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Abstract 

Integration across a supply chain decision levels is key on improving investment returns. Integration of 
different time scales leads to large scale problems usually computationally intractable. Different 
approaches have been proposed to tackle the problem in terms of modeling and solution methods. 
However, most of them are problem specific or applicable only to short time horizons. Clustering has the 
potential to handle such problems by grouping similar input parameters together and considerably 
reducing the model size while not compromising solution accuracy. This work presents a new class of 
clustering algorithms to support the integration of planning applications of different time scales. The 
clustering algorithms were formulated using integer programming with integral absolute error as 
similarity measure. Two different clustering algorithms were developed: normal and sequence. The 
models were developed in the GAMS software. Two case studies are presented to assess the algorithms 
outputs and computational performance using utility demand data. It was found that the algorithm is 
capable of finding good quality solutions; and even succeed at finding optimal solutions with a small 
computational effort while providing clusters with high intra-cluster similarity and low inter-cluster 
similarity. 
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1. Introduction

Supply chain management has demonstrated ability to increase profits while upholding customer satisfaction 
(Papageorgiou 2009). This comprises three decision levels: strategic, tactical, and operational. Decision makers 
usually follow the aforementioned sequential mode (Grossmann 2012). Nevertheless, these levels are subject to each 
other, and comprise dissimilar time scales. Consequently, their integration is fundamental to increase efficiency and 
profit. The planning decisions must be carried out concurrently if one is to achieve a global optimum. Due to the 
difference in time scales between the three supply chain management elements, their integration frequently derives 
in a multiscale model which is in practice computationally intractable. Although diverse methodologies have been 
suggested to solve this problem from a modeling and solution perspective, most of the methodologies are specific to 
a problem or its applicability limited to short timeframes. Accordingly, clustering arises as a valid and suitable 
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option to handle this type of problem by grouping similar inputs, such as price or demand, together. Input 
parameters typically are made up of multiple attributes like simultaneous electricity and heat demands. This allows 
to substantially reduce the size of the model and improve computational tractability while keeping solution 
accuracy. 

Clustering orders the data into homogeneous groups where the within-group-objects similarity is minimized whereas 
the between-group-objects dissimilarity is maximized. The aim is that objects in a group shall be similar or linked to 
one another and dissimilar or unlinked to objects in other groups. An affective clustering is characterized by a high 
similarity/homogeneity within groups and high dissimilarity/heterogeneity between groups. The objects are 
normally represented by vectors in a multidimensional space; in which each dimension represents a specific attribute 
(e.g., variable, measurement) describing the object. Each attribute is considered to be represented by values. 
Clustering has been studied for more than 50 years in diverse disciplines (Jain 2010). 

Mathematical programming is key in the development of clustering algorithms. For example, Balachandra and 
Chandru (P Balachandra and Chandru 1999) grouped a whole year electricity demand into 9 clusters sequentially 
applying discriminant analysis. Later, the clusters were used as inputs in a mathematical model of an electricity 
system based on supply-demand matching (Patil Balachandra and Chandru 2003). Likewise, Fazlollahi et al. 
(Fazlollahi, Becker, and Maréchal 2014) developed an algorithm to cluster electricity demand using k-means. The 
algorithm was extended to include attributes such as: heat demand, electricity price, and solar radiation. The clusters 
were used as input for the operation of fixed energy systems. However, the study does not display the solution 
quality nor the solution approach.  

This work aims to tackle the integrated supply chain problem employing a clustering approach. The objective is 
minimizing the model size by representing the days in a year by typical days representative of the operating year. 
While it is true clustering has been broadly used in different applications, there is a lack of analysis in demand 
patterns clustering. The latter are complex to represent due to their multidimensional nature involving shape and 
time dependent attributes (e.g., utility demand). The present works takes a mathematical programming approach to 
tackle the integrated supply chain management problem and proposes a Mixed Integer Linear Programming (MILP) 
formulation for the clustering algorithms. Therefore, the present work aims to analyze the clustering of demand 
patterns with multiple attributes for multiscale models. The L1-norm (least absolute value method) (Bektaş and 
Şişman 2010; Chelmis, Kolte, and Prasanna 2015; Green, Staffell, and Vasilakos 2014; Lyu et al. 2013; Sabo 2014) 
is employed as similarity measure. The paper is organized as follows: Section 2 presents the proposed clustering 
algorithms formulation. Section 3 presents a heuristic size-reduction algorithm. Section 4 shows two Case Studies 
involving electricity and heat demands data. Concluding remarks are presented at the end of this work.  

