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Abstract 

A regret order based clustering heuristic is proposed to create capacitated clusters for spatial datasets with 
equal weighting. This heuristic can be used in a vast number of applications, including the Capacitated P-
Median problem (CPMP) and Capacitated Facility Location Problem (CFLP). The heuristic is scalable and 
therefore also useful to cluster large instances. The heuristic builds on an initial uncapacitated clustering 
solutions the can be generated by various clustering methods and has proven to provide good quality end 
solutions independent of the quality of the initial solution. Different types of regret proximities are tested 
for the Capacitated P-Median problem (CPMP) in particular. The results along with visual plots on a map 
of geometrical data are shown to illustrate the impact of the different proximity rules.  
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1. Introduction

Most applications do not only need data points to be clustered but also adhere to capacitated constraints. An area 
where capacitated clusters are needed is the design of supply chain network where spatial data need to be clustered 
based on supply and capacity limitations, for example the vehicle routing (VRP), capacitated facility location (CFLP) 
and capacitated location-routing problems (CLRP). The capacitated p-median problem forms a central part of more 
complicated supply chain network problems like the VRP, CFLP and CLRP. It was therefore chosen to measure the 
effectiveness of the proposed regret-order based method.  

Numerous methods have been suggested in the past but few were tested and found to work well for big instances. 
Approximate algorithms (Harks et al., 2013) that take scalability into consideration has only become the focus in 
recent years. Many of the suggested approaches from literature do not have a time complexity that can deal with large 
instances. 

The goal of clustering methods is to group items together to minimize the total dissimilarity between the points in a 
cluster (Everitt et al., 2011, Hartigan, 1975). There are clustering methods that can effectively deal with large datasets, 
for example the hierarchical, iterative partitioning methods like the k-means, nearest neighbor and density-based 
methods. Even though a clustering method can be fine-tuned to create the correct amount of clusters, the capacity per 
cluster are not guaranteed. A technique is needed to create capacitated clusters from the unconstrained clustering 
solutions for single-source problems.  
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2. The capacitated p–median problem (CPMP) 
 
The capacitated clustering problem (CCP) is a clustering problem with n spatial data points and a set of m candidate 
centers to select from to create exactly p capacitated clusters, Mulvey and Beck (1984). In the case of single-source 
constraints, each point must be assigned to a single cluster center (sometime referred to as a facility). The problem is 
considered NP-hard, Mulvey and Beck (1984), Min (1996).  
 
The capacitated p–median problem (CPMP) is a specific case of the CCP where the capacity constraints for all the 
clusters are homogeneous and the coefficients of the objective function are distances, (Negreiros and Palhano, 2006). 
The CPMP is referred to as a concentrator problem because all points are considered potential facilities, Ceselli et al., 
(2009). The objective is to allocate p medians (also known as facilities) and minimize the sum of the within-clustered 
Euclidean distances between the chosen p facilities to the points assigned to them, (Drezner and Hamacher, 2001).  
 
The objective function of the model is then: 

min𝑧𝑧 = ��𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑖𝑖 ∈𝑉𝑉

𝑥𝑥𝑖𝑖𝑖𝑖 ,             (1) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is a binary decision variable with 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if point i is allocated to cluster j, (Han and Kamber, 2006). Each 
point i consists of two decimal coordinates (longitude and latitude) in ℜ2 Euclidean space using Euclidean distances.   
 
3. Capacitated clustering methods used in the past 
 
Mladenović et al. (2007) and Drezner and Hamacher (2001) provide a list of heuristic approaches used to solve the p–
median and fixed charge FLP problems. Mladenović et al. (2007) also discuss using aggregation, where points are 
clustered together based on a commonality, as a method to make the problem smaller. In-line with this, clustering 
methods that can cluster large datasets with small time complexity have also become an area of interest. The time 
complexity for hierarchical clustering methods, for example, is O( n2log(n) ) when using the Lance-Williams formula 
to calculate inter-cluster distances, Everitt et al. (2011).  
 
