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Abstract  
 
Extension in bi-polar fuzzy set results in m-Polar fuzzy (mF) set. It is a methodology developed over the years since 
2014. Integrated with various multi-criteria decision making (MCDM) techniques, several hybrid algorithms 
developed to improve the accuracy of the mF set algorithm used for decision making. Algorithms like mF TOPSIS 
and mF ELECTRE-I are widely used algorithms. In this paper, we aim to solve a selection of robots with the mF 
ELECTRE-I method. It is implemented in a stepwise manner and elaborated as an mF ELECTRE-I algorithm.  We 
have collected Robot selection data from a previously published research article. Results obtained using mF 
ELECTRE-I are compared and validated with the same research article. We found that the mF ELECTRE-I method 
is well resulted in getting the rank solution of robot selection. The rank obtained by mF ELECTRE-I is more consistent 
with the original research done for robot selection. Graphically presented results are with outranking relations. We 
can solve a wide range of industry problems starting from pole=1 to available subgroups to implement mF set 
techniques.   
 
Keywords 
Bi-polar, Fuzzy sets (FS), m-polar fuzzy ELECTRE-I, MCDM, and robot.   
 
1. Introduction  
This research explores applications of mF sets in industrial selection problems and validates results with existing 
techniques. The mF set is a recent technique to solve multi-criteria group decision-making problems. It solves issues 
having uncertainty, multiple subgroups to multiple parameters, multiple parameters, multiple decision-makers, 
multipolar information, or/and limit process. Now day's mF set methodology is used in various selection problems 
where data is vague or linguistic. This research will elaborate scope of implementation of mF ELECTRE-I and 
introduce this methodology to researchers to solve similar types of issues from Industries. For example, the selection 
of robots in the Industry is one of the MCDM problems. In this paper, selected problems from the literature have five 
parameters for selecting robots from seven available robots. As the problem is not having subgroups to the parameters, 
we can consider this as pole=1.      
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1.1 Objectives  

• To solve the problem of robot selection using the mF ELECTRE-I method. 
• To explain outranking between alternate robots. 
• To validate results with the available results obtained using different techniques. 
• To explore the scope of the mF set method for various application domains. 

 
2. Literature Review  
Chen et.al, (2014) extended the notion of bipolar fuzzy sets (FSs) to m-polar FSs (mFSs). In an mFS, an element's 
membership value ranges over [0, 1]m interval, shows all m features of an element (Akram et al., 2019). This FSs fit 
numerous real-life problems wherein information arrives as of n agents (n ≥2). Researchers have used the m-polar 
FSs while modeling practical problems which involve multiple parameters, multiple alternatives, multiple decision-
makers, and uncertainty. These multipolar data further complicate the decision-making procedure in realistic 
scenarios, thus initiating the MCDM problem. (Akram et al., 2019) introduced the mF ELECTRE-I method for 
MCDM problems using mFSs. They aimed at exploiting m-polar FSs as a robust tool in depicting uncertainty and 
fuzziness under multipolar data. In their approach, the decision-maker evaluated the ranking of alternatives under 
critical conditions and their standardized weights. They applied their proposed m-polar FS method for addressing 
MCDM problems in three practical-world scenarios like selecting the desired location of the airport, selecting a 
convenient site for a diesel power plant, and performance assessment of instructors in university administration. They 
presented alternatives via a graph that indicated the best preferable alternative under the m-polar fuzzy condition for 
decision making and addressed the complexity faced by existing FS methods in handling ambiguous information 
under multipolar data. (Akram et al., 2017) provided a multifaceted decision-making approach using m-polar FSs. 
They presented the m-polar FSs implementation in three real-world decision-making problems: hotel selection, tour 
selection, and house selection. (Adeel et al., 2019) proposed the m-polar linguistic fuzzy ELECTRE-I technique to 
solve MCDM and group MCDM problems by assessing alternatives under appropriate linguistic values. (Adeel et al., 
2019) analyzed the m-polar FS-based technique's decision-making efficacy to various real-life instances like 
companies' salary analysis and corrupted country selection. 
 
