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Abstract 

Flowshop Scheduling Problem (FSP) is a common but not trivial problem in manufacturing scheduling. 

Lower bound (LB) measures can provide a reasonable estimation considering makespan minimization. This 

paper deals with an analysis of a LB measure comparing with the CDS heuristic and the optimal solution 

of FSP. Performed simulations varying the number of jobs (N) and machines (M) with processing times 

following uniform and exponential distributions show that the discrepancies between the solutions tend to 

increase until N<M and decrease for N>M, with largest discrepancy observed for N=M. The divergences 

tend to be larger when greater variability on processing times is considered. 
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1. Introduction

In Flowshop Scheduling Problems (FSP), a set of N jobs has to be processed in a predefined same sequence of M 

machines. The job processing time in each machine is known, and in most cases, the main problem consists to find a 

schedule that minimizes the makespan, i.e., the time difference between the end of the last job on the last machine, 

and the start of the first job on the first machine (Taillard, 1990). According to Gupta and Stafford (2006), the 

makespan minimization is the most studied criteria since the publication of Johnson’s seminal paper in 1954. In FSP 

the sequence of machines of all jobs is known and each operation starts only after the end of the last one. Generally, 

finding the optimal solution of this problem is often difficult due its complexity regarding computation time. The 

complexity to find the best processing sequence of N jobs over the set of N! plans is considered NP-hard (Askin and 

Standridge, 1993). Scheduling is one of the most important decisions in production control systems. Hence, this paper 

aims to develop a makespan Lower Bound (LB) analysis comparing the LB measure defined by Askin and Standridge 

(1993) and the performance of a heuristic proposed by Campbell, Dudek and Smith (1970) (CDS heuristic). Further, 

optimal solutions for FSP problems with reduced number on jobs were evaluated and compared with those obtained 

with the heuristic and the LB measure. The discrepancies between these three makespan measures (LB, heuristic and 

optimal solution) for different number of jobs, number of machines and probability distribution of processing times 

may be the starting point for the gross estimation of production capacity necessary to process a set of jobs. 

2. Mathematical Models and Heuristic Methods

The FSP with makespan minimization has been a recurring subject of studies since Johnson (1954) proposed an exact 
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procedure for the particular case of the two-machine FSP. According to Gupta and Stafford (2006), since Johnson’s 

seminal work, over 1,200 articles related to the FSP were published until 2006 and today, beyond 2,500 citations could 

be observed as bibliometric analysis performed by the authors. 

The criterion (or measure of performance) set for the scheduling may vary according to industry needs and/or research 

intent. Minimizing makespan is the most studied criterion (Gupta; Stafford, 2006), however, minimizing deviations 

from the deadline (Vallada et al., 2008) has also significant attention. Several mathematical programming models have 

been formulated in attempt to determine exact solutions for this problem. Morton and Pentico (1993) for example, 

have proposed a mixed linear programming model using the makespan minimization as performance measure. 

Another mixed integer programming model, suggested by Zhu and Heady (2000) aims to minimize punishments for 

due date advances and delays. A detailed presentation of several mathematical models facing the FSP is presented by 

Souza (2009). Without exceptions, these models have in common the fragility of the inherent FSP complexity, which 

is known as NP-hard. For this reason, solving the FSP with a large number of jobs requires the application of heuristic 

procedures whose main purpose is the evaluation of good scheduling plans in acceptable search time. 

Campbell et al. (1970) suggested a heuristic that uses principles of Johnson's exact algorithm for a flowshop with more 

than two machines. According to Johnson (1954) if a job has shorter processing time in the first machine, then it has 

to be inserted in the first position of the sequence of jobs to be processed in the shop; in case a job has the longest 

processing time in the second machine, then it has to be included as late as possible in the sequence of jobs to be 

processed in both machines. 

The heuristic proposed by Campbell, Dudek and Smith, (or simply CDS heuristic), reduces the original problem with 

M machines in (M-1) artificial FSP problems with two pseudo machines each. Thus, the artificial FSP can be solved 

by Johnson’s algorithm. The pseudo machines processing times would result from the additive aggregation of the 

original machines processing times. The authors suggest solving (M-1) problems with two pseudo machines each that 

are made up of groups of machines as follows: 

 

Problem 1 = {Machine 1}, {Machine M} 

    Problem 2 = {Machines 1 and 2}, {Machines M-1 and M} 

      ...                        ...                                   ... 