Min (1996), Barreto et al. (2007) and Lam et al. (2009) have investigated the use of hierarchical capacitated clustering 
methods in the past. Hierarchical methods need a stopping rule to stop clustering when an acceptable clustering 
solution has been reached. Min (1987) explore the use of capacity as a stopping rule to ensure that clusters do not 
exceed capacity limits, creating more clusters than are needed that are not filled to capacity. Barreto et al. (2007) 
suggest excluding a cluster if it becomes fully capacitated, and continue with the merging of clusters that still have 
capacity available. This resulted in far-off clusters being merged. This causes a “jumping” effect (Bührmann, 2016), 
where an under capacitated cluster overlaps a full cluster, which gives suboptimal solutions. Lam et al. (2009) suggests 
using the ratio of inter-cluster distance variation and between-cluster distance variation as a stopping rule. This is 
called the pseudo F–statistic, but do not guarantee that clusters meet capacity. Results showed that, of all the tested 
hierarchical clustering methods, Ward’s method returned the minimum objective function value for Eq. (1) when using 
Euclidean distances. It is therefore considered the most effective hierarchical clustering method (Min, 1996, Barreto 
et al., 2007, Lam et al., 2009 and Bührmann, 2016). 
 
A concern when using stopping rules for hierarchical clustering, is that it cannot guarantee balanced equal numbered 
clusters as is needed in the case of homogenous capacity constraints in the CPMP. Zhou et.al. (2002) mention that the 
balanced allocation problem has received little attention in the past. They suggest the use of a star-spanning tree 
formulation in order to solve the problem using a genetic algorithm.  Unlike the hierarchical clustering methods, there 
are other clustering methods that do not make use of stopping rules. These methods create clusters based on the number 
of clusters specified beforehand or other input parameters like the number of nearest neighbors to consider.  
 
Iterative partitioning methods are quite popular and has a time complexity of O(n) per iteration (Negreiros and 
Palhano, 2006). The methods make use of a k parameter to determine the amount of clusters. Although these methods 
have proven to provide more balanced clusters they also cannot guarantee adherence to capacity constraints. Geetha 
et al., (2009) describes the k-means method, also called the centroids of the clusters. Alternatively, the k-median 
method calculates the median each dimension of the points as the cluster centers, Han and Kamber (2006).  
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Nearest neighbors clustering, described by Jain and Dubes (1998), and density-based clustering make use of a density 
factor or the number of nearest neighbors to consider as input parameters. The best input parameters to consider can 
often only be determined using trial-and-error to create the correct amount of clusters. 
 
A technique is therefore needed where an unconstrained clustering solution using any clustering method can be 
modified to a constrained solution. This method needs to adhere to capacity constraints that can be used in conjunction 
with all clustering methods. A regret order based approach is suggested to create capacitated clusters. Other regret 
order based functions have been proposed by various authors in the past, including Mulvey and Beck (1984), Negreiros 
and Palhano (2006) and Barreto et al. (2007). However, these authors do not make use of an iterative regret order 
based function. They also do not consider the visual attractiveness of the solution to ensure clusters remain points in 
close proximity of each other. An improvement phase is introduced to this effect. The iterative nature ensures that 
points stay close to their assigned clusters while preventing the creation of overlapping clusters. 
 
4. The two-phase PROBUC heuristic 
 
A two-phase proportional regret order based unconstrained to constrained (PROBUC) heuristic is introduced to create 
capacitated clusters. This method is used to modify an unconstrained clustering solution to a constrained version and 
can be applied to any clustering solution.  
 
Figure 1. illustrates the algorithmic flowchart for the two-phase PROBUC method. The two phases are a re-assignment 
and an improvement phase, and PROBUC alternates between them until no further improvements are found. In the 
re-assignment phase, points are re-assigned to other clusters using a regret order based function until a feasible solution 
is found, i.e. one that has no overcapacitated clusters. Then PROBUC moves to the improvement phase. PROBUC 
forms mutually exclusive clusters that do not have overlapping boundaries. 
 
4.1. The re-assignment phase 
The procedure for the re-assignment phase is illustrated in Figure 2. It consists of multiple iterations consisting of 
improvements made using “neighborhood moves”. A “neighborhood move” is the process where a point in one cluster 
is re-assigned to another cluster, normally a neighboring cluster. Iterations continue until there are no more 
overcapacitated clusters. In each iteration, there are three steps, as follows: 
 
Step 1: Identify clusters which are overcapacity 
 
We define three types of clusters, where “capacity” means the cluster capacity, or the number of points assigned to 
the cluster. The points can also have demands associated to them. In this case the clusters have to adhere to the sum 
of the demands associated to the points assigned to each cluster. The clusters are defined in terms of percentage 
capacity, where 100 % means the cluster is full (“at capacity”). In practice, parameter P is used to indicate when a 
cluster is approaching capacity, and is varied between iterations as required. 

