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Abstract 

By making a detailed study of a two unit cold standby system with constant failure rate and two stage 

Erlangian repair time distribution, measures of system performance and its statistical inferential aspects 

are discussed through classical and Bayesian approaches.    
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1. Introduction

Reliability theory is concerned with statistical description of a system and has been studied in detail using the 

failure time and repair time density functions. The failures and repairs in any system are influenced by several 

factors such as system configuration, the environmental conditions under which the system operates and the 

varying failures (minor and major) and so on, which cannot be controlled or assessed well in advance. For a 

detailed study of systems operating in random environments, see Chandrasekhar and Natarjan (2001) and 

Chandrasekhar et al. (2005). In real life situations with problems involving system configurations, it is essential 

to carry out an analysis of measures of system performance. These problems often require the applications of 

statistical tools such as point estimation, interval estimation, hypotheses testing and Bayesian inference. Most of 

the times, it is possible that some statistical information pertaining to the parameters of both lifetime and repair 

time distributions is available. In such a scenario, Bayesian approach provides statistical methodology to 

incorporate the prior information with the data at hand. Analysis of systems using the above mentioned 

statistical tools is scarce in literature.  
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In recent times, there has been great interest in analyzing the system from a Bayesian perspective.  

However, all the Bayesian research work till date has been on constant failure and service rates. In this paper, 

we study in detail a two unit cold standby system with constant failure rate  and constant repair rate (both 

unknown) and two repair stages. Several authors have studied extensively two unit standby redundant systems 

in the past. Osaki and Nakagawa (1976) give a bibliography of the work on two unit systems. Our interest in 

this paper is on statistical inference procedures of a standby system with two stage Erlangian repair. The choice 

of the Erlangian distribution is motivated by the fact that an Erlangian variate with shape parameter  is the sum 

of  independent and identically distributed (iid) exponential variates. Hence, an Erlangian repair model can be 

thought of as a model with repair in  exponential phases, where repair at each phase is exponential with rate .  

In our model, we perform a simple experiment by observing  lifetimes and  repair times. Given 

this experiment, the likelihood is of the form  

 (1.1) 

where  and  are the sums of  observed lifetimes and  repair times respectively. For the system under 

consideration, in the subsequent sections, we have described maximum likelihood and Bayesian procedures. 

Flexible priors for lifetime and repair time parameters are introduced under the assumption that priors for life time 

and repair time parameters are independent. By using these conjugate prior distributions, we evaluate the posterior 

distributions along with Bayes estimators. The model and the assumptions, expressions for system reliability, 

MTBF, availability and associated statistical inference together with numerical illustration are discussed in detail in 

the following sections. 

2. Model (Two unit cold standby system with a single repair facility)

2.1 Assumptions 
The assumptions of the model are as follows: 

(i) The system has two statistically independent and identical units each with constant

failure rate say  and one perfect repair facility.

(ii) A standby unit will not fail.

(iii) The repair time distribution is a two stage Erlangian with probability density function 

  (pdf) given by 

      (2.1) 

(iv) Once a unit is repaired, it is as good as new.

(v) There is a perfect switch with negligible switchover time.

2.2 Analysis of the system 

The state of the system is described by discrete valued stochastic process , where 

denotes the number of units failed at time . It may be noted that the stochastic process  is a Markov 

Process (since a two stage Erlangian variate is the sum of two iid exponential variates and exponential 

distribution satisfies lack of memory property) on We note that at any given instant of time , the 

system is found in any of the following mutually exclusive and exhaustive states . Here 

corresponds to the situation, wherein both the units are operable but only one unit is operating online and 

the other unit is kept in cold standby.  ( ) represents the state of the system in which one unit is 

operating online and the other unit is in the first (second) stage of repair. It is clear that the states , 

and  are the  system upstates. Similarly,  ( ) denotes the situation that one unit is in the first 

(second) stage of repair and the other unit is waiting for repair and are the system downstates. Clearly the 

Markov process  has the infinitesimal generator given by 
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              (2.2)  

Let  be the probability that the system is in state  at time  with the initial condition 

. Initially, we assume that both the units are operable and obtain the system performance 

measures.  

 

2.2.1 System reliability 

 
The system reliability  is the probability that the system does not fail upto time . To derive an 

expression for system reliability, it is necessary to study the transitions of the Markov process  into 

the states ,  and  without passing through  and . The differential – difference equations 

corresponding to these upstates are given below which are obtained using the infinitesimal generator of the 

process given in (2.2). 

 

 

 
The equations (2.3) – (2.5) are solved by using Laplace transformation. Suppose  represents the 

Laplace transform of  Taking Laplace transform, solving and inverting, we get the solution for  

 as follows: 

 

 

 
Adding (2.6), (2.7) and (2.8), we obtain the system reliability as   

 
where  are the roots of the equation  

. 

