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Abstract 

This research reports the optimization of milling process for Al7075 aerospace alloy under dry cutting 
conditions employing Response Surface Methodology (RSM). The influence of various control parameters 
such as spindle speed (RPM), feed rate (ƒz) and axial depth of cut (ap) are examined to improve the surface 
roughness (Ra) and the material removal rate (MRR). A set of 20 test trials using a circumscribed central 
composite design (CCCD) is utilized for the design of experimentation (DOE). The second-order 
polynomial regression equations are developed to predict the response attributes. In addition, the RSM-
based parametric and variance exploration is made to quantify the effects of milling variables on the output 
characteristics. Lastly, the RSM-based Desirability Function is adopted for multi-attribute optimization. By 
applying this approach, the following have been obtained: a minimum Ra of 0.26 µm and maximum MRR 
of 2196E+04 mm3/min at the spindle speed 2577.32 rpm, the ƒz 531.650 mm/min, and the ap 4.6330 mm.  

Keywords  
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1. Introduction

Aluminum and its alloys have been the part of aerospace industry since the 19th century and their appeal has grown 
up by the time. Recently, Al7075 is becoming the mainstream material for lightweight aerospace applications due to 
its excellent strength, good corrosion resistance, better formability and low-cost characteristics (Martín et al. 2018). 
With the emerging concerns regarding the environmental health and safety and the cost associated with the cutting 
fluids (Pusavec et al. 2010); dry milling of alloys becomes the preferred choice for manufacturers. Despite the fact 
that this process encourages the environmentally friendly machining with high MRR, surface characteristics majorly 
suffer. To address this issue, the recent trend in machining practices skewed towards the development of models 
(mathematical and optimization) that can provide adequate assistance to practitioners and machinists in selecting 
appropriate process parameters for the desired responses.   

In this regard, LMalghan et al., (2018) optimized the face milling parameters for AA6061 with respect to Ra, cutting 
forces, and power consumption employing RSM-based Desirability approach and Particle Swarm Optimization. Both 
of the models reveal that 3000 rpm spindle speed, 500 mm/min feed rate, and 3 mm depth of cut are the optimal 
process variables. Likewise, Okokpujie et al. (2018) used the least square approximation method and RSM to optimize 
the end milling process for Al6061. A minimum Ra (0.5 µm) is achieved at 2034.608 rpm spindle speed, 100 mm/min 
feed rate and 20 mm axial depth of cut. In another work, Dikshit et al. (2016) modelled the cutting forces during the 
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ball end-milling of Al2014-T6 using RSM. The optimum combination of control factors was achieved via Composite 
Desirability Function and Teaching Learning-based Optimization techniques. While working on Inconel 718, Zhou et 
al., (2017) developed a multi-objective optimization model by integrating Grey Relational Analysis, Neural Networks, 
and Particle Swarm Optimization for ball end-milling. The study concluded that the proposed integrated model is 
more efficient (62.87%) than the original Grey Relational Analysis.  
 
Of the work related to Al7075, Subramanian et al., (2012) established a second-order quadratic predictive model for 
the Ra in terms of tool geometry and milling variables using RSM. The work suggests that 115 m/min cutting speed, 
0.04 mm/tooth feed, 2 mm axial depth of cut, and 12° radial rake angle is the optimal parametric setting for the Ra. 
Similarly, Kumar et al. (2015) applied RSM and Artificial Neural Networks to optimize the turning parameters for 
Al7075 hybrid composite. The study concluded that the best surface finish is achieved at 0.05 mm/rev feed rate, 170 
m/min cutting speed, and 90° approach angle. It further shows that the RSM is a better model with 0.9972 correlation 
coefficient than Artificial Neural Networks.  
 
In view of the above-cited literature, a sufficient amount of work can be found on optimizing the machining parameters 
for surface roughness of various materials utilizing different soft computing approaches. It is also evident that a need 
still exists to employ the multi-attribute optimization for surface roughness and material removal rate during the 
milling of Al7075 which has so far not drawn much attention in the published literature. Therefore, the main focus of 
the present work is to develop a holistic model for Ra and MRR considering spindle speed, feed rate, and axial depth 
of cut as control process variables. Response Surface Methodology is used for DOE and statistical analysis. Moreover, 
multi-attribute optimization has been made applying RSM-based Desirability Function.  
 