1) Under capacitated: capacity < (100 - P)% . 
2) Near-to-capacity: (100-P) % ≤ capacity ≤ 100 %. 
3) Overcapacitated: capacity > 100 %. 

 
If there are no overcapacitated clusters, the solution is feasible and the re-assignment procedure exits. If there are 
overcapacitated clusters, the procedure identifies a list of clusters which are either overcapacitated or near-to-capacity. 
These clusters are clusters from which points can be moved from when considering neighborhood moves in Step 2. 
The reason near-to-capacity clusters are considered, as well as overcapacitated clusters, is that the contents of these 
near-to-capacity clusters can be reduced to make way for points from nearby, overcapacitated clusters. 
 
The parameter P can and should be varied between iterations, and when returning to the re-assignment phase after an 
improvement phase, as the number of overcapacitated clusters reduces. For example, in this work, P = 0 is used for 
the first re-assignment phase, first iteration. This means that only overcapacitated clusters will be considered for moves 
that remove points in step 2. Thereafter, P = 10 is used for the first re-assignment phase, second iteration. For 
subsequent iterations, the value of P is increased by 10 for each iteration. However, a maximum value of P = 90 is 
used as a limit to prevent clusters becoming empty. In the second and subsequent re-assignment phases, use P = 10 
initially, and thereafter P = 0. A Tabu List is created to prevent the reversal of moves in subsequent iterations. 
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Step 2: Create a list of possible moves for each overcapacitated cluster 
 
Cluster centers are calculated as the centroid of all points assigned to the cluster. Then a list of possible moves is 
created for each cluster, where a move is a point that can be re-assigned to another cluster. 
 
The desirability of each move is calculated differently for a homogeneous demand case and a case where the point 
demands are different. For the homogeneous demand case, the impact of each move is calculated based on a regret 
function with a proximity measure. Different proximity measures used in the regret function cause different types of 
groupings, Bührmann (2016). The outcome of the different proximity measures is discussed in the computational 
study (Section 5).  
 
Step 3: Implementing the best moves 
 
The procedure creates an “ordered list of moves”, which places the most desirable moves first, and the least desirable 
moves last. In the homogeneous demand case, this list is created by ordering moves according to the regret values for 
all clusters from smallest to largest. The smallest regret value move is considered the most desirable. In the varying 
demand case, the list of moves are ordered according the demand ratio values of the moves from largest to smallest, 
and the move with the largest demand ratio is considered most attractive. 
 
The procedure then checks: 

• whether the move is a reversal of a previously implemented move (i.e. on the Tabu List). 
• whether the move can be feasibly implemented, that is, the new cluster has sufficient capacity. 

 
If the move is not Tabu and can be feasibly implemented, the move will be implemented, and the point is re-assigned. 
The move is added to the Tabu List, such that any move that would re-assign the point to the original cluster will be 
prevented. Otherwise the procedure will move to the next point move on the ordered list of moves. 
 
This re-assignment procedure will continue implementing moves until either all clusters are no longer overcapacity, 
or until there are no more moves on the ordered list of moves. If all clusters are no longer overcapacity, the procedure 
has found a feasible solution and exits the reassignment phase. Otherwise it returns to Step 1. However, now it will 
also consider moves involving moving points from clusters which are P = 10% below the cluster capacity limit. 
 
Note that if the procedure goes through the ordered list of moves and cannot find a non-Tabu, feasible move to 
implement, it will return to the beginning of the list and implement all the Tabu, infeasible moves anyway. This 
enhances the possibility of finding a feasible solution in future iterations. 
 
