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Abstract 

Preventive maintenance aims to keep components in good operating condition and to reduce the probability of failure. 
Optimizing the frequency of preventive maintenance continues to be an important research topic because it can 
significantly impact operating costs in industrial settings. A key factor in optimizing preventive maintenance is the 
calculation of the probability of component failure. Estimates of this probability have commonly been based on 
historical data and the maintenance quality. The improvement factor (IF) was introduced in the literature as a way of 
measuring maintenance quality so managers and planners could better estimate the probability of component failure, 
post maintenance. The IF estimate can be based on either historical failure data or expert judgment. It has been 
demonstrated in previous works that relying on expert judgment is the better of the two approaches when estimating 
the IF. Such judgment is, however, inherently biased. We propose a framework for estimating the IF based on expert 
judgment that aims to circumvent such biases. To demonstrate the effectiveness of the proposed framework, we 
estimate the optimum maintenance interval of a system at a real-world offshore oil and gas installation. The results 
show our framework yielding an improved maintenance interval. 

Keywords: Maintenance; Fuzzy Logic; Human Error Factors; Simulation Model; Optimization 

1. Introduction

In a production facility, component failures can lead to downtime which can significantly increase a company’s 
maintenance costs and negatively impact revenues. For this reason, executives and managers need to focus on evolving 
strategies for reducing component failure. One well-known strategy is based on the expected probability of component 
failure (Tezuka et al. 2015). Inadequate probability estimates can, however, lead to excessive maintenance which 
increases overall production costs in the short term (Ding & Kamaruddin 2015).  

A key aspect for calculating the probability of component failure is having a good understanding of the effectiveness 
of the maintenance being performed. Much work has been published attempted to quantify maintenance effectiveness 
by introducing a parameter referred to as the maintenance improvement factor (IF) (Pham & Wang 1996; Wang 2006; 
Letot et al. 2015; and Hosseini & Ghadimi 2016). These papers estimate the IF based on probabilistic approaches by 
using failure data. Maintenance quality is, however, directly related to the expertise of maintenance personnel (Khatab 
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& Aghezzaf 2016). Consequently, the personnel who perform maintenance activities can often provide a better 
understanding of the maintenance effectiveness than can data-centered probabilistic approaches, especially given that 
it is often difficult to quantify the maintenance effectiveness of a given maintenance event (Noortwijk et al. 1992; 
Hauge et al. 2016). 
 
Multiple studies have found that employees, both experts and non-experts, have a tendency to overrate their own job 
performance (Doyle et al.2009; Kirkeb¢en 2009; and Hester 2012). Ecken et al. (2011) consider this self-overrating 
to be a form of desirability bias. This bias means that employees may base their judgments on any possible gain they 
can get from a study's outcome. Walls & Quigley (2001), Kynn (2008), and Tredger et al. (2016) further show how 
employees can intentionally or unintentionally make unrealistic judgments. Thus, one can expect an inherent bias in 
interview or survey results coming from expert and non-expert maintenance personnel who are asked about the 
effectiveness of maintenance performance. This bias impacts the maintenance performance estimates, yielding an 
unrealistic IF. A method for incorporating de-biased expert judgment into the IF estimates is clearly needed. 
 
The main objective of this paper is to introduce an approach for estimating the improvement factor that aims to 
circumvent the inherently biased opinions of maintenance personnel. This is achieved by integrating the results of a 
survey administered to non-expert maintenance personnel with estimates of maintenance performance provided by 
recognized maintenance experts, typically lead supervisors. Hoffman et al. (1995) acknowledge that the nature of a 
question can itself bias survey results. Tredger et al. (2016) indicate that managing bias begins with managing the way 
questions are structured and designed. The proposed survey does not simply include questions directly pertaining to 
the maintenance performance. The survey incorporates, rather, 18 multiple choice questions related to factors that can 
lead to human maintenance error. These factors are referred to as Human Error Identification (HEI) factors. Given 
that both the survey results and expert estimates are in linguistic form, an approach based on fuzzy set theory is used 
to develop a unique Expert Improvement Factor (EIF).  
 
The 𝐸𝐸𝐸𝐸𝐸𝐸 output is within the unit interval: zero being ‘as good as new’ maintenance performance, and one being ‘as 
bad as old’ maintenance performance. From this, an estimate can be made of the probability of component failure post 
maintenance. A simple simulation model is used to optimize the maintenance interval of two components operating 
in parallel. The results show that the accuracy of the 𝐸𝐸𝐸𝐸𝐸𝐸 is a key driver of the total maintenance cost, proving that the 
𝐸𝐸𝐸𝐸𝐸𝐸 based on unbiased expert judgment increases the accuracy of optimum maintenance interval estimates.  
 