2. Experimental Details  
 
Given the various applications in regards to the aircraft industry, Al7075 was studied as a workpiece material for the 
present research work. The elemental composition identified through spectroscopy is given in Table 1. Moreover, the 
key thermo-mechanical properties of Al7075 with respect to the aforementioned applications are also listed in Table 
2. 
 

Table 1. Elemental Composition of Al7075 
Element  Ti Si Mn Fe Cr Cu Mg Zn Al 
Weight (%) 0.035 0.10 0.11 0.21 0.25 1.50 2.00 4.58 Balanced  

 
Table 2. Thermo-Mechanical Properties of Al7075 

Properties  Value  Unit 
Density  0.101 lb/m3 
Fatigue Strength  160 MPa 
Thermal Conductivity  130 W m-1 K-1 
Melting Point  483 ºC 

 
Slot milling was performed on rectangular bars (150×60×10 mm) of Al7075 using MCV600 CNC machining center 
(Long Chang Taiwan). With regard to control machining parameters, the following were considered: the spindle speed 
(rpm), the feed rate (ƒz), and the axial depth of cut (ap), see Table 3 for more details. Cobalt coated high-speed steel 
end mill was utilized as cutting tools. The objective of this research relates to the optimization of machining variables 
for Ra and material removal rate under dry machining environment. RSM-based DOE was made using MINITAB 18. 
A total of 20 test trials were performed based on the CCCD with 8 cube points, 6 center points, 6 axial points and 
1.633 alpha value. The CCCD is a classic form of DOE which provides high quality prediction over the entire design 
space by introducing new extreme levels of factors (high and low). A slot of 9×1.5×60 mm was milled in each test 
with a new tool and machining time was noted throughout the experimentation. The achieved dimensions of each slot 
were measured using CE 450DV coordinate measuring machine (Chien Wei Taiwan) and MRR was calculated using 
Equation 1.  
 

MRR = Achieved (Lengthslot × Widthslot × Heightslot) / machining time(t)  m3/min          1 
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After setting the parameters of the S128 Surtronic surface texture meter (Taylor Hobson, England) at 4 mm evaluation 
length and a 0.8 mm cut-off length, the Ra of each slot was measured at three different positions. A second-ordered 
polynomial equation was modelled for Ra and MRR. Parametric effects and variance analysis were carried out to 
examine the input variable’s behavior for response attributes. Finally, a RSM-based Desirability Function was 
employed for the simultaneous optimization of Ra and MRR.  
 

Table 3. Control Process Variables Used During the Dry Milling of Al7075 
Parameter  Symbol Unit Parameter Level 

-1 0 +1 
Spindle Speed  RPM  rpm  1000 2000 3000 
Feed Rate  ƒz mm/min 400 450 500 
Axial Depth of Cut  ap mm 2 3 4 
Radial Depth of Cut ar mm 9 9 9 

 
3. Experimental Results and Discussion  
 
Response Surface Methodology is the combination of experimental design, mathematical modelling, and statistical 
exploration which provides an efficient insight of the process under investigation. Therefore, RSM has been engaged 
for the DOE as well as for the analysis during this experimentation. To ensure any dispersion in the data, three replicate 
sets of machining trials were conducted using RSM-CCCD approach. The average measured Ra of Al7075 and MRR 
are listed in Table 4.  
 