4.2. The improvement phase 
 
The improvement phase is used to improve the quality of clusters, and to prevent clusters from overlapping. Similar 
to the k–near clustering method introduced by Jain and Dubes (1998), a point is assigned to the same cluster as its k 
nearest neighbors. In the case where the k nearest neighbors belong to different clusters, the point is assigned to the 
cluster to which most of the k nearest neighbors are assigned. The procedure goes through every point in the dataset 
and applies the following two steps: 
 
Step 1: Identify k nearest neighbors 
 
The value of k is calculated as follows: 

𝑘𝑘 = max �𝑏𝑏, �
𝑛𝑛
𝑝𝑝 × 𝜎𝜎𝑎𝑎�� ,       (2) 

 
where n is the total number of points, p is the number of clusters, 𝑛𝑛

𝑝𝑝
 is the average number of points per cluster, b and 

σa are parameter values that can be varied per instance. The k closest neighbors (points) are then identified and put in 
the nearest neighbors set. 
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Step 2: Remove neighbors based on the ratio of edge lengths 
 
A fraction of the k nearest neighbors are removed from the nearest neighbor set based on the ratio of edge lengths 
criteria, Bührmann (2016): 

𝑙𝑙𝑖𝑖𝑖𝑖
𝑙𝑙𝚤𝚤�
≥ 𝑙𝑙𝑇𝑇   and 

𝑙𝑙𝑖𝑖𝑖𝑖
𝑙𝑙𝚥𝚥�
≥ 𝑙𝑙𝑇𝑇  ,       or               (3) 

 
𝑙𝑙𝑖𝑖𝑖𝑖 − 𝑙𝑙𝚤𝚤�
𝜎𝜎𝑖𝑖

 ≥ 𝜎𝜎𝑇𝑇   and  
𝑙𝑙𝑖𝑖𝑖𝑖 − 𝑙𝑙𝚥𝚥�
𝜎𝜎𝑗𝑗

 ≥  𝜎𝜎𝑇𝑇 .     (4)  

 
Here 𝑙𝑙𝑖𝑖𝑖𝑖  is the length of the edge between points i and j. 𝑙𝑙𝚤𝚤� and 𝑙𝑙𝚥𝚥� are the averages of the length of the edges around 
points i and j respectively for a sub-tree of depth D. σi and σj are the sample standard deviations of the lengths of all 
the edges at points i and j for a sub-tree of depth D. σT and lT are predefined cut-off values.  
 
Any point which satisfy Eq. (3) or (4) are excluded from the set of nearest neighbors. A distance cut-off is used to 
ensure that no neighbors further than the cut-off distance is considered. The point is then assigned to the same cluster 
as all or most of the points in the nearest neighbor set. The improvement phase can cause a solution to become 
infeasible, that is, to cause clusters to become overcapacitated. Therefore, to restore feasibility, the re-assignment 
phase is repeated after every execution of the improvement phase. 
 
Improvement and re-assignment phases are repeated until no further improvement in solution quality is obtained. 
 

5. Computational Study 
 
The experiments were carried out on an Intel(R) Core(TM) i7-3610QM CPU, 2.30GHz computer with 8GB RAM and 
using a Windows 7 operating system.  
 
5.1 Instances 
The two instances used in this study are described as follows: 
 
D7681 – an instance with 7 681 spatial data points from a food distribution company in South Africa. The instance 
was used to test the use of different proximity measures to calculate the regret function in the two-phase PROBUC 
heuristic. The data points consist of two dimensional decimal Euclidean coordinates. The instance was clustered into 
ten clusters with a homogenous capacity constraint of 1 000 per cluster. The single and complete linkage hierarchical 
clustering methods were used to create starting solutions.  
 
USA13509 – an instance from the TSP library given by Reinelt (2015) containing 13 509 points from the USA. The 
instance was clustered into 50 clusters. Ward’s method, an effective hierarchical clustering method, was used to create 
starting unconstrained clustering solutions. This was compared to using the k-means and k-median methods, well-
known iterative partitioning methods, to create unconstrained starting solutions. For the k-means and k-median 
methods batch updating was used – i.e. cluster centers were only updated once per iteration after all the points have 
been assigned to their new cluster, as explained by Han and Kamber (2006). Only ten iterations were used for the 
iterative partitioning methods. A homogeneous capacity constraint of 400 per cluster was then applied and using the 
different proximity measures for the regret function were compared to create capacitated clusters. 
 
