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Abstract 
This article proposes a Condition-Based Maintenance (CBM) approach for aircraft engines and Remaining Useful 

Life (RUL) monitoring, and failure prevention. Due to the unavailability of run-to-failure data, Turbofan Engine 

Simulation data, obtained from NASA repository, is used to train and test our model. Data Acquisition and 

Management system framework and planning are proposed for online monitoring and RUL prediction. In practice, 

sensor measurements usually suffer from noise contamination, hence the prediction models are challenged by noise 

contaminated data for both training and testing tasks. This is done to assess their prediction ability in a similar 

condition of having noisy data. Linear and nonlinear prediction models are developed, with performance comparison 

addressing both regression and classification problems. Models performance indices consider both prediction accuracy 

and percentage of predictions before the actual failure (PBAF). The proposed model considers continuous learning 

and improvement to account for any further operational changes that affect the model prediction ability. This is 

reached by ingesting the model with the actual RUL during the maintenance of the engine unit, and by comparing it 

to the predicted one.  

Keywords Condition-based maintenance, Failure prediction, Engine Degradation, IoT, Industry 4.0. 

1. Introduction

Aircraft engine is a critical component.  Its failure causes loss of lives. The traditional maintenance strategies, that are 

proposed by the designers, usually involve Reliability Centered Maintenance (RCM). These strategies propose 

preventive maintenance tasks that are based on reliability analysis of the operating systems. These strategies improve 

effectively the reliability of the engine. However, the costs are high due to unnecessary maintenance or replacement 

actions. Condition-Based Maintenance (CBM) is used for cost minimization while achieving reliability improvement. 

Online monitoring and data analysis lead to better maintenance planning and maintenance duration reduction. In 

addition to performing effective maintenance plans, airlines can achieve better consistency of flight scheduling. 
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CBM is a condition monitoring concept which is used to decide when the operating asset requires maintenance  

(Jardine et al. 2006) (Koenig et al. 2006). This provides a proactive scheduling for the maintenance process. The CBM 

strategy begins with data acquisition from sensors’ readings, which are analyzed to extract useful information about  

the system’s state (Jardine et al. 2006). The performance of CBM is challenged by data cleanness and prediction 

models' accuracy (Byington et al. 2002) (James et al. 2013). Normally, an engine condition should trigger maintenance 

actions within enough time before failure. Consequently, efficient models that accurately predict the RUL are required 

while overcoming the noise contamination problems (Saxena et al. 2008). Researchers proposed  

supervised learning prediction models for aircraft engine degradation (Byington et al. 2002) (Liu et al. 2015) 

(Lu et al. 2017, 2019) (Ragab et al. 2016) (Yan 2006) (Yuan et al. 2016) (Zhao et al. 2017). However, their models 

do not consider continuous learning, hence there is no possibility for accuracy improvement or considering any new 

events that the model was not trained for. In practice, industrial operations usually have operational modifications that 

require continuous monitoring to avoid inaccurate predictions (Zhang et al. 2017). The online monitoring of operating 

assets has become possible through Internet of Things (IoT) technologies adopted by the Industry 4.0 paradigm. These 

give a chance for sensors to transmit the captured engine data to a cloud database during operation  

(Zhang et al. 2017). The cloud storage of the data facilitates the engine monitoring even if the aircraft is in the air. 

Hence, maintenance scheduling is achieved, and flight rescheduling is planned to avoid conflicts. Our proposed 

framework consists of: 

▪ Data transfer and cloud storage platform 

▪ RUL prediction model  

 

In this paper, the data, that is used for training and testing of the prediction model, is obtained from NASA Prognostics 

Data - Turbofan Engine Degradation Simulation results (Saxena et al. 2008). Simulation is used due to the difficulty 

of having run-to-failure real data for these engines.  

 

This article is organized as follows: System planning, and framework layout are presented in section 2. Data 

prepossessing and overview of the prediction models are given in section3. Section 4 discusses the obtained results. 

Finally, section 5 presents our conclusion and future works.   