Table 4. Results of Ra and MRR for Al7075 as per RSM-based CCCD design 
 Experimental RSM Predicted Error 

Test 
Trials 

Spindle 
Speed 
(RPM) 

 
(rpm) 

Feed Rate 
(ƒz) 

 
 

(mm/min) 

Axial Depth 
of Cut 

(ap) 
 

(mm) 

Surface 
Roughness 

(Ra) 
 

(µm) 

Material 
Removal 

Rate 
(MRR) 

(mm3/min) 

Surface 
Roughness 

(Ra) 
 

(µm) 

Material 
Removal 

Rate 
(MRR) 

(mm3/min) 

Ra 
 
 
 

(%) 

MRR 
 
 
 

(%) 
1 1000(-1) 400(-1) 2(-1) 0.74 7,160 0.80 7,157 8.5 0.04 
2 3000(+1) 400(-1) 2(-1) 0.33 7,175 0.34 7,172 4.9 0.04 
3 1000(-1) 500(+1) 2(-1) 0.98 8,970 1.08 8,993 9.9 0.25 
4 3000(+1) 500(+1) 2(-1) 0.38 8,950 0.42 9,030 10.8 0.89 
5 1000(-1) 400(-1) 4(+1) 0.78 14,600 0.87 14,545 11.1 0.38 
6 3000(+1) 400(-1) 4(+1) 0.37 14,450 0.43 14,452 15.0 0.02 
7 1000(-1) 500(+1) 4(+1) 0.93 17,950 1.04 17,978 11.1 0.16 
8 3000(+1) 500(+1) 4(+1) 0.29 17,880 0.34 17,908 14.7 0.16 
9 367(-1.633) 450(0) 3(0) 1.16 12,160 1.20 12,187 3.3 0.22 

10 3633(+1.633) 450(0) 3(0) 0.27 12,186 0.29 12,142 9.6 0.37 
11 2000(0) 368.35(-1.633) 3(0) 0.49 9,950 0.54 10,006 10.6 0.56 
12 2000(0) 531.65(+1.633) 3(0) 0.65 14,400 0.75 14,327 13.4 0.51 
13 2000(0) 450(0) 1.367(-1.633) 0.6 5,537 0.64 5,499 6.7 0.70 
14 2000(0) 450(0) 4.633(+1.633) 0.57 18,758 0.65 18,780 12.3 0.11 
15 2000(0) 450(0) 3(0) 0.66 12,200 0.74 12,175 11.9 0.21 
16 2000(0) 450(0) 3(0) 0.65 12,175 0.74 12,175 13.2 0.00 
17 2000(0) 450(0) 3(0) 0.66 12,180 0.74 12,175 11.9 0.04 
18 2000(0) 450(0) 3(0) 0.67 12,145 0.74 12,175 10.6 0.25 
19 2000(0) 450(0) 3(0) 0.66 12,155 0.74 12,175 11.9 0.16 
20 2000(0) 450(0) 3(0) 0.66 12,161 0.74 12,175 11.9 0.11 

 
The second-order polynomial regression equations using RSM were developed for the Ra and the MRR as given 
below. The predicted values for Ra and MRR obtained from the regression model are mentioned in Table 4.  
 

Ra = -4.234 + 0.000159 spindle speed + 0.01839 feed rate + 0.4440 axial depth of cut 
+ 0.000000 spindle speed*spindle speed - 0.000015 feed rate*feed rate 
- 0.03245 axial depth of cut*axial depth of cut - 0.000001 spindle speed*feed rate 
- 0.000005 spindle speed*axial depth of cut - 0.000550 feed rate*axial depth of cut  

MRR = -1567 + 0.032 spindle speed + 3.39 feed rate + 606 axial depth of cut 
- 0.000004 spindle speed* spindle speed - 0.00125 feed rate*feed rate 
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- 13.4 axial depth of cut*axial depth of cut + 0.000113 spindle speed*feed rate 
- 0.0269 spindle speed*axial depth of cut + 7.988 feed rate*axial depth of cut 

 
3.1 Surface Roughness, (Ra) 
 
From Table 4 and Figure 1, it can be seen that the predicted values are in close correlation with the experimental 
values (within 15% error), thus, validating the regression model. Moreover, Figure 2 also shows a normal distribution 
of error where residuals for all the data points lie in a close vicinity of the straight line.  
 