5.2 Parameter Estimation 
The numerical experiments were done using the instances to find suitable parameters to use for the PROBUC heuristic. 
For the re-assignment phase, the Tabu list length was kept short and set to one. For the improvement phase, see Eq. 
(2), (3, (4), the following values were found to produce good results and were therefore used (Bührmann, 2016): 
b = 2, σa = 0.01, lT = 0.5, σT = 0.1, D = 25 and all neighbors further than a distance cut-off of 10 km were ignored. 
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Figure 1. Work flow diagram of the two-phase PROBUC method  
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Figure 2. The re-assignment phase of the suggested two-phased PROBUC method   
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6. Results  
 
It was observed that different proximity measures used in the regret function caused different types of groupings. 
Seven variations of the proximity measures for the regret function were identified based on previous literature. These 
variants were tested using both instances D7681 and USA13509 to determine the best one to use in the re-assignment 
phase. 
 
It is assumed that a homogeneous unit demand is used for all the points, so that the impact of the different measures 
under equivalent circumstances can be tested. Since only movements from the point’s current assignment and the next 
closest cluster are considered, the following definitions can be made: 

• The current proximity, dcur, refers to the distance between the point and the means of the currently allocated 
cluster center. 

• The second best proximity, d2nd, is the distance between the point and the means of the closest cluster center, 
excluding the current assignment. 

• The total proximity, dtot, is the sum of the distances from the point to all cluster centers, including the current 
assignment. 

 
These proximity variables differ per point and can be used to calculate a regret value r(i) associated with moving point 
i to the second closest cluster center. It should also be noted that the current assignment of a point is not necessarily 
the closest cluster center. This is because in the different clustering methods, points can be assigned to facilities other 
than the closest depending on the clustering algorithm used. As such, it also means that the regret values can be 
negative. 
 
The formulations of the different proximity measures are given in Eq. (5) – (11). 

r1(i) = d2nd     (5) 
r2(i) = d2nd −  dcur    (6) 
r3(i) = dtot  −  d2nd    (7) 
r4(i) = d2nd  /  dcur     (8) 
r5(i) = d2nd  /  dtot     (9) 
r6(i) = (d2nd – dcur) / dcur  (10) 
r7(i) = (d2nd – dcur) / dtot  (11) 

 
The results for the two instances are now discussed in further detail: 
 
6.1 Instance D7681 
 
The different proximity measures were tested using two initial solutions created by the single linkage and complete 
linkage respectively. These two were chosen because of the relative ease to compute the initial solutions and because 
the single linkage is known to provide notoriously bad unbalanced solutions while the complete linkage should return 
visually better but only average CPMP results compared to other clustering methods. The results using the CPMP 
objective function given in Eq. (1) and CPU times can be seen in Table 1. The CPU times of the unconstraint clustering 
using the single linkage and completer linkage methods were 48 and 46 seconds respectively. 
 
Solutions were also compared for visual attractiveness, a concept defined by Poot et al. (1999). With the advances in 
visualization of spatial data came the need for a solution to also look acceptable to the client especially in the supply 
chain environment, (Kant et al., 2008). Typical acceptability rules for facility locations include that there should be 
clearly defined point to cluster (facility) assignment regions with no overlap. The point to cluster assignments for the 
different proximity measures are illustrated in Figures 3.a) – 3.h) and 4.a) – 4.h). The maps were illustrated using a 
free Google API for GoogleMaps as described by Bührmann (2016). Each cluster were illustrated using a different 
color and symbol. Circles were drawn to highlight obvious problems with regards to the clusters that were visually 
detected. 
 
The unconstrained solutions for the single linkage and complete linkages are shown in Figures 3.a) and 4.a) 
respectively. The distance to the second best cluster being considered for assignment, d2nd is used quite frequently in 
the literature, Eq. (5). This method of re-assignment tends to create concentric circular clusters around the cluster 
centers and allows points to easily fall between the circular clusters when capacity is reached. These points will then 
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remain assigned to the original unconstrained clusters because there was not enough capacity to re-assign them as 
well. This measure does not tend to create tightly clustered assignments, as illustrated by the red circles in Figures 
3.b) and 4.b). 
 