 

2. System planning and framework layout  
 

The data represents simulation results for 100 engine units. It is provided by a text file of 26 columns and indexed into 

units, cycle time, three types of operational settings, and 21 sensors’ measurements. Each row is a snapshot of the data 

that is taken during a single operational cycle. Table 1 shows detailed description of sensors’ measurements. The 

actual RUL for an operational cycle is the difference between the unit’s total life until failure, and the current cycle’s 

number. It is calculated for the training and the testing data as the failure cycle for each unit is given by its simulation 

results.  

 

The main objective for a condition-based maintenance strategy is to predict the number of remaining operational 

cycles before failure, i.e the number of operational cycles after the current cycle, during which the engine will continue 

to operate. However, this prediction task is challenged by data contamination due to sensor noise. The measurements 

types are summarized as follows: 

▪ Temperature measurement  

▪ Pressure measurement 

▪ RPM measurement 

▪ Air Mass flow measurement 
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Table 1. Descriptions of sensor signals (Liu et al. 2015) 

 

Index Predictor name Unit 

1 Total temperature at fan inlet  Ko 

2 Total temperature at LPC outlet Ko 

3 Total temperature at HPC outlet Ko 

4 Total temperature at LPT outlet Ko 

5 Pressure at fan inlet  psia 

6 Total pressure in bypass-duct  psia 

7 Total pressure HPC outlet  psia 

8 Physical fan speed  rpm 

9 Physical core speed  rpm 

10 Engine pressure ratio - 

11 Static pressure at HPC outlet  psia 

12 Ratio of fuel flow to “16” pps/psi 

13 Corrected fan speed  rpm 

14 Corrected core speed rpm 

15 Bypass ratio  – 

16 Burner fuel-air ratio – 

17 Bleed Bleed enthalpy – 

18 Demanded fan speed  rpm 

19 Demanded core fan speed  rpm 

20 HPT coolant bleed  lbm/s 

21 LPT coolant bleed  lbm/s 

 
 

A data acquisition system is needed for transfer and storage of the sensors’ measurements. Aircrafts have data 

acquisition system with aviation Arinc429 standard (Balmus 2016). It is used to transfer data such as air data, radar 

altimeter data, and GPS data. The measurements are used for engine operational control (Imani and Montazeri-Gh 

2019).  Our proposed system layout includes sensors’ measurements data transfer to an onboard server as shown in 

Figure 1. The server is selected with internet/cloud connecting feature; thus, it facilitates the engine remote monitoring 

and RUL prediction, even when the aircraft is in operation.  

 

   
Figure 1. Proposed system layout 
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3. Methodology 

 
The methodology that is applied for model training and testing is performed using Scikit-learn library for machine 

learning on Python 3.7.  Python is an open-source general-purpose programming language. The Scikit-learn is a free 

machine learning library that features various classification and regression algorithms. The Python code loads the 

input data from CSV file. The CSV file is developed from the raw text file using MS Excel.  

 

3.1 Data prepossessing 
 

The preprocessing of the data is an important step before training machine learning models. Some problems within 

the data, such as correlated predictors, presence of outliers, missing data instances, cannot be handled well by some 

machine learning techniques and may affect their prediction capabilities. Hence, it is advisable to preprocess the data 

to improve the performance of the models. The preprocessing applied here includes the following: 

▪ Outliers detection and removal 

▪ Removing highly correlated predictors 

 

The outliers are detected by Box plot. The data instances that have a Z-score higher than 3 are considered outliers and 

are removed. Figure 2 depicts sensor 7 data as an example for outlier removal. The data instance that is red colored 

has a Z-score greater than 3. This instance is removed from the input data. The same procedure is applied for the other 

predictors.  

(a)       (b) 

Figure 2. Box Plot for sensor 7 before (a) and after (b) removing the outliers 

 

 

Figure 3 shows the correlation matrix for the predictors. The matrix represents the coefficient of correlation between 

each of the predictors and the others. This coefficient ranges from -1 to 1. The sign defines the type of proportionality 

between the predictors. The relationship is directly proportional for a positive coefficient of correlation, while is 

inversely proportional for a negative one. Large absolute value of the coefficient of correlation, greater than 0.95, 

shows high correlation. The values are color coded to aid visualization. Highly correlated predictors, Setting 3,  

Sensor 1, Sensor 5, Sensor 10, Sensor 16, Sensor 18, and Sensor 19, are removed from the input data before models’ 

training as shown in Figure 4. 
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Figure 3. Correlation matrix for predictors 

 

Figure 4. Correlation matrix for predictors after highly correlated predictors removal 

 

 

3.2 Prediction Models 
 

To predict the RUL, both linear and non-linear models are explored including parametric and non-parametric types. 