2. Literature Review 

 
Maintenance is meant to either preserve or improve components, and its effectiveness impacts the probability of 
component failure (Al-Najjar & Alsyouf 2003). The degree to which maintenance activities impact this probability is 
referred to as maintenance performance. This paper uses four maintenance performance levels as follows:  
 
Worst maintenance: restores a component in a way that makes it fail immediately. An example of worst maintenance 

is the application of an incorrect maintenance procedure (Pham & Wang 1996).  
Minimal maintenance: partially restores a component, providing a state ‘as bad as old.’ The component behaviour 

remains the same as before it failed. An example of minimal maintenance is the lubrication of bearings (Jardine 
& Tsang 2013).  

Imperfect maintenance: lies between minimal maintenance and perfect maintenance and restores the component to a 
state between ‘as good as new’ and ‘as bad as old’ (Brown & Proschan 1980).  

Perfect maintenance: restores a component completely, providing a state ‘as good as new.’ Completely replacing a 
component with a new one is also considered perfect maintenance (Pham & Wang 1996).  

 
Maintenance performance impacts the probability of component failure and is well documented in the literature as the 
maintenance improvement factor (IF). Nakagawa (1979), Block et al. (1985) and Makis & Jardine (1992) have 
mathematically modelled the effect of maintenance on the probability of component failure and provide foundational 
methods for calculating the IF. Others have developed enhanced approaches based on these methods, such as: Zhou 
et al. (2016), Kim et al. (2016), and Hosseini & Ghadimi (2016). 
 
The above authors proposed probabilistic models, and historical maintenance and repair data sets to determine the IF. 
These data sets do not, however, incorporate subjective information about maintenance and repair activities. 
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Subjective information includes things like detailed component-specific failure analysis, quality of the spare 
replacement, maintenance procedure compliance and restricted time for finishing a repair (Hauge et al. 2016). This 
lack of information can result in sub-optimal maintenance strategies (Garg & Sharma 2012; Panchal & Kumar 2016). 
Moreover, Liu et al. (2011) acknowledge that incorporating expert judgment into maintenance optimization models 
yields robust results. Accordingly, when there is a lack of data, subjective information provided by surveys and experts 
can be incorporated to evaluate maintenance effectiveness, with the end goal of enhancing maintenance strategies 
(Said et al. 2016). 
 
Expert judgment provides subjective information with respect to maintenance performance, which typically cannot be 
extracted from an operational or maintenance data set (Peres et al. 2007; Doyle et al. 2009). The value of this expert 
judgment is acknowledged by a number of authors and has been incorporated into models such as those for improving 
maintenance downtime optimizing human safety, optimizing condition-based maintenance, calculating optimal 
preventive maintenance policies, optimizing maintenance management and identifying latent maintenance errors 
(Hussin et al. 2012; Azadeh et al. 2014; Asadsadeh & Azadeh 2014; Hosseini & Ghadimi 2016; Qi et al. 2015; Chiu 
& Hsieh 2016). Furthermore, expert judgment has been included in reliability models associated with the gas chilling 
and liquefaction unit of a hydrocarbon processing facility, a manufacturing system and a safety instrumented system 
(Hennequin & Arango 2009; Rahimi & Rausand 2013; Hammed et al. 2016). The above mentioned works recognize 
expert judgment as a tool for enhancing reliability estimates. They do not, however, address the issue of countering 
bias in expert judgment. Tredger et al. (2016) break out the most common biases associated with expert judgment into 
six types: anchoring, availability, framing, small sample, over-confidence, and substitution. 
 
Anchoring occurs when an expert uses initial or prior information to make a judgment. Availability refers to the use 
of the first thought as a judgment. Framing takes place when the questions posed to an expert are poorly designed. 
Small sample bias results from having too few experts. Overconfidence occurs when an expert is overly confident in 
his or her knowledge. Substitution takes place when an expert answers only the easiest questions. These bias types, 
do not, however, include the respondent’s desirability of the outcome. That is to say, an expert’s desire to achieve or 
influence a certain outcome, either positively or negatively (Ecken et al. 2011). For this reason, the works of Tredger 
et al. (2016) and Ecken et al. (2011) point to a seventh type of bias. Maintenance performance based on expert 
judgment can be biased by one or all of the above types.  
 
Numerous studies have been published that aim to reduce expert bias in different fields, including organizational 
evaluation, auditing, health sciences, foresight and actuarial work (Kromrei 2015; Nelson & Tan 2005; Croskerry et 
al. 2013; Ecken et al. 2011; Tredger et al. 2016) These studies aim to de-bias judgments by training to increase their 
awareness of possible biases. Few studies are found in the maintenance field that are aimed at reducing expert bias. 
Doyle et al. (2009) rely on coaching and training as core techniques for reducing bias when estimating component 
lifetime distributions. Hussin et al. (2012) rely on a trained external assessor for reducing bias in offshore gas 
compression downtime estimates. But training does not eliminate the desirability bias because experts may still prefer 
one alternative over another based on the expected gain resulting from their analysis. 
 