(Karande and Chakraborty, 2012;Chakraborty, 2011; Brauers and Zavadskas, 2006) studied beneficial and non-
beneficial criteria and implemented alternatives from available options using multi-objective optimization based on 
the ratio analysis (MOORA) method in multi-objective optimization. (Karande,2016)studied six MCDM methods to 
understand sensitivity while changing values of weights for the essential and critical criteria to solve real-time robot 
selection problems. The six methods studied are a multiplicative form of MOORA method (MULTIMOORA), 
MOORA and reference point approach method, WPM, WASPAS, and WSM.  Weights obtained for criteria and 
performance data are the factors that affect the output in the MCDM method (Zavadskas et al., 2006). In MCDM 
methods, Weights obtained are varies for different approaches. Decision-maker's opinion concerning various weights 
and uncertain calculations for the various systems like the AHP approach is biased and subjective. A study of MCDM 
methods shows for the fix alternatives and same criteria, and other MCDM techniques result in various ranks of 
alternatives (Lourenzutti and Krohling, 2013; Podvezko and Sivilevičius, 2013; Tavana et al., 2013; Chai et al., 2013; 
Ruzgys et al., 2014). MCDM can be improved to achieve quality in decision making by dealing with it explicitly, 
efficiently, and more rationally.  
 
3. Method  
Akram et al. (2019) explained the novelty of the m-Polar Fuzzy ELECTRE-I method and used it for solving real-life 
problems. The m-polar fuzzy ELECTRE-I is explained step by step as below: 

 
1) Let  O = { o1,o2,o3..........on } set of options (Alternatives) available with S = { s1,s2,s3,.........sn} set of 

criteria. 
2) Representation of the Decision Matrix as alternatives and values of criteria with the help of H = (hij) = 

{hij
1,hij

2,hij
3........hij

m}  
3) Weights are to be normalized and taken from experts,  1 = ∑ w𝑛𝑛

𝑗𝑗=1 𝑗𝑗
 . 

4) Applying weight to m-polar decision matrix X = (xij ) is formed. 
X = (xij ) =  (xij

1,xij
2,xij

3........xij
m ) here  xij = wjhij . 

5) Concordance sets for m-polar fuzzy given by 
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Lpq =  {1 ≤ j ≤ t : ypj ≥ yqj, p≠ q; p,q = 1,2..........n} 
Here yij = hij

1 + hij
2+hij

3........+  hij
m , 

6) Discordance sets for m-polar fuzzy given by 
Rpq =  {1 ≤ j ≤ t : ypj ≤ yqj, p≠ q; p,q = 1,2..........n} 

Here yij = hij
1 + hij

2+hij
3........+  hij

m , 
7) Concordance value of indices is formed as  

lpq =  ∑ 𝑤𝑤𝑗𝑗𝑗𝑗∈𝐿𝐿𝑝𝑝𝑝𝑝  , for all p,q. 
8) Concordance matrix can present as L for the m-polar fuzzy set given as : 

L = �

- l12    l13 l1n
l21 - .. l2n
: : : :

ln1 ln2 ⋯ -

� 

9) Discordance indices value is formed as :  
                

rpq =  
maxj∈Rpq�

1
m��x

1pj- x1qj�
2
+�x2pj- x2qj�

2
+…+�xmpj- xmqj�

2
�

maxj�
1
m��x

1pj- x1qj�
2
+�x2pj- x2qj�

2
+…+�xmpj- xmqj�

2
�

 for all p,q 

10)  Discordance matrix can present as R for the m-polar fuzzy set given as: 

R = �

− 𝑟𝑟12    𝑟𝑟13 𝑟𝑟1𝑛𝑛
𝑟𝑟21 − . . 𝑟𝑟2𝑛𝑛

: : : :
𝑟𝑟𝑛𝑛1 𝑟𝑟𝑛𝑛2 ⋯ −

� 

 
11) Levels of  Concordance and Discordance can  formulate as, 

l=̅
1

n(n-1)
�� lpq

n

q=1
q≠p

n

p=1
p≠q

 

 

r=̅
1

n(n-1)
�� rpq

n

q=1
q≠p

n

p=1
p≠q

 