 
 2. Clustering Algorithm 
  
The proposed clustering algorithm is part of the time-series data. It can cluster demand data by considering shape-
similarity and trajectories-time at the same time. Thus, it can help minimizing the computational complexity of 
multiscale models. Input parameters typically involve multiple attributes like the simultaneous electricity and heat 
demands. The weighting method is used to deal with the multiplicity of the demand data attributes. This can be 
expressed in the following form:  

min  𝑋𝑋 = ∑ 𝑊𝑊𝑎𝑎   𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎   ,𝑎𝑎       (1)  
s.t. ∑  𝑦𝑦𝑑𝑑,𝑐𝑐 = 1              ∀ 𝑑𝑑𝐶𝐶

𝑐𝑐=1   ,      
where 𝑋𝑋 is the multi-objective performance criteria function to be minimized, 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎  denotes the attribute a’s L1-
norm or integral absolute error, 𝑊𝑊𝑎𝑎  attribute a’s weighting factor (𝑊𝑊𝑎𝑎 ≥ 0, ∑ 𝑊𝑊𝑎𝑎𝑎𝑎 = 1),  𝑦𝑦𝑑𝑑,𝑐𝑐  denotes the binary 
variable allocating loads for day 𝑑𝑑  joining cluster 𝑐𝑐. The integral absolute error can be defined as follows:  

𝐼𝐼𝐼𝐼𝐸𝐸𝑎𝑎 = ∆
2
∗ ∑ ∑ 𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ + 𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ+1

𝐻𝐻−1
ℎ=1

𝐷𝐷
𝑑𝑑=1             ∀ 𝑎𝑎  ,    (2)  

where 𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ represents the absolute difference between load curve l and clustered curve c for hour h in day d for 
attribute a. The absolute difference between the load and cluster curves for the performance criterion is given as:  

         𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ ≥ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ − 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,𝑐𝑐,ℎ�  𝑦𝑦𝑑𝑑,𝑐𝑐          ∀  𝑎𝑎, ℎ,𝑑𝑑, 𝑐𝑐  ,   (3) 
where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,𝑑𝑑,ℎ denotes the a’s attribute demand load for hour h in day d, 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,𝑐𝑐,ℎ the demand for hour h in 
cluster c and attribute a. It is important to notice that other integration schemes (e.g., Simpson’s 1/3 rule) could be 
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used as well. Additionally, the use of the L2-norm is also easy to implement and only requires the use of the 
Euclidean distance in (2).  
Demand data can be clustered in a sequential way if one defines a constraint set following the string property 
concept (Vinod 1969). This type of clustering is important in processes with flexible operations such as processes 
subject to change-overs and set-ups. In order to incorporate time-dimension into the clusters and therefore 
sequencing, the following set of constraints can be included: 

𝑦𝑦𝑑𝑑+1,1 ≤ 𝑦𝑦𝑑𝑑 ,1                  ∀ 𝑑𝑑 < 𝐷𝐷  ,     (4) 
𝑦𝑦𝑑𝑑+1,𝑐𝑐 ≤ 𝑦𝑦𝑑𝑑,𝑐𝑐 + 𝑦𝑦𝑑𝑑,𝑐𝑐−1                    ∀ 𝑑𝑑 < 𝐷𝐷, 𝑐𝑐 > 1  ,    (5) 

𝑦𝑦𝐷𝐷,𝑐𝑐 ≤ 𝑦𝑦𝐷𝐷−1,𝑐𝑐 + 𝑦𝑦𝐷𝐷−1,𝑐𝑐−1                 ∀ 𝑐𝑐 > 1  ,     (6) 

Equations (4)-(6) handle the first, intermediate, and last clusters sequencing, respectively. Each subsequent equation 
is comparable to the previous constraints set as long as that the non-existing terms are taken out the equation. This 
feature can be found in many algebraic modeling systems (i.e., GAMS).         