Despite the importance of subjective information for optimizing maintenance models, there does not appear to be a 
method for calculating the IF based on unbiased expert judgment. This paper presents a framework that aims to fill 
this gap, by calculating the IF based on the Expert Improvement Factor (𝐸𝐸𝐸𝐸𝐸𝐸). The proposed framework aims to 
reduce all seven bias types mentioned above by asking four recognized experts, typically lead supervisors, for their 
appraisal of the following maintenance performance levels, based on the degree of component restoration: as bad as 
old; imperfect low; imperfect medium; imperfect high; and as good as new. These performance levels will help to 
lessen the influence of desirability bias and also reduce anchoring, availability, and substitution biases. This 
framework further includes the administering of a survey to all non-expert maintenance personnel. This survey aims 
to reduce the framing, overconfidence and small sample biases by incorporating HEI factors that determine the 
conditions that can lead to human error in maintenance. 
 
It should be noted that HEI factors are referred to by different names in the literature, including performance indicator 
factors, performance shaping factors, and error producing conditions (Rausand 2011). Maintenance activities involve 
human actions and, therefore, bring with them the possibility of human error (Alireza et al. 2013). It has been shown 
that human error lead to 25% of unexpected nuclear industry shutdowns and up to 90% of all industrial accidents (Heo 
& Park 2010; Rausand 2011). The consequences of human error vary from the insignificant to the catastrophic. Human 
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error in maintenance can impact the equipment failure rate, the occurrence of accidents, and the IF (Davies 2000; 
Dhillon 2009; Kumar & Gandhi 2011; Antonovsky et al. 2016).  
 
HEI factors have been discussed in a number of studies (Antonovsky et al. 2016; Asadsadeh & Azadeh 2014 and, in 
the fuzzy logic context, Kumar & Gandhi 2011).  Generally, HEI factors are classified into three groups: external, 
internal and stressor. Working conditions comprise the external factors. Internal factors recognize the individual 
characteristics of workers, such as experience, skill and motivation. Stressor factors encompass conditions affecting 
the cognitive performance of the maintenance personnel (Abbassi et al. 2015).  
 
Antonovsky et al. (2016) interviewed maintenance personnel at a real-world petroleum installation in an effort to 
identify the HEI factors most likely to lead to maintenance failure. While they do not classify the factors, a total of 26 
factors were identified, of which 16 can be considered external and 10 internal. None of the factors identified in the 
study fall into the HEI stressor group. Specifically, workload and fatigue were not singled out as factors. (Wang & 
Tsai 2014) found, however, that workload and fatigue play an important role in maintenance error. The survey that 
will be conducted as part of this framework incorporates external, internal, and stressor HEI factors. 
 
As noted above, Kumar & Gandhi (2011) use fuzzy logic to transform linguistic terms supplied by experts into 
numerical data in an effort to quantify HEI factors. Fuzzy set theory, introduced by Zadeh (1965), provides a 
mathematical method for transforming linguistic terms into numerical data. Fuzzy set theory has a rich history as 
documented in Zadeh (1965); Zimmermann (1985); Klir (1995), Benitez et al. (2007), and CIM (2011). Since both 
the survey administered to maintenance crew members and the experts estimates of maintenance performance are 
expressed in linguistic terms, the proposed framework also uses fuzzy set theory. 
 
3. Methodology 

 
The Expert Improvement Factor (𝐸𝐸𝐸𝐸𝐸𝐸) is introduced with the intent of reducing expert bias to better estimate the 
probability of component failure. The 𝐸𝐸𝐸𝐸𝐸𝐸 is incorporated in a simulation model to optimize the maintenance strategy 
associated with the operation of two components at a real-world offshore oil and gas installation. The following 
subsections introduce the 𝐸𝐸𝐸𝐸𝐸𝐸 methodology and the simulation model. Results of the methodology are presented in 
the subsequent section where the impact of using the biased IF versus the 𝐸𝐸𝐸𝐸𝐸𝐸 is also presented. 

 
3.1 Novel EIF Methodology 
The proposed framework for calculating the EIF involves three key steps: administering a maintenance personnel 
survey, conducting expert interviews, and calculating the EIF. Figure 1 depicts these steps. Step one involves 
administering a survey to every member of the maintenance crew at a real-world offshore oil and gas installation to 
determine the quality of the maintenance. Step two involves interviewing maintenance experts to work out survey 
question weights, survey multiple choice impact on maintenance performance, the respondent baseline, and the 
establishment of maintenance performance baselines. Step three integrates the survey and interview results to 
determine the EIF. 