12) From concordance and discordance levels, we can form K as concordance dominance matrix and U as 
discordance dominance matrix as, 

K= �

- k12    k13 k1n
k21 - .. k2n
: : : :

kn1 kn2 ⋯ -

� 

 
Here  

kpq= �
1,  and lpq≥l ̅

0,  and lpq≤l
 ̅

U = �

- u12    u13 u1n
u21 - .. u2n
: : : :

un1 un2 ⋯ -
� 

Here 

upq= �
1,  and rpq≥r ̅
0,  and rpq≤r ̅

13) To obtain aggregate dominance matrix V, perform point to point multiplication of K and U matrix values 

V= �

- v12    v13 v1n
v21 - .. v2n
: : : :

vn1 vn2 ⋯ -
� 
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Above 13 steps is to be followed for solving the selection problem with the m-polar fuzzy ELECTRE-I method. 
Matrices K, U, and V are used for outranking relations between alternatives. 
 
4. Robot selection problem: 
The selection of robots for operations of pick-n-place with avoiding obstacles is an industrial problem (Bhangale 
et al., 2004). For a sample from seven different robots, five parameters were selected, such as memory capacity 
(MC), manipulator reach (MR), repeatability (RE), maximum tip speed (MTS), and load capacity (LC). RE is 
the non-beneficial parameter from the abovementioned parameters, while the remaining all are the beneficial 
parameters. Data for problem is collected from case study solved by (Bhangale et. al., 2004). In table 1, seven robots 
available are o1 = (A) ASEA-IRB 60/2, o2 = (B) Cincinnati Milacrone T3-726, o3 = (C) Cybotech V15 Electric Robot, 
o4 = (D) Hitachi America Process Robot, o5 = (E) Unimation PUMA 500/600, o6 = (F) United States Robots Maker 
110 and  o7 = (G) Yaskawa Electric Motoman L3C. Parameters for robot selection are s1 = LC, s2 = RE, s3 = MTS, s4 
= MC and s5 = MR. AHP method (Rao et al., 2007) used to calculate weights, as shown in Table 2. 
 
 

 Table 1. problem decision matrix  (Bhangale et al.,2004) 
Name of 

robot s1 s2 s3 s4 s5  

A 60 0.4 2540 500 990  
B 6.35 0.15 1016 3000 1041  
C 6.8 0.1 1727.2 1500 1676  
D 10 0.2 1000 2000 965  
E 2.5 0.1 560 500 915  
F 4.5 0.08 1016 350 508  
G 3 0.1 1778 1000 920  

 
 

Table 2. Criteria weights for robot selection parameters (Rao et.al.,2007) 
Criteria s1 s2 s3 s4 s5 

Weight 0.036 0.192 0.326 0.326 0.12 
 
Table 3 (Karande et al., 2016) showed normalization of criteria values based on techniques of normalization used 
while solving MCDM problems with the WASPAS method. Table 4, shown below, was obtained by multiplying 
the normalization matrix with criteria weights. Table 4 is the weight-born matrix and used for all calculations. 
 

Table 3. WASPAS normalization of problem (Karande et al., 2016) 
Robot s1 s2 s3 s4 s5 

A 1.0000 0.2000 1.0000 0.1667 0.5907 
B 0.1058 0.5333 0.4000 1.0000 0.6211 
C 0.1133 0.8000 0.6800 0.5000 1.0000 
D 0.1667 0.4000 0.3937 0.6667 0.5758 
E 0.0417 0.8000 0.2205 0.1667 0.5459 
F 0.0750 1.0000 0.4000 0.1167 0.3031 
G 0.0500 0.8000 0.7000 0.3333 0.5489 

 
Table 4. Weight multiplied matrix (Karande et al., 2016) 

Robot s1 s2 s3 s4 s5 

A 0.036 0.0384 0.326 0.0543442 0.070884 
B 0.0038088 0.102394 0.1304 0.326 0.074532 
C 0.0040788 0.1536 0.22168 0.163 0.12 
D 0.0060012 0.0768 0.128346 0.217344 0.069096 
E 0.0015012 0.1536 0.071883 0.0543442 0.065508 
F 0.0027 0.192 0.1304 0.0380442 0.036372 
G 0.0018 0.1536 0.2282 0.108656 0.065868 
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5. Results and Discussion  
Applying m-polar Fuzzy ELECTRE-I methodology to the industrial robot selection problem, we obtained Table 5 and 
Table 6, which shows the concordance set and discordance set. Matrix L and matrix R below represent the concordance 
matrix and discordance matrix obtained from the respective group.  
 