𝑦𝑦𝑑𝑑+1,𝑐𝑐 ≤ 𝑦𝑦𝑑𝑑,𝑐𝑐 + 𝑦𝑦𝑑𝑑,𝑐𝑐−1                    ∀ 𝑑𝑑 , 𝑐𝑐  ,      (7) 
The aforementioned general formulation offers a single platform for normal and sequence clustering given its 
equivalent algorithmic structure. It renders a mixed integer nonlinear programming (MINLP) model due to the 
multiplication of 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,𝑐𝑐,ℎ and 𝑦𝑦𝑑𝑑,𝑐𝑐 variables illustrated in (3). Nevertheless, the model can be easily turned into a 
MILP by applying common linearization methods on the absolute function (Mangasarian 2013). The model used in 
this work is the linearized version of the clustering algorithm. In summary, the model for normal clustering is made 
up by (1)-(3); whereas sequence clustering is denoted by (1)-(3), and (7).  

 
 3. Heuristic Algorithm for Size Reduction 
  
Given the computational complexity of the proposed clustering algorithm described in the previous section, a simple 
heuristic algorithm, which compares lower and upper bound solutions in an iterative way, was developed to help 
reducing the problem size including single or multiple attributes. The developed size-reduction algorithm allows 
maintaining the linearity and programming basis of the proposed MILP model of the previous section. The 
developed heuristic uses the k-means algorithm (Xu and Wunsch 2008); however, in the present approach the 
clusters are arranged employing the MILP model described in Section 2. Although the k-means is mostly used in 
one-dimension time-series data, the version applied in this work is capable of dealing with higher dimensions. 
Figure 1 explains the developed size-reduction heuristic that can be applied to single and multiple attributes. For 
single attribute the weighting factor is assumed to be 1 (𝑊𝑊𝑎𝑎 = 1); which simplifies the heuristic algorithm. 
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Figure 1. Proposed heuristics algorithm for single and multiple attributes. 

 
4. Case Studies 
  
The proposed clustering algorithms were applied in two different case studies: 1) single attribute, and 2) multiple 
attributes. The first case study involves the Unit Commitment (UC) model (Marcovecchio, Novais, and Grossmann 
2014; Padhy 2004); whereas the second includes a full energy hub model (Maroufmashat et al. 2015).    
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4.1 Case Study 1: Single Attribute Problem 
 
The present case study analyzes the impact on solution accuracy when clustered demand in a normal and sequence 
mode are applied to a planning model (Marcovecchio, Novais, and Grossmann 2014; Padhy 2004). The UC model 
was selected for this analysis given its wide application. The objective is to minimize the operating cost of existing 
power generators while meeting the demand. The analyzed UC problem is modeled as a MILP (Marcovecchio, 
Novais, and Grossmann 2014). The analysis was conducted on 10 thermal units. Ontario-Canada’s (Hourly Ontario 
and Market Demands, 2002-2014 n.d.) power demand of the first 30 days of 2014 was used to illustrate the 
capabilities of the proposed algorithms. The model size effect is tested by doubling and tripling the initial number of 
thermal units. The full-scale model has a time horizon of 8760 hours while the clustered ones feature 96, 120, 144, 
and 168 hours for 4, 5, 6, and 7 clusters; respectively. 

Table 1. Summary of results for normal clustering with different number of units. 

N° of units Statistic Optimal Number of Clusters - Normal 
4 5 6 7 

10 CPU time (s) 2228 3 5 5 6 
Objective function ($) 1.37 E8 1.37 E8 1.37 E8 1.37 E8 1.37 E8 

20 CPU time (s) 33580 9 14 12 22 
Objective function ($) 2.73 E8 2.72 E8 2.73 E8 2.73 E8 2.73 E8 

30 CPU time (s) 99280 63 28 129 37 
Objective function ($) 4.09 E8 4.08 E8 4.08 E8 4.08 E8 4.08 E8 

Table 2. Summary of results for sequence clustering with different number of units. 