 
 

Figure 1. Methodology for calculating the unbiased EIF 
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A main goal of the approach presented here is to account for the seven biases associated with expert judgment. This 
is accomplished through the integration of the maintenance survey data with data collected from the expert interviews. 
The proposed framework steps are explained below. 
 
3.1.1 Maintenance Personnel Survey 
This paper presents a survey that incorporates HEI factors to best estimate the quality of maintenance. It should be 
noted that the survey includes only 18 multiple-choice questions (shown in Table 1) because the time allotted for 
answering the questions is ten minutes, a duration that has proven to be the most effective (Galesic & Bosnjak 2009). 
The formulation of these questions followed a thorough review of published papers identifying HEI factors in fields 
such as human error probability data, human reliability analysis, maintenance, and work shift scheduling (Basra & 
Kirwan 1998; Davies 2000; Kim & Jung 2003; Mannan 2005; Rausand 2011; Antonovsky et al. 2013; Wang & 
Chuang 2014). These studies duplicate some of the factors. Thus, the consolidation of these HEI factors leads to a 
total of 116 unique factors, including 55 external, 37 internal and 24 stressor. 
 
Ren et al. (2008) recognize significant variability associated with human error. It is this variability that limits one’s 
ability to identify the most representative HEI factors. The works of: Crichton (2005); DiMattia et al. (2005); Wang 
et al. (2015); Tabibzadeh & Meshkati (2014); Landucci & Paltrinieri (2016); Vinnem et al (2012); Skogdalen & 
Vinnem (2011) all make use some of the 116 HEI factors and further show how using HEI factors improves their risk 
analyses. The integration of the factors used across these works leads to 18 specific HEI factors. These factors form 
the basis of the maintenance survey questionnaire (see Table 1). Of these, particular consideration was given to the 
external HEI factor group pertaining to organizational culture. These factors have been acknowledged by Reiman & 
Oedewal (2006), and Asaad & Yusoff (2013) as playing a significant role in the carrying out of maintenance activities 
and in the development of maintenance strategies. As a result, eleven questions were designed based on the external 
HEI factor group, while the remaining questions were divided between the internal and the stressor HEI factor groups.  
 

Table 1. Survey questionnaire. 

 
The survey questionnaire solicits a respondent’s level of agreement with each question. Each question aims to quantify 
one HEI factor that influences human error associated with maintenance activity and, consequently, is known to impact 
maintenance performance. In this way, the survey results provide a useful tool for estimating 𝐼𝐼𝐼𝐼. Moreover, the survey 
aims to lessen the influence of five of the seven expert judgment biases discussed previously—anchoring, framing, 
small sample, overconfidence and desirability. Anchoring and desirability biases are reduced by polling for the level 
of agreement to a question not directly tied with the 𝐼𝐼𝐼𝐼. Framing bias is reduced by designing each question based on 
the HEI factors discussed above. Both overconfidence bias and small sample bias are reduced by administering the 
survey to all non-expert personnel at the installation. (If one respondent shows overconfidence in his responses, the 

# Question Very Low Low Medium High Very High 
1 Do you know which are your responsibilities and duties ?
2 How often your supervisor carry out a job performance review
3 How much are you trained for the job?
4 How often do you receive training?
5 How often your coworkers act as a team 
6 How often do you follow a written procedure?
7 How often the written procedures are available ? 
8 How often the written procedures are  actualized? 
9 How often do you receive a clear oral instruction?

10 How often do you receive a clear written work order
11 How well do you know the company maintenance policy?
12 How effective are the tools you actually use in the maintenance?
13 How often do you work in night shifts?
14 How often do you work extra time
15 How often are you overloaded of activities ?
16 How often are you short of time to finish a job?
17 How often your workplace space  is limited

18 How often the maintenance is postponed due lack of resources 
e.g. spare parts, tools.
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remaining responses are used to mitigate this bias.). The remaining two biases not reduced in this survey tool 
(availability and substitution) are addressed by the experts’ interviews that are explained next. 
 
3.1.2 Expert Interviews  
As discussed earlier (Step 2) the methodology involves interviewing maintenance experts to determine survey question 
weights, survey multiple-choice impact on maintenance performance, the respondent baseline, and the establishment 
of maintenance performance baselines. The math involved to interpret the interview results is presented below. Fuzzy 
set theory is used to transform the interview linguistic results into crisp data.  
 