5.1 Numerical Results  
Concordance and discordance set shown in table 5 and table 6, respectively, evaluated from conditions mentioned in 
steps five and step six from the methodology. Then, matrix L and matrix R evaluate based on equations mentioned in 
step 7 and step 9 of the method. 
 

Table 5. Concordance set for robot selection 
j 1 2 3 4 5 6 7 

B1j - {1,3} {1,3} {1,3,5} {1,3,4,5} {1,3,4,5} {1,3,5} 
B2j {2,4,5} - {4} {2,3,4,5} {1,3,4,5} {1,3,4,5} {1,4,5} 
B3j {2,4,5} {1,2,3,5} - {2,3,5} {1,2,3,4,5} {1,3,4,5} {1,2,4,5} 
B4j {2,4} {1} {1,4} - {1,3,4,5} {1,4,5} {1,4,5} 
B5j {2,4} {2} {2} {2} - {4,5} {2} 
B6j {2} {2,3} {2} {2,3} {1,2,3} - {1,2} 
B7j {2,4} {2,3} {2,3} {2,3} {1,2,3,4,5} {3,4,5} - 

 
Table 6. Discordance set for robot selection 

j 1 2 3 4 5 6 7 
E1j - {2,4,5} {2,4,5} {2,4} {2} {2} {2,4} 
E2j {1,3} - {1,2,3,5} {1} {2} {2} {2,3} 
E3j {1,3} {4} - {1,4} {} {2} {3} 
E4j {1,3,5} {2,3,4,5} {2,3,5} - {2} {2,3} {2,3} 
E5j {1,3,5} {1,3,4,5} {1,3,4,5} {1,3,4,5} - {1,2,3} {1,3,4,5} 
E6j {1,3,4,5} {1,4,5} {1,3,4,5} {1,4,5} {4,5} - {3,4,5} 
E7j {1,3,5} {1,4,5} {1,4,5} {1,4,5} {} {1,2} - 

 

L=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

- 0.362 0.362 0.482 0.808 0.808 0.482
0.638 - 0.326 0.964 0.808 0.808 0.482
0.638 0.674 - 0.638 1 0.808 0.674
0.518 0.036 0.362 - 0.808 0.482 0.482
0.518 0.192 0.192 0.192 - 0.446 0.192
0.192 0.518 0.192 0.518 0.554 - 0.228
0.518 0.518 0.518 0.518 1 0.772 - ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

R = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

- 1 1 0.824674 0.453334 0.785276 1
0.720029 - 0.56 0.0201775 0.188497 0.311181 0.449978
0.905556 1 - 0.582256 0 0.307309 0.119976

1 1 1 - 0.471166 0.642499 0.918716
1 1 1 1 - 1 1
1 1 1 1 0.497907 - 1

0.848958 1 1 1 0 0.392638 - ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Concordance level and Discordance level are 𝑙𝑙 ̅ = 0.529238 and  �̅�𝑟  = 0.738098. Matrix K and matrix U are 
outcomes from matrix L and matrix R by comparing values of concordance level and discordance level with each 
element from matrix L and matrix R. 
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K =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 1 0
1 0 0 1 1 1 0
1 1 0 1 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

U =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0
1 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

V =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 1 0 0
1 0 0 1 1 1 0
0 0 0 1 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
From Matrix V, robot B is the Best alternative. Values from Matrix K, U, and V are utilized in Table 7 to compare 
robots. In table 7, the first column is pair of robots. Outranking relation between these robots is obtained based on 
values of elements from matrix K, U, and matrix V. Values of matrix K, U, and matrix V are equal to one. Therefore, 
we can show that pairs of robots are comparable.  On the other hand, if one element is different from one, it means 
the team of robots is incomparable. Therefore, robot B is more comparable with other robots and has more advantages 
than the other robots.  
 