N° of units Statistic Optimal Number of Clusters - Sequence 
4 5 6 7 

10 CPU time (s) 2228 3 5 6 9 
Objective function ($) 1.37 E8 1.37 E8 1.37 E8 1.38 E8 1.38 E8 

20 CPU time (s) 33580 11 13 15 26 
Objective function ($) 2.73 E8 2.73 E8 2.74 E8 2.74 E8 2.74 E8 

30 CPU time (s) 99280 177 1830 1720 979 
Objective function ($) 4.09 E8 4.09 E8 4.10 E8 4.11 E8 4.11 E8 

 
Tables 1 and 2 present the results of normal and sequence clustering for different number of units. The application 
of both normal and sequence clustering shows a great advantage in terms of solution time compared to the full-scale 
model. The solution times of normal and sequence clustering for 10 and 20 units are very similar. However, it takes 
much less time to solve the normal clustering model compared to the sequence one for the 30 units’ case. Figures 2 
and 3 illustrate the values of the objective function in error percentage compared with the optimal non-clustered 
solution for the 10 and 30 units of the normal and sequence clustering, respectively.  
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Figure 2. 10 units’ objective function values in error percentage for normal and sequence clustering. 

 

 
 

Figure 3. 30 units’ objective function values in error percentage for normal and sequence clustering. 
 
The error range is within ± 0.5 % for all cases. The four sequence clusters case is the closest to the optimal showing 
that four clusters is the optimal representation of the electricity demand curve. This trend could be expected since 
typically electricity demand behaves seasonally, which is often clustered into four well-known seasons. This further 
validates the proposed clustering algorithm.  
 
4.2 Case Study 2: Multiple Attributes Problem 

This case study evaluates the clustering algorithms (normal and sequence) compared with a full energy hub model 
with multiple demand attributes. The objective is the minimization of the energy hub’s operating cost while meeting 
the power and heat demands. The energy hub problem is formulated as a linear programming (LP) model 
(Maroufmashat et al. 2015). The energy hub includes: one boiler, one combined heat and power (CHP) unit, and 
option to purchase power from the grid. The power demand is met by the CHP and grid; whereas heat by the boiler 
and CHP. 

The full scale model includes hourly heat and power demands loads for 365 days; whereas the clustered cases hourly 
loads considered 4, 5, and 6 clusters (clusters are considered as days). Given that the energy hub is a LP, it only 
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takes a few seconds to solve the full scale model. Nevertheless, computational time reduction using clustering has 
been proven in the previous case study. In this case study the focus is the quality of the solution. 

Figure 4 shows the values of the objective function alongside with the relative error compared with the optimal case. 
All clustered cases underestimate the value of the objective function. Normal clustering is closer to the optimal 
compared with sequence. The objective function’s error average is -1.7 %, and 4.2% for normal and sequence 
clustering, respectively. It was found that increasing the clusters number improves solution quality in both types of 
clustering as it closes the gap between the clustered cases’ and optimal solution. Also, changing the weight factors 
does not cause a strong effect on the objective function values. This might be the result of a similar symmetry 
between the heat and electricity demands. 

 

 
 

Figure 4. Energy hub’s objective function values combining all runs and weight factors.  
 

5. Conclusions 
  
This study targets the integrated supply chain problem employing a clustering methodology. Since the use of shorter 
time periods lead to large and intractable models, this study main objective is to decrease the model size by denoting 
the days of the year by typical days during the operating year while maintaining accuracy in the results. 
Accordingly, a mathematical programming methodology was used to model the clustering problem with single or 
multiple attributes. There are clustering advantages in terms of solution time compared with the full scale model, 
while increasing size had a minor effect on solution accuracy. It was found that normal clustering yields better 
objective function, average, and standard deviation error values compared with sequence. For the one attribute case 
study, the error range is within ± 0.5 % for all studied cases. The error grows as the number of cluster increases 
suggesting there is an optimal number of normal or sequence clusters regardless of cluster quality. The 
computational burden associated with solving the MILP model even with the L1-metric still denotes a drawback for 
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large planning horizons. Nonetheless, the application of a heuristic algorithm helps reaching optimal solutions in 
shorter times. 
For the multiple attribute case study, it was found that all clustered cases underestimate the values of the objective 
function. Normal clustering is closer to the optimal case compared with sequence. The objective function error 
average is -1.7 % and -4.2 % for normal and sequence clustering, respectively. Additionally, varying the weight 
factors does not have a major effect on the value of the objective function. This could be the result of a similar 
symmetry in heat and electricity demands. 
 
