance limits. The idea involves the creation of an algorithm 
for the detection of faults by acquiring data in real time from the sensors of tunnel sub-systems and using them to help 
identify the service state of the tunnel. The AI models are trained on a period of 6 months with one hour time series 
granularity measured on a road tunnel part of the Italian motorway systems. The verification has been done with 
reference to a number of recorded sensor faults. 
 
Keywords  
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1. Introduction 
Road tunnels are key infrastructures to facilitate inter-regional transportation with a significant direct economic 
impact. Minimum safety requirements have been recently updated to be applied to existing as well as new tunnels, 
including a series of measures inherent to design, safety installations, traffic management, emergency response, 
accident management and to the communication of information. Among the diverse factors, risk mitigation measures 
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have been often proposed to be linked to the empowerment of tunnel monitoring systems to keep an adequate 
maintenance of the safety installations.  
 
Advances in data intensive technologies are enabling the valuation of historical data while, at the same time, 
broadening the potential outcomes of data analysis in the perspective of forecasting. The continuous development of 
sensors and measurement techniques allows to collect a large volume of data relative to each individual equipment in 
any complex engineering systems, in the attempt of unveiling real-time correlations of data and operating status of the 
systems. The data-driven causal analysis is most of the time motivated by fault-detection and diagnosis goals, or it 
can be used in a more sophisticated way for control purposes. With the rapid development of sensor technology, 
wireless transmission technology, network communication technology, cloud computing, and smart mobile devices, 
large amounts of data have been accumulated in almost every aspects of our lives. Moreover, the volume of data is 
growing rapidly with increasingly complex structures and forms. However, this huge amount of data, therefore the 
potential content of information, is often underutilized because data are analyzed with classical statistical tools. The 
scientific and industrial communities agreed that the data explosion in companies’ businesses will be a source of 
competitive advantage able to lead the improvement of efficiency and sustainability of production cycles.  Technology 
infrastructure can be monitored and operated even over huge physical distances. Networking enables simultaneous 
control and optimal coordination of a wide variety of complex technological processes. Digitalization is facing various 
challenges in the world of infrastructure, such as challenges in operational efficiency and cost control, system stability 
and reliability, renewable energy management, energy efficiency and environmental issues, as well as consumer 
engagement and service improvement. Data driven and artificial intelligence methods can be developed to help 
detecting and even anticipating anomalies and failures during the operations. Specifically, nowcasting systems can be 
equipped with learning mechanisms based on monitored time series evolution from the tunnel sensor network. The 
idea presented in the paper advocates the detection of faults by acquiring data in real time from the sensors of tunnel 
sub-systems and using them to help identifying the service state of the tunnel. Tunnel sensors have their own specific 
models based on multivariate regression to model the reciprocal influence among sensor signals. The proposed 
innovative application handles the use of Artificial Intelligence as an important tool that can be helpful for improving 
and optimizing the managing of road tunnels. 
 
1.1 Objectives 
The present paper focuses specifically on the use of data from sensor network equipping tunnel auxiliary plants in a 
view to define service state, contribute to tunnel safety management and data-driven maintenance. The large volume 
of data, derived from sensors, give us relevant information and make it usable to those who are managing the 
machinery and services, enabling them to make effective and quick decisions. In motorway tunnels, carrying out a 
data analysis, simplifies the management activities of the tunnels and therefore the restoration of any degradation, 
managing road tunnels. The proposed idea envisages the creation of a regression algorithm capable of acquiring data 
from the tunnel sensors and made detection of faults. The regressor model is built starting form data exploration, in 
an attempt to understand which the recurring dynamics are, to discover patterns in data trying to find subgroups, and 
to identify the subsystems of variables that exhibit the same dynamics. 
 
2. Literature Review 
The maintenance operations on the equipment could be preventive or corrective (Figure 1). 
Preventive maintenance is carried out at fixed intervals with the objective of maintaining the equipment in a good 
operating condition. Preventive maintenance leads to high costs if the interventions are too frequent. Corrective actions 
instead are carried out when a system or a part of a system has failed or has been damaged, offers the advantage of 
using a system to the maximum extent of its service life. Its disadvantage however, is that it cannot be planned and 
therefore emergency repairs are normally carried out with a significant surplus cost and consequences for the traffic 
flow. It may be noted, nonetheless, that even when preventive maintenance is carried out the operator cannot avoid 
corrective interventions. They therefore need to be suitably optimized with predictive maintenance. Many publications 
focus on data-based maintenance, and others describe the general inspection of the equipment and service of the 
tunnels by inspectors. To this end predictive failure detection has not yet been explored, especially in tunnels. Several 
papers describe how to use predictive maintenance for specific systems in mechanical engineering, manufacturing 
processes, and other fields, for example. Even though tunnel systems are the subject of analysis for maintenance 
purposes, this analysis usually focuses on the structural part instead of on the technological part. Currently, the 
technological part of tunnel system consists of many different devices and technologies, some of them critical to the 
tunnel safety. Tomáš Tichý et al. very recently presented the results of the research on predictive maintenance of 
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technological devices in tunnel systems. This investigation has shown that predictive maintenance for technological 
devices in tunnel systems might bring benefits. In view of this survey, the main goal of our paper is to assess the 
approaches and possibilities that could be applied for tunnel systems in the future, in particular on the basis of data 
captured in tunnels. 
 