    Problem M-1 = {Machines 1, 2, ... and M-1}, {Machines 2, 3, … and M} 

 

Lower bound measures for combinatorial problems of high complexity have also been object of research for other 

purposes. Several authors use measures of LB to evaluate the performance of their new algorithms comparing results 

obtained with those minimum values that can be effectively determined, i.e., the LB. In general, the evaluation of a 

LB measure is quite simple. The LB ensures that there will not be a solution under the given performance, thus 

providing a reference for comparing heuristics, and cut additional limits on the branch-and-bound search in mixed 

linear programming models (integer or binary). 

Mastrolilli and Sveson (2009) defined a trivial LB measure: If D represents the size, (in terms of processing time), of 

the most time consuming job (dilation), and C denotes the time required to process all jobs in the most loaded machine 

(congestion), the LB for the system can be calculated as: LB=max[D,C]. On the other hand, Askin and Standridge 

(1993) proposed an alternative LB measure: for each machine j a LB for the makespan can be given by the sum of: (1) 

total time of jobs on machine j; (2) minimum of the sum of the processing times of each job on the machines upstream 

of machine j; (3) minimum of the sum of the processing times of each job on the downstream machines of the machine 

j. Mathematically, this measure LB for each machine j is expressed as: 
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where: pij is the sum of processing and setup times of the job i in the machine j and Lj the estimation of makespan 

lower bound considering machine j. The lower bound of a shop of M machines is then defined by 

    ]L[maxLB j
M,1j=

=                                                                                                       (2) 

Gharbi and Mahjoubi (2013) proposed variants for the makespan LB measure of FSP with makespan minimization. 

Salmasi et al. (2011) proposed another LB measure for this problem by promoting a grouping of the jobs into small 

groups which are treated as independent jobs. The authors of these recent proposals for makespan LB measures plead 
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for some advantages in reducing time when solving the mixed linear programming models, in the case such measures 

would be included in the formulation. 

By the authors early performed simulations it was shown that the makespan LB measure suggested by Askin and 

Standridge provides, in approximately 93% of the simulated cases, stricter results, i.e., lower bounds with higher 

values when compared with those obtained with the LB measure proposed by Mastrolilli and Sveson (2009). For this 

reason, the LB measure proposed by Askin and Standridge will be considered in this study. 

 

3. Methodology  
 

The methodology is based on the simulation of randomly generated FSPs. According Banks (1998), simulation is a 

technique of solution given by the analysis of a model that describes the behavior of a system using computer 

equipment. Simulation allows understanding the dynamics of a system and thus analyzes and predicts the effect of 

changes taking place on the simulated model. In this study, instances may vary by (a) number of jobs (N) being 

processed, (b) number of machines (M) available in the shop and, (c) job processing times. 

Figure 1 shows a flowchart of the methodological outline that was formulated to analyze the effects for one random 

generated instance. For each instance with N jobs and M machines, its makespan LB as well as the makespan obtained 

with the application of the CDS heuristic are compared. Further, if an optimal solution for the mixed integer 

programming model of the instance could be found then its makespan is included in the analysis. The mixed integer 

programming model of the random instance was formulated after Gueret et al. (2000) using GAMS code. Simulations 

for the implementation of the CDS heuristic and LB evaluation were developed using Matlab. 

 

 
 

Figure 1. Flowchart of methodological outline 

 

4. Results and Discussions 
 

The performance analysis was evaluated by varying the number of machines (M) of the shop, the number of jobs (N) 

and the probability distribution (uniform and exponential) of their processing times in the machines. For each 

configuration, 1,000 random instances were generated. The makespan LB as well as the makespan obtained by the 

scheduling plan generated by the heuristic CDS were evaluated for each instance. For the same FSP, mixed integer 
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linear programming codes (in GAMS) were generated automatically in order to determine the optimal solution for 

each instance. 
 

4.1. Lower Bound and CDS Heuristic Comparison 
 

Table 1 summarizes the average results obtained for the relationship between the makespan of scheduling plans 

evaluated with the heuristic CDS and the makespan LB for processing times following a uniform distribution. The 

values listed in Table 1 are plotted in Figure 2 to allow visualization of changes according to the number of jobs on a 

logarithmic scale. 