Mulvey and Beck (1984) suggested using the difference between the current proximity and the second best proximity, 
Eq. (6). In this case, the regret values will be negative where points were not assigned to the closest cluster centroids 
and these will be ordered above the positive values. Solutions using this proximity measure are illustrated in Figures 
3.c) and 4.c). Although this method gives tighter clusters, there are still points that can fall between cluster assignments 
and are assigned to a third cluster.  
 
One can also use the difference between the total proximity and the second proximity, Eq. (7), as illustrated in Figures 
3.d) and 4.d). This method also left points furthest from the cluster centers to remain assigned to the original clusters. 
The values in Table 1. does not compare well against the other proximity measures either. 
 
Instead of using the difference in distance, another type of calculation is to use proportional regret, see Eq. (8) and Eq. 
(9). An example is the ratio between the second best proximity and the current proximity, as suggested by Barreto et 
al. (2007). The solutions of using a proportional ratio as regret calculation are shown in Figures 3.e) – 3.f) for the 
single linkage and Figures 4.e) – 4.f) for the complete linkage methods. Figures 3.g) – 3.h) and Figures 4.g) – 4.h) 
illustrate combining both the difference and proportional ratios in the regret calculations, Eq. (10) and Eq. (11). 
 
Different proximity measures were effective for the single - and complete linkage starting methods and the results 
were inconclusive. For single linkage, Eq. (6) and Eq. (9) returned the best objective function value and for complete 
linkage it was Eq. (6) and Eq. (11). When comparing the visual attractiveness of the single linkage solutions, measures 
using Eq. (10) and Eq. (11) - Figures 3.g) and 3.h) returned solutions with the least cluster overlap that could easily 
be solved in the improvement phase. For the complete linkage no obvious problems could be found when using the 
measure for Eq. (11) - Figure 4.h). 
 
6.2 Instance USA13509 
From the tests conducted on instance USA13509, the results of the objective function - Eq. (1) - can be seen in Table 
2. Different proximity measures resulted in the best solution for each different unconstrained starting solution. The 
results are therefore inconclusive.  
 
Three unconstrained starting solutions were created using Ward’s method, k-means and k-median methods. These 
methods took 161, 65 and 65 seconds respectively. The CPU times for the two-phased PROBUC method were quite 
similar. In all cases the refinement phase took up the longest time at 189, 186 and 188 seconds respectively, while the 
re-assignment phase took only two seconds and executed before and after the refinement phase. 
 
From the table it is clear that the starting solution do have an impact on the objective function of the capacitated 
clustering results. It is therefore better to start off with a good unconstrained clustering solution. A second benefit 
from using a clustering method that creates balanced clusters, is that the CPU time to create a capacitated solution is 
less because there are less points to re-assign. The two-phased PROBUC heuristic compose a sorted list of possible 
moves to make. If only a few points need to be re-assigned, the number of items in the list will be reduced.  
 
The best objective function were however found using the k-means iterative partitioning method and the proximity 
measure calculation from both Eq. (6) and Eq. (11). This solution also gives a good visual attractive solution, 
illustrated in Figure 5. Similar to Figures 3. and 4, the map in Figure 5. was also produced using a free GoogleAPI on 
Google Maps. 
 
From the different proximity measures used in the regret function of the PROBUC heuristic, Eq. (6) and Eq. (11) 
produced consistent good objective function results with good visual attractive solutions. It does however not 
guarantee the best objective function. In all cases Eq. (7) returned the worst results, Eq. (8) and Eq. (10) returned the 
same results.  
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3.a) Single linkage initial solution   3.b) Proximity measure r1(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.c) Proximity measure r2(i)   3.d) Proximity measure r3(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.e) Proximity measure r4(i)   3.f) Proximity measure r5(i) 
 
 
 
 
 
 
 
 
 
 
 
 

3.g) Proximity measure r6(i)   3.h) Proximity measure r7(i) 
 

Figure 3. Different regret functions for the single linkage method using D7681 
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4.a) Complete linkage initial solution  4.b) Proximity measure r1(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.c) Proximity measure r2(i)   4.d) Proximity measure r3(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.e) Proximity measure r4(i)   4.f) Proximity measure r5(i) 
 
 
 
 
 
 
 
 
 
 
 
 

4.g) Proximity measure r6(i)   4.h) Proximity measure r7(i) 
 