Table 7. Outranking relationship within alternatives of problem. 
pair of 
Robots 

Bpq Epq bpq epq k u v Ranking 

(A,B) {1,3} {2,4,5} 0.362 1 0 0 0 Incomparable 
(A,C) {1,3} {2,4,5} 0.362 1 0 0 0 Incomparable 
(A,D) {1,3,5} {2,4} 0.482 0.824674 0 0 0 Incomparable 
(A,E) {1,3,4,5} {2} 0.808 0.453334 1 1 1 A      E 
(A,F) {1,3,4,5} {2} 0.808 0.785276 1 0 0 Incomparable 
(A,G) {1,3,5} {2,4} 0.482 1 0 0 0 Incomparable 
(B,A) {2,4,5} {1,3} 0.638 0.720029 1 1 1 B       A 
(B,C) {4} {1,2,3,5} 0.326 0.56 0 1 0 Incomparable 
(B,D) {2,3,4,5} {1} 0.964 0.0201775 1 1 1 B        D 
(B,E) {1,3,4,5} {2} 0.808 0.188497 1 1 1 B        E 
(B,F) {1,3,4,5} {2} 0.808 0.311181 1 1 1 B        F 
(B,G) {1,4,5} {2,3} 0.482 0.449978 0 1 0 Incomparable 
(C,A) {2,4,5} {1,3} 0.638 0.905556 1 0 0 Incomparable 
(C,B) {1,2,3,5} {4} 0.674 1 1 0 0 Incomparable 
(C,D) {2,3,5} {1,4} 0.638 0.582256 1 1 1 C       D 
(C,E) {1,2,3,4,5} {} 1 0 1 1 1 C        E 
(C,F) {1,3,4,5} {2} 0.808 0.307309 1 1 1 C         F 
(C,G) {1,2,4,5} {3} 0.674 0.119976 1 1 1 C         G 
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(D,A) {2,4} {1,3,5} 0.518 1 0 0 0 Incomparable 
(D,B) {1} {2,3,4,5} 0.036 1 0 0 0 Incomparable 
(D,C) {1,4} {2,3,5} 0.362           1 0 0 0 Incomparable 
(D,E) {1,3,4,5} {2} 0.808 0.471166 1 1 1 D        E 
(D,F) {1,4,5} {2,3} 0.482 0.642499 0 1 0 Incomparable 
(D,G) {1,4,5} {2,3} 0.482 0.918716 0 0 0 Incomparable 
(E,A) {2,4} {1,3,5} 0.518 1 0 0 0 Incomparable 
(E,B) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(E,C) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(E,D) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(E,F) {4,5} {1,2,3} 0.446 1 0 0 0 Incomparable 
(E,G) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(F,A) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(F,B) {2,3} {1,4,5} 0.518 1 0 0 0 Incomparable 
(F,C) {2} {1,3,4,5} 0.192 1 0 0 0 Incomparable 
(F,D) {2,3} {1,4,5} 0.518 1 0 0 0 Incomparable 
(F,E) {1,2,3} {4,5} 0.554 0.497907 1 1 1 F        E 
(F,G) {1,2} {3,4,5} 0.228 1 0 0 0 Incomparable 
(G,A) {2,4} {1,3,5} 0.518 0.848958 0 0 0 Incomparable 
(G,B) {2,3} {1,4,5} 0.518 1 0 0 0 Incomparable 
(G,C) {2,3} {1,4,5} 0.518 1 0 0 0 Incomparable 
(G,D) {2,3} {1,4,5} 0.518 1 0 0 0 Incomparable 
(G,E) {1,2,3,4,5} {} 1 0 1 1 1 G       E 
(G,F) {3,4,5} {1,2} 0.772 0.392638 1 1 1 G       F 

 
The directed graph is shown below, drawn from the above table for the robot. For example, the final ranking 
obtained from the implementation of the 1-Polar Fuzzy ELECTRE-I method is B-C-G-D-A-F-E. 
 