Survey Questions Weight.  
Four recognized experts were asked individually what they thought was the appropriate weight for each of the 18 
survey questions. Weights indicate the degree of importance a question has when compared to all other questions, 
based on their perceived impact on maintenance performance. Accordingly, the i-th weight is provided by the j-th 
expert as a crisp (non-fuzzy) number between 1 and 100. This results in a 𝑁𝑁𝐸𝐸  𝑥𝑥 𝑁𝑁𝑄𝑄 matrix 𝑾𝑾𝒊𝒊𝒊𝒊 that incorporates the 
weights of the 𝑁𝑁𝑄𝑄 = 18 survey questions provided by each of the 𝑁𝑁𝐸𝐸 experts. As a result, the weight 𝑄𝑄𝑊𝑊𝑖𝑖  given to the 
i-th question can be calculated by incorporating the geometric mean (Dong, Zhang, Hong, & Xu 2010), 

𝑸𝑸𝑾𝑾𝒊𝒊 =
�∏ 𝑾𝑾𝒊𝒊𝒊𝒊

𝑵𝑵𝑬𝑬
𝒋𝒋=𝟏𝟏 �

𝟏𝟏
𝑵𝑵𝑬𝑬

∑ �∏ 𝑾𝑾𝒌𝒌𝒌𝒌
𝑵𝑵𝑬𝑬
𝒋𝒋=𝟏𝟏 �

𝟏𝟏
𝑵𝑵𝑬𝑬𝑵𝑵𝑸𝑸

𝒌𝒌=𝟏𝟏

,    (1)   

 
Multiple Choice Impacts on Maintenance Performance 
Each of the 18 survey questions is presented with an agreement scale consisting of the following levels: very low 
(VL), low (L), medium (M), high (H), and very high (VH). Each choice is thus associated with a different degree of 
impact on maintenance performance. For example, the eighth question (How much are you trained for the job?) may 
elicit a response of VL, indicating the respondent has received little job training. An employee who lacks training is 
likely more prone to maintenance error than his fully trained counterpart and that can negatively impact on 
maintenance performance.  
 
The agreement scales are expressed in linguistic terms and a method for transforming these terms into numerical data 
is required. As mentioned above, fuzzy set theory is the mathematical method for transforming linguistic terms into 
numerical data; thus, the agreement scales can be expressed as fuzzy numbers. While the chosen experts have an 
insight into the impact of each agreement scale level on the maintenance performance, some may lack knowledge of 
fuzzy set theory. Hence, an explanatory introduction of fuzzy set theory was provided to the experts with special 
attention given to fuzzy sets. A fuzzy set is defined mathematically as follows: 𝑍𝑍 = ��𝑥𝑥, 𝜇𝜇𝑉𝑉𝐿𝐿(𝑥𝑥)�|𝑥𝑥𝑥𝑥𝑥𝑥},where 𝑍𝑍 ⊂ 𝑋𝑋,  𝜇𝜇𝑉𝑉𝑉𝑉(𝑥𝑥) 
is the membership function defined as 𝜇𝜇𝑉𝑉𝑉𝑉(𝑥𝑥):𝑋𝑋 → [0,1], and where zero indicates non-membership and one indicates 
full membership to a fuzzy set (Zimmermann 1985). A triangular fuzzy set can be defined by a triplet (𝑥𝑥: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐; 𝜇𝜇(𝑥𝑥)) 
and a trapezoidal fuzzy set can be defined by the quadruplet (𝑥𝑥: 𝑎𝑎, 𝑏𝑏𝐿𝐿 , 𝑏𝑏𝐻𝐻 , 𝑐𝑐; 𝜇̂𝜇(𝑥𝑥)) where 𝑎𝑎, 𝑏𝑏𝐿𝐿 , 𝑏𝑏𝐻𝐻, and 𝑐𝑐 are the low, 
medium low, medium high, and high estimates respectively of a fuzzy set. Note, that a triangular fuzzy set can be 
easily transformed into a trapezoidal fuzzy set, such that (𝑥𝑥:𝑎𝑎, 𝑏𝑏, 𝑐𝑐; 𝜇𝜇(𝑥𝑥)) → (𝑥𝑥: 𝑎𝑎, 𝑏𝑏, 𝑏𝑏, 𝑐𝑐; 𝜇̂𝜇(𝑥𝑥)) (see Grzegorzewski & 
Mrówka 2005; and Bojadziev & Bojadziev 2007). 
 