 

Table 1. Average ratio between CDS and LB for a selection of number of jobs (N) and machines (M) considering 

uniformly and exponentially distributed processing times 

 

 
 

Results show that keeping the same number of machines and increasing the number of jobs in the shop a higher relative 

discrepancy of the makespan value obtained with CDS heuristic and the corresponding makespan lower bound can be 

observed. The maximum discrepancy is reached when the number of jobs is identical to the number of machines in 

the shop. Considering uniform distributed processing times and 10 machines, for example, the maximum discrepancy 

of 21% occurs for 10 jobs. Similarly, for 50 machines this point occurs for 50 jobs with maximum discrepancy of 

36%; for 100 machines it happens at 100 jobs with maximum discrepancy of 40% while for 300 machines the 

maximum at 300 jobs is observed with a maximum discrepancy of 44%. As shown in the Figure 2, increasing the 

number of jobs over the number of machines tends to decrease considerably the relative discrepancy. 

 

 
 

Figure 2. Average ratios between CDS and LB with uniformly distributed processing times 

 

A high idle manufacturing system can be observed in instances with number of jobs less than the number of machines. 

Inserting more jobs in a relatively idle system tends to increase the use of the machines and therefore a higher relative 

discrepancy of the CDS makespan and its corresponding LB can be observed. In instances with number of jobs higher 

than the number of machines, the number of possible scheduling solutions is higher. In this case, it should be possible 

to find a diminishing ratio to the increase in the number of jobs in the system, given that it will be possible to identify 
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a job that has less processing time on the first machine and put it before other jobs to be processed or otherwise, if the 

processing time is shorter in the last machine. 

Similar generated instances, but exponentially distributed processing times produced results shown in Figure 3. 

Analogously with the previous situation, the behavior of the ratios is similar but shows higher relative discrepancies 

than the former. The maximum point is also observed when N=M, but at a higher level than that obtained for the 

analysis, and lower dispersion obtained with uniformly distributed processing times. 

 
 

Figure 3. Average ratios between CDS and LB for exponentially distributed processing times 

 

Whilst for uniform distributed processing times 10 jobs in 10 machines provided average heuristic solution 21% higher 

than its LB, exponentially distributed processing times lead this gap to 30%. By comparing the graphics of Figures 2 

and 3 it can be seen that the relative discrepancy is almost doubled for instances with 300 jobs and 300 machines 

(=80%), when comparing results obtained with exponentially distributed processing times and those obtained (=44%) 

for jobs with uniformly distributed processing times. Figure 4 shows the evolution of the average absolute makespan 

values obtained with the CDS heuristic and its corresponding makespan LB for a manufacturing system with 100 

machines and progressive increase in the number of jobs. It is obvious that increasing the number of jobs in system, 

the maximum makespan tends to increase. This increment is most strongly observed for a number of jobs less than 

the number of machines, as mentioned before. With the progressive increase in the number of jobs from 100 jobs 

(N=M=100), there is a relatively steady makespan growth evaluated with the CDS heuristic. The value of the LB also 

increases, but at a lower rate when compared to the heuristic solutions. However, with more jobs in the system and 

consequent increase in makespan, the ratio to makespan LB tends to decrease. 

Problems with many jobs and many machines need more computation time to be solved. The total computational time 

for the execution of 1,000 instances was 9,181 seconds, or 2 hours and 33 minutes on a regular personal computer. Its 

indicates that each instance needed about 9.2 seconds for the determination of a scheduling plan by using the CDS 

heuristic, the evaluation of the LB, and the compilation of results. 

 

 
 

Figure 4. Mean absolute values for the makespan LB and CDS heuristic obtained makespan considering 

exponentially distributed processing times (M=100). 
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4.2. Lower bound, CDS heuristic and optimal solution 

 

To verify the feasibility of the MIP solver available, a program was developed using Matlab to generate instances that 

can be solved using a MIP model with GAMS. An automated batch system was also designed to process more than 

one MIP model in sequence without the need of user interaction. The results were compiled in a table and exported to 

Excel spreadsheet for further analysis. The limit for the simulation GAMS system time was set at 1,000 seconds. If 

the system did not find the optimal solution for an instance in this time interval, it abandons the current model and 

goes to search the optimal solution of the next generated instance. 

Initially, 500 instances with 10 jobs and 10 machines were generated and processed in the time limit for the GAMS 

model. Instances with 10, 20, 40 and 50 jobs, 10 machines and random exponentially distributed processing times 

were generated and submitted to solve. Results are summarized in Table 2. 