Different transformations for the output are tested in order to select the best form for RUL prediction. The best form 

is selected based on the prediction performance of the models. The performance is measured by the root mean square 

error (RMSE) for predictions using the testing data. For this data, the best form for the output is the inverse form, 

1/RUL, for all the tested models. The input data is standardized to eliminate the effect of the predictors data units on 

the prediction models. The explored models include the following: 
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▪ Linear parametric: 

o Multiple linear regression 

o Ridge regression  

o Partial least square regression (PLS) 

▪ Non-linear parametric: 

o Polynomial regression 

▪ Non-linear Non-parametric: 

o K-nearest neighbors (KNN) 

o Random Forest (RF) 

o Neural Network (NN) 

 

Equation (1) presents the multiple linear model where yp is the predicted RUL value according to the transformation 

that is applied for the RUL of training data,Xj is the jth predictor, P is the number of predictors which is 17 for the 

input data after removing highly correlated ones, and β0, βj are model parameters. The Ridge regression model is 

shown by Equation (2) where  is the Ridge parameter. A value of 0.2 is selected for this parameter based on the best 

performance for prediction. The polynomial model, degree 2, is given by Equation (3). This degree is selected to avoid 

the overfitting problem that the polynomial model suffers from when the degree is high. The overfitting results in low 

training error, but high test error and poor prediction ability. This problem is named as the bias-variance trade-off in 

literature (James et al. 2013). The Ridge and the PLS models are explored for their ability to control and reduce the 

regression coefficients variance, hence improving the prediction performance. The Ridge model involves shrinking 

the coefficients towards zero, while the PLS considers dimensions reduction for the predictors (James et al. 2013) 

 

The KNN regression model is given by Equation (4) where K is number of neighbors, and Fi is inverse of the distance 

between two neighbors. yi is the RUL value, according to the applied transformation, for ith nearest data point to the 

given X. The number of neighbors K is selected to be 5 according to the best prediction accuracy found. This avoids 

the overfitting problem as small K values are avoided. For the Random Forest model, the best parameters for prediction 

performance using the testing data are 100 trees with a depth of 20. The square root of predictor number is considered 

when looking for the best split. The Neural Network model consists of three hidden layers with sizes of 10, 8, 4, and 

the activation is rectified linear unit (ReLU). The size of hidden layers is selected to be between the size of the input 

layer and the output layer as recommended in (Karsoliya S. 2012). Model performance is assessed by RMSE which is 

shown by Equation (5) (James et al. 2013). 
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4. Results 
 

The prediction of the RUL may have an error which results in a prediction of failure before the actual failure, PBAF, 

or after the actual failure, PAAF, as shown in Figure 5.  Both cases are considered error from the point of view of 

RUL prediction. However, having a predicted life which is beyond the actual life is worse than having a prediction 

which is shorter than the actual life. For this, the performance of the models is measured not only based on the value 

of error, but also based on the PBAF%. The best-case scenario, in this case, is having the least possible value of error, 

along with the highest PBAF%. 

 

 
Figure 5. Positions of possible error in RUL within time axis 

 

4.1 Regression Method 

 

The regression is performed in this context to predict the value of the RUL. Figure 6 shows the performance 

measurement of the selected models based on RMSE and PBAF%. As shown in Figure 6 the Random Forest regressor 

is the most suitable over studied models with the lowest RMSE and high PBAF%. The Neural Network regressor 

gives the highest RMSE value among all models. The Neural Network yields the highest PBAF%, nearly 70%, while 

the Random Forest yields fewer PBAF%, up to 58%. 

 

 
 

Figure 6. RMSE and PBAF% for the proposed prediction models 

 

 

Figure 7 shows the relative importance of predictors based on the Random Forest model as the best model in this case. 