References 
  
Balachandra, P, and Vijay Chandru. 1999. “Modelling Electricity Demand with Representative Load Curves.” 

Energy 24(3): 219–30. 
Balachandra, Patil, and Vijay Chandru. 2003. “Supply Demand Matching in Resource Constrained Electricity 

Systems.” Energy Conversion and Management 44(3): 411–37. 
Bektaş, S, and Y Şişman. 2010. “The Comparison of L11 and L22-Norm Minimization Methods.” International 

Journal of Physical 5(11): 1721–27. 
Chelmis, Charalampos, Jahanvi Kolte, and Viktor K. Prasanna. 2015. “Big Data Analytics for Demand Response: 

Clustering over Space and Time.” In 2015 IEEE International Conference on Big Data (Big Data), IEEE, 
2223–32. 

Fazlollahi, Samira, Gwenaelle Becker, and François Maréchal. 2014. “Multi-Objectives, Multi-Period Optimization 
of District Energy Systems: III. Distribution Networks.” Computers and Chemical Engineering 66: 82–97. 

Green, Richard, Iain Staffell, and Nicholas Vasilakos. 2014. “Divide and Conquer&#x003F; <formula 
Formulatype="inline"><tex Notation="TeX">${k}$</Tex></Formula>-Means Clustering of Demand Data 
Allows Rapid and Accurate Simulations of the British Electricity System.” IEEE Transactions on Engineering 
Management 61(2): 251–60. 

Grossmann, Ignacio E. 2012. “Advances in Mathematical Programming Models for Enterprise-Wide Optimization.” 
Computers and Chemical Engineering 47: 2–18. 

“Hourly Ontario and Market Demands, 2002-2014.” 
Jain, Anil K. 2010. “Data Clustering: 50 Years beyond K-Means.” Pattern Recognition Letters 31(8): 651–66. 
Lyu, Qin, Zhouchen Lin, Yiyuan She, and Chao Zhang. 2013. “A Comparison of Typical ?P Minimization 

Algorithms.” Neurocomputing 119: 413–24. 
Mangasarian, Olvi L. 2013. “Absolute Value Equation Solution via Dual Complementarity.” Optimization Letters 

7(4): 625–30. 
Marcovecchio, Marian G., Augusto Q. Novais, and Ignacio E. Grossmann. 2014. “Deterministic Optimization of the 

Thermal Unit Commitment Problem: A Branch and Cut Search.” Computers & Chemical Engineering 67: 53–
68. 

Maroufmashat, Azadeh et al. 2015. “Modeling and Optimization of a Network of Energy Hubs to Improve 
Economic and Emission Considerations.” Energy 93: 2546–58. 

Padhy, N.P. 2004. “Unit Commitment—A Bibliographical Survey.” IEEE Transactions on Power Systems 19(2): 
1196–1205. 

Papageorgiou, Lazaros G. 2009. “Supply Chain Optimisation for the Process Industries: Advances and 
Opportunities.” Computers and Chemical Engineering 33(12): 1931–38. 

Sabo, Kristian. 2014. “Center-Based L1?Clustering Method.” International Journal of Applied Mathematics and 
Computer Science 24(1): 151–63. 

Vinod, Hrishikesh D. 1969. “Integer Programming and the Theory of Grouping.” Journal of the American Statistical 
Association 64(326): 506–19. 

Xu, Rui, and Donald C. Wunsch. 2008. 1 Clustering. Hoboken, NJ, USA: John Wiley & Sons, Inc. 
 
 
Biographies 
 
Falah Alhameli is currently a research and development engineer at the Abu Dhabi National Oil Company 
(ADNOC). He earned a BS and an MSc in Chemical Engineering from the Petroleum Institute (now part of Khalifa 
University of Science & Technology) and a PhD from the University of Waterloo. He has published journal and 
conference papers. Dr. Alhameli has completed research projects related to gas processing, planning of power 

504



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Toronto, Canada, October 23-25, 2019 

© IEOM Society International 

production, and renewable energy integration in the gas and oil industry. His current research interests focus on big 
data analytics and integration in multiscale decision making in oil and gas operations.   
 