 

Table 2. Comparison between optimal solution (MIP), LB, and CDS heuristic solution for different configurations 

 

Size of Problems 
 instances 

generated 

 of 

solved 

instances 

Relative performance 

CDS/LB MIP/LB 

10 jobs × 10 machines 500 500 30% 21% 

20 jobs × 10 machines 200 92 24% 9% 

40 jobs × 10 machines 200 75 14% 1% 

50 jobs × 10 machines 120 44 14% 1% 

 

For each configuration, the number of instances and number of optimal solved instances diverge with increasing 

number of jobs. All instances with 10 jobs and 10 machines were solved in the time limit of 1,000 seconds while for 

a FSP with 50 jobs and 10 machines, only 44 of 120 generated instances were solved. The relative performances of 

the heuristic CDS and MIP model with respect to its LB are presented in the same frame. 

Obviously the optimal solution found for each case must lie between LB and CDS heuristic makespan solution. For 

problems with 10 jobs and 10 machines, the optimal solution was 21% higher of the LB, on average, while the heuristic 

solution remained above 30% of this same parameter. For problems involving a larger number of jobs, the optimal 

solution tends to the value of makespan LB. On average, MIP provided solutions that were only 0.89% above LB for 

problems with 50 jobs and 10 machines. In this case, the heuristic solution was, on average, 14% above LB. This 

indicates that, although the processing times follow an exponential distribution, the optimal solution is much “closer” 

to the LB than the CDS heuristic solution. 

For FSP with fewer jobs, the heuristic solution is “closer” to the optimal solution. It must be observed that this does 

not reflect the absolute makespan value of these instances but its relative discrepancies. For shops with many jobs or 

many machines, the discrepancy in absolute values may be high, although the relationship MIP/LB is probably very 

low. 

As already mentioned, when the number of jobs tends to infinity, the relative discrepancy obtained by the CDS 

heuristic and its LB tends to decrease. Simulations show that for 1,000 jobs and 10 machines, the heuristic solution is 

only an average of 3% above the LB, but in this case, the optimal solution could not be evaluated due its complexity 

taking too much computational time. Since the difference between optimal makespan solution and its LB decreases 

by increasing the number of jobs - with its solution being always better than the CDS heuristic solution – it can be 

said that the optimal makespan solution will be proportionally very close to LB for problems with a large number of 

jobs.  

 

5. Concluding Remarks 

 
FSP with makespan minimization can hardly be optimal solved when the number of jobs involved is considerably 

high. To undertake the remarkable variety and complexity of FSPs with large N and M machines (M>3), several 

heuristics and optimization models have been developed throughout the past few decades. Lower bound measures 

have also been included in complex search algorithms to derive interesting solutions in acceptable time. Most of these 

procedures consider makespan minimization as natural criterion to generate scheduling plans. In this paper, a study 

on the relationship between the makespan obtained by applying the heuristic CDS and its corresponding LB for 
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different manufacturing instances is presented. Additionally relations between these values and the makespan obtained 

from exact scheduling solutions were also included in the analysis. 

Simulation results show that with the progressive increase of the number of jobs in the shop, the relative discrepancy 

of the makespan value obtained with the CDS heuristic tends to increase to the value of the respective makespan LB 

until the number of jobs is equal to the number of machines in manufacturing (N=M). Additional increments of jobs 

from N=M lead to diminishing the relative discrepancy. On the other side, with more jobs in the shop higher makespan 

values are expected even if lower ratios between LB and CDS makespan are observed. 

Additionally, further simulations analyses with lower number of jobs and machines were performed to the aim to 

identify how close the CDS heuristic and the LB would be situated from optimal makespan solution. Instances with 

10, 20, 40 and 50 jobs and 10 machines were simulated and solved with a GAMS model. In terms of ratios, the values 

obtained for the relative makespan discrepancies were similar to those observed for the relationship between the values 

obtained with the CDS heuristic and its LB. Because the makespan value of optimal solution is always included 

between the makespan found by the heuristic and its LB, the value of the optimal solution tends to be closer the former 

with increasing number of jobs in the shop. Thus, it can be said that, in a shop with many machines and few jobs, the 

heuristic shows average results near optimal solution while for shops with many jobs and few machines, the lower 

bound seems to be a good estimate for the optimal makespan. 
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