In Random Forest, the decrease of the Residual Sum of Squares (RSS) at each split is recorded.  The predictor that 

has the highest value of RSS total reduction in all splits is the most important. The predictors importance gives better 

understanding for the most important engine readings that are affected by the RUL of the engine.  The figure shows 

that Static pressure at HPC outlet, Sensor 11, is the most important predictor for RUL prediction. The Total pressure 
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in bypass-duct, Sensor 6, has no importance as shown in the figure. The physical sensor measurement is no longer 

required; hence the amount of measurement data size are reduced accordingly. 

 

 
Figure 7. Predictors relative importance based on Random Forest model 

 

 

4.2 Classification Method 
 

Due to the less satisfactory results of the explored regression models, an alternative methodology is proposed which 

involves classification of 2 RUL classes instead of directly predicting its exact value. The RUL values are transformed 

into percentages for each engine unit, then a class is assigned for each data instance based on the RUL% value. This 

value is assigned according to the desired maintenance strategy. For demonstration, the RUL% value that differentiates 

the classes is arbitrarily selected to be 20%. The classes are as follows: 

▪ Class 1: RUL is more than 20 % 

▪ Class 2: RUL is less than 20 %  

 

Three different classifiers are tested at different classification thresholds: 

▪ Logistic regression 

▪ KNN classifier (5 neighbors) 

▪ Random Forest classifier (Depth=8, 50 trees, Max features → “Sqrt”) 

 

The number of neighbors in the KNN and both the depth and number of trees in the Random Forest are selected 

according to the best class prediction performance found. 

 

Figure 8 shows both the error rate and the PAAF%. The error rate represents the proportion of the false classifications 

obtained for the test data. The Random Forest classifier gives the minimum error rate and PAAF%. Classification 

methods calculate the probability of selection for each class and perform the selection according to its classification 

threshold. This threshold affects the classification error rate and the percentage of false classification in each class. 

The false classification in a certain class is changed when the threshold is modified (James et al. 2013). The PAAF% 

is not acceptable error type, and it is reduced by decreasing the classification threshold as shown in Figure 9. Although 

the error rate has increased for all classifiers, the Random Forest shows a promising result as the PAAF% is 

successfully reduced to only 1.24% at 7.43% general error rate.  
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Figure 8. Error rate and PAAF% at default, 0.5, classification threshold 

 

 
Figure 9. Error rate and PAAF% at 0.2 classification threshold 

 

 

Figure 10 shows the execution time in seconds for different parts of the Python code that is used for the application 

of our methodology. These times are based on 2.5 GHz Core-i5 CPU with 8 Gb of RAM. The data loading and 

preprocessing is shown in green bar. The regression models are shown in blue bars. The classification models are 

shown in orange bars. The Random Forest classifier takes less execution time for training as compared to the Random 

Forest regressor. This is due to that the classifier has less depth and number of trees than the regressor.  
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Figure 10. Execution times for different models using Python 

 

 

4. Conclusion and Future work 
 

This research proposed a framework for aircraft engine's RUL prediction. This framework included On-line remote 

monitoring and continuous learning with cloud connection facility. The RUL prediction model parameters are meant 

to be updated every maintenance operation, which helps improving the accuracy and the predicting capabilities of the 

model. The sensor noise problem was overcome by our model which affirms its robustness. This promotes its ability 

to provide reliable predictions with real data that is normally contaminated with noise. The input data were 

preprocessed before exploring the prediction possibility. The preprocessing included outliers and highly correlated 

variables removal for reaching better modelling performance. We studied both regression and classification 

methodologies for performing RUL prediction. The Random Forest classifier showed promising results. It offers safe 

and conservative condition-based maintenance. It could provide RUL classes prediction, above/below a certain level. 

This was demonstrated at 20% level of RUL. The classes prediction was achieved at only 1.24% PAAF% and 7.43% 

general error rate.  

 

For the future work, the framework will be validated with real system and embedded sensors. Moreover, spare part 

stocks, arriving time and downtime to be taken into consideration for a complete maintenance planning system. 
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