Following a brief introduction to fuzzy set theory, the experts were asked to provide consensual estimates of the degree 
of component restoration for the questionnaire scales. Specifically, the experts were tasked with determining the 
appropriate parameters 𝑎𝑎(1), 𝑏𝑏(1), 𝑐𝑐(1), 𝑑𝑑(1)and 𝑒𝑒(1)as depicted in Figure 2. Based on these parameters, appropriate 
fuzzy sets can be determined for each of the respondent questionnaire scale choices, namely, VL, L, M, H and VH. 
Specifically, the consensual fuzzy sets include both trapezoidal and triangular fuzzy sets; thus, the triangular fuzzy 
sets are transformed into trapezoidal fuzzy sets. The trapezoidal fuzzy sets are as follows: 𝑉𝑉𝑉𝑉(𝑥𝑥) = (𝑥𝑥: 0, 0,𝑎𝑎(1),𝑏𝑏(1); 𝜇̂𝜇(𝑥𝑥)); 
𝐿𝐿(𝑥𝑥) = (𝑥𝑥:𝑎𝑎(1),𝑏𝑏(1),𝑏𝑏(1), 𝑐𝑐(1); 𝜇̂𝜇(𝑥𝑥)); 𝑀𝑀(𝑥𝑥) = (𝑥𝑥:𝑏𝑏(1), 𝑐𝑐(1), 𝑐𝑐(1),𝑑𝑑(1); 𝜇̂𝜇(𝑥𝑥)); 𝐻𝐻(𝑥𝑥) = (𝑥𝑥: 𝑐𝑐(1),𝑑𝑑(1),𝑑𝑑(1), 𝑒𝑒(1); 𝜇̂𝜇(𝑥𝑥)); and 𝑉𝑉𝑉𝑉(𝑥𝑥) =
(𝑥𝑥:𝑑𝑑(1), 𝑒𝑒(1), 𝑒𝑒(1), 100; 𝜇̂𝜇(𝑥𝑥)).  
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Figure 2. Agreement scale fuzzy sets. 

 
Respondent Seniority Baseline 
Survey respondents almost certainly have varying degrees of experience. Since the survey responses from a highly 
experienced employee are likely to be more reliable than those from a less experienced employee, a baseline is 
proposed in which each respondent can be compared and subsequently weighted based on their seniority. This baseline 
for the j-th expert is expressed as a trapezoidal fuzzy set 𝑅𝑅𝑗𝑗(𝑥𝑥) = (𝑥𝑥: 0,𝑎𝑎𝑗𝑗

(2),𝑏𝑏𝑗𝑗
(2),∞; 𝜇̂𝜇(𝑥𝑥)), where 𝑎𝑎𝑗𝑗

(2), and  𝑏𝑏𝑗𝑗
(2) are the 

seniority levels: medium low, and medium high in years. Figure 3 depicts the respondent baseline. If a respondent has 
seniority below 𝑎𝑎𝑗𝑗

(2) the respondent is discarded. However, if a respondent holds seniority equal or greater than 𝑏𝑏𝑗𝑗
(2) 

then this respondent is assigned the highest weight of one; otherwise, the respondent is assigned a weight of a 𝜇̂𝜇(𝑥𝑥).  
 

 
 

Figure 3. Respondent seniority baseline. 
 
Participating experts were asked to provide the seniority levels individually. These levels were averaged to merge the 
seniority estimates into a single fuzzy set (Bojadziev & Bojadziev 2007). The respondent baseline 𝑅𝑅(𝑥𝑥) ∈ (0,1) is 
considered to be: 𝑅𝑅(𝑥𝑥) = �𝑥𝑥: 0, 1

𝑁𝑁𝐸𝐸
∑ 𝑎𝑎𝑗𝑗

(2)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑏𝑏𝑗𝑗

(2)𝑁𝑁𝐸𝐸
𝑗𝑗=1 ,∞; 𝜇̂𝜇(𝑥𝑥)�. 

Maintenance Performance Baselines 
As previously established, expert judgment is inherently biased. The expert appraisal of the installation maintenance 
performance is therefore also biased, which can inappropriately impact maintenance optimization models. In order to 
reduce the effects of the remaining two biases (availability and substitution) the four experts were individually asked 
to provide their appraisal of the maintenance performance levels—as bad as old (ABAO), imperfect low (IL), 
imperfect medium (IM), imperfect high (IH), and as good as new (AGAN)—based on the low, medium, and high 
percentage of component restoration associated with each level. By asking the experts to appraise maintenance 
performance levels instead of the maintenance performance, unbiased appraisals should be produced. Moreover, these 
appraisals, in combination with the proposed framework, will circumvent the inherent expert biases during the IF 
assessment.  
 