 

 
Figure 1. Directed graph of outranking relation of the robot (WPM, WASPAS normalization) 
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5.2Graphical Results  
Directed graph for robots above in figure 1, inferred following points.  

1. There are direct edges from B to A, E, F, and D; therefore, robot B is the best selection. 
2. Robot C is preferred over D, E, and G robots. 
3. Robot G is the best over E and F robots. 
4. For robot E, no edge exists from it; It is Incomparable with others. 
5. Similarly, robot D is good over robot E. 
6. Similarly, robot F is good over robot E.   

 
5.3Proposed Improvements  
With the various normalized matrix, the ranking of the robot changes. For example, the decision Matrix normalized 
for the MOORA method is having a different order than the normalized matrix of WPM and WASPAS. Table 8, 
shown below, is the decision matrix based on the MOORA normalization method. Figure 2 below shows a directed 
graph obtained after solving MOORA normalized decision matrix with the 1-Polar Fuzzy ELECTRE-I method. 
  

Table 8. Normalized decision matrix for MOORA (Karande; 2016) 
Robot s1 s2 s3 s4 s5 

A 0.9705 0.7861 0.6355 0.1217 0.3557 
B 0.1027 0.2948 0.2542 0.7304 0.3740 
C 0.1100 0.1965 0.4321 0.3652 0.6022 
D 0.1618 0.3931 0.2502 0.4869 0.3467 
E 0.0404 0.1965 0.1401 0.1217 0.3288 
F 0.0728 0.1572 0.2542 0.0852 0.1825 
G 0.0485 0.1965 0.4449 0.2435 0.3306 

 
For the above-normalized decision, matrix directed graph will appear as below, 

 
Figure 2. Directed graph of outranking relation of the robot (MOORA normalization). The above figure shows that 
the ranking of robot A and robot G gets affected by changing the Normalized decision matrix. 
 
5.4 Validation  
Various Methods implemented over the year result in multiple rankings of robots. (Karande et al.,2016) Analysis of 
WSM, Ratio System, WPM, fully multiplicative form, WASPAS, and Reference point found that Ranks have appeared 
slightly different from (Bhangale et al.,2004). 1-Polar ELECTRE-I with WPM normalization and MOORA 
normalization methods have the same ranking (Bhangale et al., 2004). 
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Table 9. Validation of results with previous researchers 

ROBOT 
Bhangal
e et al. 
(2004) 

Kara
nde 

et al. 
(2016

) 
WS
M 

Karan
de et 
al. 

(2016) 
WPM 

Karand
e et al. 
(2016) 

WASPA
S 

Karand
e et al. 
(2016) 
Ratio 

System 

Karande 
et al. 

(2016) 
Reference 

point 
 

Karande 
et.al. 

(2016) 
Fully 

multiplicativ
e form 

1-polar 
ELECTRE
-1 (WPM-

norm) 

1-polar 
ELECT

RE-1 
(MOOR
A-norm) 

A 3 4 5 5 5 5 2 5 3 
B 1 2 2 2 1 2 3 1 1 
C 2 1 1 1 2 1 1 2 2 
D 6 5 4 4 4 3 4 4 4 
E 7 7 7 7 7 5 7 7 7 
F 4 6 6 6 6 7 6 6 6 
G 5 3 3 3 3 4 5 3 5 

 
6. Conclusions 
The m-polar Fuzzy ELECTRE-I method solves the industrial robot selection problem. Earlier researchers have solved 
robot selection problems with various MCDM techniques. Rankings of the robot selection problem are well-validated 
with ranks obtained by previous researchers. Directed graphs which explain outranking between robots are the 
advantage of the ELECTRE-I method for the preference ranking of robots. Decision Matrix normalized as WSM, 
WPM, and WASPAS form and in MOORA form shows different elements obtained. In robot selection, the way of 
normalization of the decision matrix affects the final ranking. Results obtained with mF ELECTRE-I are more 
consistent in scale compared with the original research. The current study scope of the application of mFS is broad in 
the Industrial selection of robots. In the future, there is vast scope for mFS ELECTRE-I in group decision-making 
problems.  
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