 
Figure 1.Types of Maintenance 

 
3. Methods 
The methodology consists of a first step entailing the labeling of available time series (from sensors) and traffic data. 
The labeling makes use of the information from the system status data (bi-hourly) and from the historical levels of 
service of galleries. The outputs of this last step are processed time series and traffic data, as shown in Figure 2. 

 
Figure 2. Data labeling and pre-processing 
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The processed input data collections are then divided to obtain training and test datasets. In so doing, the learner model 
is developed following the rationale illustrated in Figure 3. 

 
 

Figure 3. Data flow 

Concerning the regressor, it is based on a Multivariate regression scheme used to predict the value of a variable y 
(dependent) based on the value of n variables xi (independent), with i = 1, n. 
The mathematical formulation of the multivariate regressor reads as: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ⋅  𝑥𝑥1 + ⋯+ 𝛽𝛽𝑛𝑛 ⋅ 𝑥𝑥𝑛𝑛, 
being the purpose of multiple regression equation the estimation of the coefficients βj with j = 0, n. Specifically the 
regressor coefficients are computed by means of a least square estimation by minimizing, during the training phase, a 
function that assigns a cost to instances where the model y deviates from the observed data h. The cost function is in 
the form of a MSE: 

 
as the summation of square of difference between our predicted value and the actual value divided by twice of length 
of data set. Here the cost function is used along with the Gradient Descent algorithm to find the best parameters. 

 
 

4. Data collection and processing 
This article is based on the data measured in a specific tunnel part of the Italian motorway network. Specifically, the 
sample tunnel for the present study is a twin-tube tunnel over 1.000 m long. The analysis refers to a 6 month period, 
from November 2019 to April 2020. 
 
The initial investigations consist of patterns recognition, individuation of spot anomalies, test hypothesis and check 
assumptions with the help of summary statistics and graphical representations. The analysis has been carried out with 
reference to the sensor network which monitors the tunnel ventilation sub-system (including smoke management 
function and ventilation parameters detection). Figure 3 illustrates the flow chart of the ventilation sub-system 
monitoring. 

𝐽𝐽(𝜃𝜃0, 𝜃𝜃1, … , 𝜃𝜃𝑛𝑛) =
1

2𝑚𝑚
�(ℎ𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1
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Figure 3. Ventilation sub-system sensor network nomenclature (SX and DX suffices indicate respectively left and 

right tube; CO: carbon monoxide, OP: opacimeter, MDA: anemometer, V: fan accelerometer) 

 
Concerning the traffic data, characteristic patterns were recognized on a global scale as indicate in Figure 4. Notably, 
traffic data, either on light or heavy vehicles, did show a discontinuity during the lockdown period e.g. March – April 
2020. 
The time series from the sensor network were made available through the motorway concessionary with 1 hour 
sampling interval. By analyzing the time series from the sensors, the trends reveal particular dynamics in the period 
under scrutiny. Figure 5, as an example shows the anemometer Carbon monoxide sensors and opacimeters data series 
as recorded by the tunnel monitoring system.  

 

 
Figure 4. Normalized traffic trend of  the sample tunnel, a) SX tube (heavy: pink, green: light), b) DX tube (heavy: 

purple, yellow: light) 
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Figure 5. Normalized sensor time series trends: a) anemometer, b) Carbon monoxide sensors and c) opacimeters. 
 

Concerning data preprocessing, the available sensor time series have been corrected with missing values substitution 
using data interpolation technique; moreover, outlier detection using sigma-rule and z-score (also called standard 
score) for data normalization. 
 
5. Results and discussion 
On the basis of pre-processed datasets, we developed a learner for each sensor in the ventilation sub-system of the 
sample tunnel. Sensor nowcasting models aimed at the determination of dis-ambiguous information on the level of 
degradation corresponding to sensor failure events, in order to guarantee a reduction in response times and accuracy 
of the intervention. As for the training data sub-set we did consider the period from November 2019 to April 2020 by 
eliminating all time interval corresponding to sensor failure events. On such data sets, specific models have been 
trained for each sensor to predict the sensor signal based on all other sensor behaviors in the short term (i.e. 1 hour). 
The quality of the training of sensor-specific learners is shown in Table 1, by introducing the principal metrics of the 
multi-variate regression. In particular, Table 1 collects the R-score and the error per type of sensor.  
 