Figure 4. Different regret functions for the complete linkage method using D7681 
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Table 1. Different proximity measures in the two-phase PROBUC heuristic using D7681 
 

  

Objective function – Eq. (1) CPU time (seconds) 
Single  
linkage 

Complete 
linkage 

Single 
linkage 

Complete 
Linkage 

Original unconstrained solution 166 720.73 55 308.55   

r1(i) = d2nd 59 424.95 53 520.17 53 46 

r2(i) = d2nd − dcur 53 112.95 52 979.63 56 25 

r3(i) = dtot − d2nd 60 305.91 55 581.12 47 45 

r4(i) = d2nd/dcur 55 443.70 53 276.40 49 25 

r5(i) = d2nd/dtot 52 678.53* 53 473.31 51 47 

r6(i) = (d2nd - dcur)/dcur 55 443.70 53 276.40 48 26 

r7(i) = (d2nd - dcur) /dtot 55 803.87 52 958.50* 54 25 
* Best solution found associated with the specific unconstrained clustering solution 

 
Table 2. Different proximity measures in the two-phase PROBUC heuristic using USA13509 

 

  

 Objective function – Eq. (1) 
Ward’s  
method 

 

k-means iterative 
partitioning 

k-median iterative 
partitioning 

Original unconstrained solution 17 502.56 16 227.08 16 533.02 

r1(i) = d2nd 18 017.92 16 516.57 16 776.73 

r2(i) = d2nd − dcur 17 980.76 16 486.70* 16 726.52 

r3(i) = dtot − d2nd 18 311.33 16 624.76 16 825.34 

r4(i) = d2nd/dcur 17 973.29* 16 487.95 16 752.26 

r5(i) = d2nd/dtot 18 030.03 16 513.70 16 777.03 

r6(i) = (d2nd - dcur)/dcur 17 973.29* 16 487.95 16 752.26 

r7(i) = (d2nd - dcur) /dtot 17 979.94 16 486.70* 16 725.86* 
* Best solution found associated with the specific unconstrained clustering solution 
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7. Conclusion 
 
When creating capacitated clusters for the single source CPMP with homogenous capacity constraints, traditional 
methods often do not take time complexity into consideration and are too slow to solve instances with a large number 
of data points. Cluster-based approaches are more practical as it is able to create clusters with reasonable time 
complexity. These methods can however not guarantee that capacity constraints are adhered to. 
 
The two-phase PROBUC method is an effective heuristic to create capacitated clusters for converting uncapacitated 
clusters to capacitated clusters. However, certain uncapacitated clustering methods tend to create unbalanced solutions 
where many points need to be re-assigned to create capacitated clusters, for example, the single linkage hierarchical 
clustering method (Bührmann, 2016). In these cases, points are reassigned to neighboring clusters, and these 
neighboring clusters quickly reach capacity. In other work, points are assigned to another cluster with enough capacity 
where the cluster center is not necessarily the closest or second closest one to the point. This causes a “jumping” 
effect, where an under capacitated cluster overlaps a full cluster (Bührmann, 2016). In the PROBUC method, this 
effect is avoided by not allowing points in overcapacity clusters to move to any other cluster than the closest. Instead, 
PROBUC allows the re-assignment of points in clusters that are within a percentage (typically P = 10%) of the capacity 
limit to their next closest cluster center. This makes space for transferal of points from overcapacitated clusters. The 
algorithm is also designed to prevent clusters becoming empty, by not allowing points to move out of clusters with 
only 10% of the capacity limit remaining. 
 
Results from the two instances indicate that solutions producing the best objective function do not necessary result in 
the best visual attractive solution. It is therefore important to also consider visual attractiveness when studying the 
CPMP and other related network problems as suggested by Poot et al. (1999) and Kant et al., (2008).  
 
Starting with balanced unconstrained clustering solutions do provide an advantage when using the PROBUC heuristic. 
Most of the time spend in the PROBUC heuristic method is spent in the improvement phase. If the solutions produced 
by the unconstraint starting solution is of good quality, the number of points that need to be re-assigned are so few 
that the need of the improvement phase becomes less significant. Overall the method was able to effectively create 
capacitated constraint solutions in a very short CPU time of less than 200 seconds for 13509 data points. 
 
 

 
Figure 5. Best capacitated clustering solution for instance USA13509   
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