 

2.2.2 Mean time before failure 

 
The system MTBF is the expected or average time to failure and is given by  

MTBF=     

        

 

      

                    

              1 
     

      Q =        
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2.2.3 System availability 

 
The system availability  is the probability that the system is in operable condition at any arbitrary point of time 

. To obtain the availability function, we have to study the transitions of the Markov process  into the states 

. Using the infinitesimal generator given in (2.2), we get the following system of differential – 

difference equations. 

 

 

 

 

 
Solving (2.11) – (2.15) with the condition , we obtain the solution as follows. 

 

 

 

 

 
where  are the roots of the equation  

 
Hence, the system availability is obtained by adding (2.16), (2.17) and (2.18) and is given by  

 
  

              (2.21) 

 

Allowing  on both the sides of (2.21), the system steady state availability is obtained as  

  ,               (2.22) 

which is in agreement with Chandrasekhar and Natarajan (1994). 

 

2.3 ML estimator of system reliability 

 
Let  and  be random observations on exponential failure times and Erlangian 

repair times with the pdf given by (2.1). It is well known that  and  are the ML estimators of  and   

respectively, where  and  are the corresponding sample means. Thus, the ML estimator of  is given 

by  

             (2.23) 
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 where are the roots of the cubic equation 

 

                             (2.24)    

 

2.4 Confidence limits for  
 

In section 2.3, we have seen that  and  are the ML estimators of  and   respectively. Let  and 

 . Clearly,  given in (2.22) is simplified to 

               (2.25) 

 and hence ML estimator of  is given by  

               (2.26) 

 By the asymptotic property of ML estimators, it is clear that  

  as , 

 where  and 

               (2.27) 

 The partial derivatives  are given by 

              (2.28) 

              (2.29) 

 Substituting (2.28) and (2.29) in (2.27) and simplifying, we get 

              (2.30) 

Thus,  is a CAN estimator of . One can also use the method of moments to generate CAN estimator 

of , see Sinha (1986). 

 Using Slutsky theorem and a property of consistent estimator, it can be shown that the confidence 

limits for the steady state availability of the system are given by 

  ,where  is the upper 100  quantile of standard normal distribution and  is 

obtained from (2.30) and is given by 

             (2.31) 

In the next section, Bayes estimator of MTBF under squared error loss function is obtained.  

 

3. Bayes estimation of MTBF in a two unit cold standby system 

 
In this section, we derive the Bayes estimator of MTBF by considering Gamma distributions with parameters 

 and  as natural conjugate priors for the lifetimes and repair times respectively. In other words, 

 have the following prior distributions with the probability density functions as follows. 

                     (3.1) 

                    (3.2) 

       It can be shown that the posterior distributions of  given the sample observations 

       and  are respectively given by 
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                                   (3.3) 

                 (3.4) 

      In other words,  are distributed as Gamma with parameters   

      and  respectively. 

 Bayes estimator of MTBF say MTBF
*
, given the sample observations is defined as  

      MTBF
*
 = E[MTBF | sample observations] 

                  (3.5) 

        

                                                                                           

 

                     (3.6) 

 

4. Numerical Illustration  

 
The performance of the Bayes estimate of MTBF i.e., MTBF

* 
is illustrated in this section through simulated data. 

The estimates are obtained using (3.5). Monte Carlo integration method is used to evaluate the integrals in (3.5) 

in two steps. First, the inner integral is evaluated by generating random observations using the posterior density 

of  treating  as unknown. The outer integral is then evaluated using random observations generated from the 

posterior density of . The values of hyper parameters in the posterior density functions are fixed as ; 

; ; ; .  and  are determined by taking the sums of iid samples of sizes  and  

generated respectively from exponential distribution and Erlangian distribution with pdf given in (2.1). For 

generating samples, the following choices of  and  namely,  and  are used. The results 

of the simulation based on 10,000 Monte Carlo runs are presented below.  

  

Table 1: Bayes estimate of MTBF 

  3.0 6.0 9.0 12.0 

2.0 0.01662 0.03390 0.07491 0.11261 

4.0 0.02634 0.05689 0.14142 0.15921 

6.0 0.02723 0.11658 0.16159 0.26393 

8.0 0.03311 0.14515 0.26254 0.39131 

      

From the above table, it can be observed that for fixed repair rate , the Bayes 

      estimate of MTBF increases as the failure rate  increases. Similarly, for fixed , the Bayes  

      estimate of MTBF increases as  increases. In other words, whenever the two unit cold  

      standby system with single repair facility under consideration exhibits high failure and repair 

      rates, the estimated mean time before failure is also high. 

 

5. Conclusion 

 
An attempt is made in this paper to study in detail a two unit cold standby system with a single repair facility. 

Mathematical expressions for , MTBF,  and  are obtained. Further, asymptotic confidence limits 

for , ML estimator of  and Bayes estimator of MTBF are obtained. Also the performance of the Bayes 

estimator of MTBF is illustrated through simulation study.  
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