Concerning the testing phase, the data set is extended to include the failures recorded during the monitoring interval. 
To this end, Table 2 collects the statistical information that characterize the corrective maintenance carried out during 
the period under scrutiny. While, Table 2 confirms a high level of availability of the tunnel monitoring system, it also 
demonstrate the occurrence of a sufficient number of failure events to motivate the present study. 
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Table 1. Training results 

 

Sensor R Error Samples 
Anemometer DX 0.96 0.01 4065 
Anemometer SX 0.93 0.02 2716 
CO meter DX 0.75 0.03 4065 
CO meter SX 0.70 0.04 2716 
Opacimeter DX 0.77 0.03 4065 
Opacimeter SX 0.75 0.03 2716 

Table 2. Summary of the ventilation sub-system 
maintenance data 

MTBF Average Downtime Availability 
(hours) (hours) - 

312 36 0.9 
 

To this end, Table 3 lists the failure events used to populate the testing datasets.  

Table 3. Fault events 

Sensor category Sensor code Event date Type of event 
Anemometers MDA01DX 24/03-25/03 Loss of Communication 

MDA02DX 14/11-24/11 Fault: Alarm Switch  
MDA02SX 14/11-18/11 Fault: Alarm Switch  

24/03-25/03 Loss of Communication 
Carbon monoxide 
sensors 

CO01SX 1/11-21/11  Generic fault 
13/02-14/02  Generic fault 
17/02-19/02  Generic fault 
9/03  Generic fault 
24/03-25/03  Loss of Communication 

CO02SX 24/03-25/03 Loss of Communication 
CO01DX 24/03-25/03 Loss of Communication 

Opacimeters OP01DX 24/03-25/03  Loss of Communication 
OP01SX 14/11-18/11 Generic fault 

21/11 Generic fault 
24/03-25/03 Loss of Communication 

OP02DX 14/11-18/11  Generic fault 
OP02SX 24/03-25/03 Loss of Communication 

 

The nowcasting performance of the developed models have been tested introducing into the data sets the actual series 
of fault occurred to the sensors in the period under scrutiny. To give more hints on the results of the sensor-specific 
nowcasters the following figures show details of the behavior of predicted against actual sensor time series in the 
vicinity of the ensuing period: sensor CO01SX in December 2019 (Figure 6), sensor OP02DX on November 14th 
2019 (Figure 7), and sensor MA02DX on November 14th 2019 (Figure 8). 
 
Figure 6, first, illustrates the behavior of the Carbon monoxide sensor CO01SX during a period of stable operation 
coinciding with December 1st to December 31st 2019. It is worth noting that the quality of the multi-variate learner is 
confirmed by the capability of reproduce the short-time signal dynamics as well as the long-term ones driven by the 
weekly cycles or to the traffic increment around the December vacation time. 
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Figure 6. Normalized CO01 SX signal during December 2019: actual (blue) and predicted (red). 

 
Figure 7. Normalized OP02 DX signal on November 14th 2019: actual (blue) and predicted (red). 

 

Figure 7, on the other hand, shows the OP02DX signals around November 14th 2019. Specifically, the plot 
demonstrates the intervention of the nowcaster for sensor OP02DX at the occurrence of the fault on November 14th 
2019. The evidence of the failure is proven by the departure of the actual signal from the predict one, that in this 
specific circumstance starts over-predicting the CO concentration. Similarly, Figure 8 shows the behavior of the 
nowcaster for the sensor MA02DX during ten days, i.e. November 14th to November 24th 2019. 

 
Figure 8. Normalized MDA02 DX signal November 14th 2019 to November 24th 2019: actual (blue) and predicted 

(red). 

Notably, in the selected sample the prediction of the nowcaster returns to the actual value of the sensor signal after the 
maintenance intervention as such giving a further evidence of the robustness of the multivariate learner. 
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5.1 Proposed Improvements 
 
The regressor models created are a start point that well implemented could be a robust predictive learner, making 
possible to have a reliable forecast of breakdowns. So the future steps of this preliminary work are improve the 
algorithm with more data for managing real time tunnel safety, giving the possibility to organize maintenance activities 
before a system failure occurs, for avoiding the adoption of compensatory measures now necessary during the failure 
of a plant, to ensure tunnel operation with an equal level of safety (ALARP criterion). Moreover, it would be 
convenient to create a single model by type-category of sensor (no longer for each sensor of the same category) by 
extending the input data to different road tunnels. 
 
6. Conclusions 
About nowcasting is possible to conclude that the presence of a fault (where the intervention of the maintenance 
technician is recorded) is detected by the models created for the sensors. For the period 24/03 - 25/03 we hypothesized 
a malfunction of the communication system as more than one sensor was involved but the plots do not show a 
flattening of the signal curve. To improve the performance, future work will be aimed at gathering at least one year of 
data, in order to include a greater number of cases and phenomena typically associated with seasonality. 
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