  
Figure 1. Comparison between experimental and 

predicted values for Ra 
 

Figure 2. Normal probability plots of residuals for Ra 

 
Figure 3. Main effect plots for Ra 

 
To perceive the influence of each parameter on Ra, main effects analysis has been carried out as illustrated in Figure 
3. It is evident from the figure that the spindle speed exhibits an inverse behavior for Ra. This can be attributed from 
the fact that the high spindle speed generates more heat during the machining, thus, causing thermal softening of the 
material and eventually enhances the machinability of Al7075. As a result, a better surface finish is achieved. While 
the feed rate shows a linear relationship with Ra. Whereas, the surface roughness tends to increase with the increase 
in ap, and then decrease. Finally, the main effect plots reveal that 4000 rpm spindle speed, 400 mm/min ƒz, and 4 mm 
ap can produce a better surface quality. The contour and surface plots for Ra are illustrated in Figure 4(a-c) and Figure 
5(a-c). These plots can help in the process of predicting Ra values at any point of the solution domain.   
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Figure 4(a-c). Contours plots for Ra 

 
Figure 5(a-c). Surface plots for Ra 

 
Additionally, ANOVA has been performed to quantify the effects of different influential variables for Ra at a 95% 
confidence interval and is presented in Table 5. As it can be noticed from Table 5, the spindle speed is the most 
significant variable for Ra with 90.50% contribution followed by the feed rate and the axial depth of cut with 2.83% 
and 0.08% contribution, respectively. It is also worth noting that the model is highly significant with the 0.000 p-value 
and the lack-of-fit is insignificant for the Ra at the set value of α = 0.05 which means that the model accommodates 
all the values well within it. 
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Table 5. ANOVA Results for Ra of Al7075 
Source DF Adj SS Adj MS F-Value P-Value 
Model 10 1.02143 0.102143 625.81 0.000 
Spindle speed 1 0.92578 0.925780 5672.11 0.000 
Feed rate 1 0.02895 0.028949 177.37 0.000 
Axial depth of cut 1 0.00089 0.000891 5.46 0.044 
Spindle speed* Spindle speed 1 0.00351 0.003508 21.49 0.001 
Feed rate*Feed rate 1 0.01915 0.019147 117.31 0.000 
Axial depth of cut*Axial depth of cut 1 0.01391 0.013908 85.21 0.000 
Spindle speed*Feed rate 1 0.02205 0.022050 135.10 0.000 
Spindle speed*Axial depth of cut 1 0.00020 0.000200 1.23 0.297 
Feed rate*Axial depth of cut 1 0.00605 0.006050 37.07 0.000 
Error 9 0.00147 0.000163 

  

Lack-of-Fit 5 0.00127 0.000254 5.08 0.070 
Pure Error 4 0.00020 0.000050 

  

Total 19 1.02290 
   

 
3.2 Material Removal Rate, (MRR) 
 
From Table 4 and Figure 6, an excellent correlation between the experimental values and the RSM-based predicted 
values can be observed with a 0.89% error. These results can be verified by the normal distribution of error as given 
in Figure 7 where the residuals of all trials fall on the line.  
 

  
Figure 6. Comparison between MRR experimental 

and MRR predicted values 
 

Figure 7. Normal probability plots of residuals for 
MRR 
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Figure 8. Main effect plots for MRR 

 
Parametric effects analysis for MRR was conducted and is presented in Figure 8. The figure indicates that the spindle 
speed has almost a constant effect on MRR. On the other hand, both the feed rate and the axial depth of cut demonstrate 
a direct relationship with MRR which is an anticipated trend. The MRR is always the function of feed rate and axial 
depth of cut irrespective of the spindle speed. From the main effect plots, the spindle speed of 1000 rpm, ƒz of 500 
mm/min, and ap of 4 mm can be selected to achieve high MRR. Furthermore, to estimate the MRR in any region of 
the data domain, the contour and the surface plots were generated as portrayed in Figure 9(a-c) and Figure 10(a-c).  
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Figure 9(a-c). Contours plots for MRR 

 
Figure 10(a-c). Surface plots for MRR 

 
Lastly, the ANOVA was performed for the identification of significant factors at 95% confidence interval and results 
are presented in Table 6. The ANOVA shows that the ap and the ƒz both are significant with 89.95% and 9.5% 
contribution, respectively and the remaining portion is contributed by their interaction with 0.52%. The significance 
of the model (p-value 0.000) can also be observed from the table. Despite the fact that the lack-of-fit proves significant 
for the MRR at 95% confidence interval; the highest attained value of R-sq (99.99%) and R-sq (adj) 99.98% make it 
a significant model.  
 