Each of the j-th experts was asked to individually provide estimates of the parameters 𝑎𝑎𝑗𝑗

(3), 𝑏𝑏𝑗𝑗
(3), 𝑐𝑐𝑗𝑗

(3), 𝑑𝑑𝑗𝑗
(3), and 𝑒𝑒𝑗𝑗

(3) relating 
the degree of restoration to the maintenance performance levels ABAO, IL, IM, IH and AGAN utilizing Figure 4. 
Following a similar procedure to that above, the j-th fuzzy number can be written as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗(𝑥𝑥) = �0,0,𝑎𝑎𝑗𝑗

(3),𝑏𝑏𝑗𝑗
(3), 𝜇̂𝜇(𝑥𝑥)�, 

𝐼𝐼𝐼𝐼𝑗𝑗(𝑥𝑥) = �𝑎𝑎𝑗𝑗
(3),𝑏𝑏𝑗𝑗

(3),𝑏𝑏𝑗𝑗
(3), 𝑐𝑐𝑗𝑗

(3)𝜇̂𝜇(𝑥𝑥)�, 𝐼𝐼𝐼𝐼𝑗𝑗(𝑥𝑥) = �𝑏𝑏𝑗𝑗
(3), 𝑐𝑐𝑗𝑗

(3), 𝑐𝑐𝑗𝑗
(3),𝑑𝑑𝑗𝑗

(3)𝜇̂𝜇(𝑥𝑥)�, 𝐼𝐼𝐼𝐼𝑗𝑗(𝑥𝑥) = �𝑐𝑐𝑗𝑗
(3),𝑑𝑑𝑗𝑗

(3),𝑑𝑑𝑗𝑗
(3),𝑒𝑒𝑗𝑗

(3)𝜇̂𝜇(𝑥𝑥)�, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗(𝑥𝑥) =

�𝑑𝑑𝑗𝑗
(3), 𝑒𝑒𝑗𝑗

(3), 𝑒𝑒𝑗𝑗
(3), 100, 𝜇̂𝜇(𝑥𝑥)� These estimates are then averaged as follows(Bojadziev & Bojadziev 2007): 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) =

�0, 0, 1
𝑁𝑁𝐸𝐸
∑ 𝑎𝑎𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑏𝑏𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 ; 𝜇̂𝜇(𝑥𝑥)�, 𝐼𝐼𝐼𝐼(𝑥𝑥) = � 1

𝑁𝑁𝐸𝐸
∑ 𝑎𝑎𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑏𝑏𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑏𝑏𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑐𝑐𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 ; 𝜇̂𝜇(𝑥𝑥)�, 𝐼𝐼𝐼𝐼(𝑥𝑥) =
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( 1
𝑁𝑁𝐸𝐸
∑ 𝑏𝑏𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑐𝑐𝑗𝑗

(3)𝑁𝑁𝐸𝐸
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∑ 𝑑𝑑𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 ; 𝜇̂𝜇(𝑥𝑥)), 𝐼𝐼𝐼𝐼(𝑥𝑥) = ( 1

𝑁𝑁𝐸𝐸
∑ 𝑐𝑐𝑗𝑗

(3)𝑁𝑁𝐸𝐸
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∑ 𝑑𝑑𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑑𝑑𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑒𝑒𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 ; 𝜇̂𝜇(𝑥𝑥)), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) =

( 1
𝑁𝑁𝐸𝐸
∑ 𝑑𝑑𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑒𝑒𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 1

𝑁𝑁𝐸𝐸
∑ 𝑒𝑒𝑗𝑗

(3)𝑁𝑁𝐸𝐸
𝑗𝑗=1 , 100; 𝜇̂𝜇(𝑥𝑥).  

 

 
 

Figure 4. Maintenance performance fuzzy sets 
 
3.2 𝑬𝑬𝑬𝑬𝑬𝑬 Calculation 
 
The goal of this paper is to present a method for estimating an unbiased Expert Improvement Factor (EIF) This EIF is 
calculated by integrating the survey results with the maintenance performance baselines. This is achieved with 
methods based on fuzzy set theory. 
 
3.2.1 Survey Results 
As mentioned previously, the survey incorporates 18 questions and five-scale agreement choices, namely, VL, L, M, 
H and VH. For the sake of simplicity, each questionnaire response for the k-th respondent can be expressed as a matrix 
[𝑀𝑀] with 𝑁𝑁𝑄𝑄 rows and 𝑁𝑁𝑆𝑆 columns, where 𝑁𝑁𝑄𝑄 is the total number of questions (18 in this case), and 𝑁𝑁𝑆𝑆 is the total 
number of scale agreement choices (5 in this case). For the i-th question the k-th respondent selects the l-th scale 
agreement. Respondents make just one choice for any given question and null answers are not allowed. Thus, if a 
respondent chooses “Low” for Question 4 then [𝑀𝑀]4,2

𝑘𝑘 = 1, and, [𝑀𝑀]4,1
𝑘𝑘 =  [𝑀𝑀]4,3

𝑘𝑘 = [𝑀𝑀]4,4
𝑘𝑘 = [𝑀𝑀]4,5

𝑘𝑘 = 0. 
 