Ali Elkamel is a Professor of Chemical Engineering. He holds a BS in Chemical Engineering and BS in 
Mathematics from Colorado School of Mines, MSc in Chemical Engineering from the University of Colorado-
Boulder, and PhD in Chemical Engineering from Purdue University – West Lafayette, Indiana. His specific research 
interests are in computer-aided modelling, optimization and simulation with applications to energy production 
planning, carbon management, sustainable operations and product design. Professor Elkamel is currently focusing 
on research projects related to energy systems, integration of renewable energy in process operations and energy 
production systems, and the utilization of data analytics (Digitalization), machine learning, and Artificial 
Intelligence (AI) to improve process and enterprise-wide efficiency and profitability. Prof. Elkamel has supervised 
over 90 graduate students and more than 30 post-doctoral fellows/research associates. Among his accomplishments 
are the Research Excellence Award, the Excellence in Graduate Supervision Award, the Outstanding Faculty 
Award, the Best teacher award, and the IEOM (Industrial Engineering and Operations Management) Outstanding 
Service and Distinguished Educator Award. He has more than 280 journal articles, 141 proceedings, and 33 book 
chapters. He is also a co-author of four books; two recent books were published by Wiley and entitled Planning of 
Refinery and Petrochemical Operations and Environmentally Conscious Fossil Energy Production. 
 
Mohammed Alkatheri holds a BS degree in Chemical Engineering from United Arab Emirates University, and 
MSc degree in Chemical Engineering from the Petroleum Institute in Abu Dhabi. During his MSc, he developed 
research on modelling and simulation of kinetics and single particle growth for the heterogeneous polymerization of 
Ziegler-Natta catalyst. From 2015 – 2017, he worked as a research assistant at the Petroleum Institute where he 
studied the economics of different ultra-sour natural gas sweetening processes, assessed sweeting of ultra-sour 
natural gas using hybrid processes and carried out green-house gases life cycle assessment for the United Arab 
Emirates electricity sector. In May 2017, he joined the PhD program in Chemical Engineering at University of 
Waterloo. His PhD research is focused on the application and integration of big-data tools (i.e. Artificial Intelligence 
and Machine Learning) in chemical process optimization and process system engineering. The scope of his PhD 
project is to address the challenges associated with chemical engineering process design and operation, namely, 
uncertainty handling, parameter estimation and unit process equation complexity. Therefore, high-level optimization 
tasks such as planning and scheduling will highly benefit from information mined from massive data, since 
optimization has always been based on the interchange between models and data. 
 
Alberto Betancourt-Torcat is a researcher at the University of Waterloo. He holds a BS in Chemical Engineering 
from University Simon Bolivar in Venezuela, and MSc in Chemical Engineering from the University of Waterloo. 
He was a Research Associate at the University of Waterloo from September 2011 to June 2012. From August 2012 
to November 2018, he worked at the Petroleum Institute (currently Khalifa University of Science & Technology) in 
Abu Dhabi, as a Research Engineer and Lecturer in the Department of Chemical Engineering. He has published 
numerous articles in renowned refereed journals, book chapters, and conference proceedings. He has also delivered 
several presentations in international conferences and seminars. Aditionally, he serves as a reviewer for various 
reputable international journals in the area of energy systems and energy policy. 
 
Ali Almansoori is a Professor of Chemical Engineering at Khalifa University of Science & Technology in Abu 
Dhabi. He earned a Ph.D. in Chemical Engineering from the Imperial College in London, an Executive MBA from 
London Business School, and a BS in Chemical Engineering from Florida Institute of Technology. During his 
profession, he has held several administrative positions including: the Coordinator of President’s Duties, Dean of 
Engineering, and Chair and Deputy Chair of the Chemical Engineering Department. He also was the Interim Senior 
Vice President for Academic Affairs during the merge between PI, Masdar Institute, and Khalifa University of 
Science, Technology, and Research. He has published numerous articles, book chapters, and conference 
proceedings. Dr. Almansoori was also a research fellow at the Organization of the Petroleum Exporting Countries 
(OPEC) in Vienna, Austria during the summer of 2012. He was recently awarded the Mohammed Bin Rashid medal 
for scientific excellence on January 2019. 

 

505


	Biographies