Table 6. ANOVA results of MRR of Al7075 
Source DF Adj SS Adj MS F-Value P-Value 
Model 10 245047050 24504705 8485.13 0.000 
Spindle speed 1 2499 2499 0.87 0.377 
Feed rate 1 23316082 23316082 8073.56 0.000 
Axial depth of cut 1 220443358 220443358 76331.93 0.000 
Spindle speed* Spindle speed 1 199 199 0.07 0.799 
Feed rate*Feed rate 1 129 129 0.04 0.837 
Axial depth of cut*Axial depth of cut 1 2386 2386 0.83 0.387 
Spindle speed*Feed rate 1 253 253 0.09 0.774 
Spindle speed*Axial depth of cut 1 5778 5778 2.00 0.191 
Feed rate*Axial depth of cut 1 1276003 1276003 441.84 0.000 
Error 9 25992 2888 

  

Lack-of-Fit 5 24424 4885 12.46 0.015 
Pure Error 4 1568 392 

  

Total 19 245073042 
   

 
3.3 Multi-Attribute Optimization using RSM-Based Desirability Function  
 
During machining, simultaneous optimization of multi response characteristics is desirable in order to achieve a unique 
objective function which can incorporate the influence of all control parameters. For this purpose, the "Desirability 
Function" is a widely employed approach which can target the machining conditions for the optimal response value. 
This method scales the desirability function of each response individually ranging from 0 to 1 (0 indicates the 
unacceptable value and 1 indicates the optimal value). It is comprised of three strategies; (i) smaller-the-better, (ii) 
larger-the-better, and (iii) nominal-the-better. During the present research, multi-attribute optimization was carried 
out using smaller-the-better strategy for Ra, and larger-the-better for MRR. Figure 11 shows the optimal values for 
both the response attributes at a desirability value of 1. It can be further noted that the optimal values of Ra (0.26 µm) 
and MRR (2196E+04 mm3/min) have been achieved at 2577.32 rpm spindle speed, 531.650 mm/min ƒz, and 4.6330 
mm ap.  
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Figure 11. Desirability Function-based optimal parametric values for Ra and MRR of Al7075 

 
 
4. Conclusions  
 
With the aim to improve productivity and reduce the manufacturing cost of Al7075 for aerospace applications, multi-
attribute optimization for surface roughness and material removal rate has been carried out using RSM-based 
Desirability Function. After the main effect analysis, ANOVA and discussion, the following findings are inferred: 
 

I. The second-ordered regression equations for surface roughness and material removal rate have demonstrated 
a good correlation between experimental values since the predicted values are within the acceptable error of 
15% and 0.89%, respectively. 

II. With respect to surface roughness, the spindle speed has the most pronounced effect with 90.50% 
contribution. Moreover, the main effect plots show that 4000 rpm spindle speed, 400 mm/min ƒz, and 4 mm 
ap enables the dry milling operation to produce smaller Ra under the dry machining conditions.  

III. For the material removal rate, the axial depth of cut is the most influential variable with 89.95% contribution 
followed by the feed rate with 9.5% contribution. However, the spindle speed was found statistically 
insignificant for MRR.  

IV. Multi-attribute optimization has been successfully carried out for the dry milling of Al7075 with an optimal 
desirability value 1 utilizing RSM-based Desirability Function. Minimum Ra 0.26 µm and maximum MRR 
2196E+04 mm3/min can be obtained at spindle speed 2577.32 rpm, feed rate 531.650 mm/min, and axial 
depth of cut 4.6330 mm. 
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