Each choice indicates either a decline or an increase in maintenance performance. This effect on maintenance 
performance is based on the HEI factor associated with each question. For example, if a respondent selects ‘Very 
Low’ for Question 3 (How much are you trained for the job?), the response indicates a decline in maintenance 
performance. If, however, a respondent selects ‘Very Low’ for Question 12 (How often do you work extra time?), the 
response indicates an improvement in maintenance performance. Accordingly, the scale agreement choices have a 
positive and a reverse direction (see Likert (1932)). The positive agreement scale direction is represented by the vector 
[𝐹𝐹1], and the reversed agreement scale direction by the vector [𝐹𝐹2] as follows: 

𝑭𝑭𝟏𝟏 =

⎣
⎢
⎢
⎢
⎡
𝑽𝑽𝑽𝑽(𝒙𝒙)
𝑳𝑳(𝒙𝒙)
𝑴𝑴(𝒙𝒙)
𝑯𝑯(𝒙𝒙)
𝑽𝑽𝑽𝑽(𝒙𝒙)⎦

⎥
⎥
⎥
⎤

,  (2),  𝑭𝑭𝟐𝟐 =

⎣
⎢
⎢
⎢
⎡
𝑽𝑽𝑽𝑽(𝒙𝒙)
𝑯𝑯(𝒙𝒙)
𝑴𝑴(𝒙𝒙)
𝑳𝑳(𝒙𝒙)
𝑽𝑽𝑽𝑽(𝒙𝒙) ⎦

⎥
⎥
⎥
⎤

,   (3) 

 
The fuzzy result of the k-th questionnaire is calculated as 𝜳𝜳𝒌𝒌 = 𝟏𝟏

𝟏𝟏𝟏𝟏
(∑ 𝑸𝑸𝒘𝒘𝒊𝒊�[𝑴𝑴]𝒌𝒌 ∗ [𝑭𝑭𝟏𝟏]�𝒊𝒊

𝟏𝟏𝟏𝟏
𝒊𝒊=𝟏𝟏 + ∑ 𝑸𝑸𝒘𝒘𝒊𝒊�[𝑴𝑴]𝒌𝒌 ∗ [𝑭𝑭𝟐𝟐]�𝒊𝒊

𝟏𝟏𝟏𝟏
𝒊𝒊=𝟏𝟏𝟏𝟏 . 

It should be emphasized that Ψ𝑘𝑘 represents a maintenance performance factor as estimated by the k-th respondent. 
 
Fuzzy Improvement Factor 
The fuzzy improvement factor is calculated based on the fuzzy subsethood between the estimated 𝛹𝛹𝑘𝑘 and the 
maintenance performance baselines. The fuzzy subsethood refers to the proportional area of two intersecting fuzzy 
sets A and B, and is defined as (Klir & Yuan 1995; Takac 2016) 𝑆𝑆(𝐴𝐴,𝐵𝐵) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴∩𝐵𝐵)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴)
, where 𝑆𝑆(𝐴𝐴,𝐵𝐵)  ∈ (0,1) is the 

subsethood of two fuzzy sets, 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 are two independent fuzzy sets, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the cardinality of a fuzzy set 
defined as ∫ 𝑚𝑚𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑𝑈𝑈  , where 𝑚𝑚𝐴𝐴(𝑥𝑥) is all the possible membership degrees of a fuzzy set, 𝑈𝑈 ∈ (0,1) (Bandemer & 
Hans 1992; Martinez et al. 2014). The fuzzy subsethood provides a tool for weighting each of the maintenance 
performance fuzzy sets based on the survey results. These weights provide a tool for merging expert and employee 
appraisals of maintenance performance. The weighted fuzzy sets are aggregated as follows: 
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𝑷𝑷𝒌𝒌(𝜳𝜳𝒌𝒌) = 𝑺𝑺(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝜳𝜳𝒌𝒌)∗𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)∗𝑰𝑰𝑰𝑰+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)∗𝑰𝑰𝑰𝑰+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)∗𝑰𝑰𝑰𝑰+𝑺𝑺(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝜳𝜳𝒌𝒌)∗𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
𝑺𝑺(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝜳𝜳𝒌𝒌)+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)+𝑺𝑺(𝑰𝑰𝑰𝑰,𝜳𝜳𝒌𝒌)+𝑺𝑺(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝜳𝜳𝒌𝒌) ,  (4) 

 
As mentioned above, each respondent (maintenance employee) is weighted according to his or her seniority level, (see 
respondent seniority baseline chapter). This weight is incorporated into the corresponding 𝑃𝑃𝑘𝑘(𝛹𝛹𝑘𝑘) to calculate the 
trapezoidal fuzzy expert improvement factor which is considered to be: 𝐹𝐹𝐹𝐹𝐹𝐹 =  ∑ 𝑅𝑅𝑘𝑘∗𝑃𝑃𝑘𝑘(𝛹𝛹𝑘𝑘)

∑ 𝑅𝑅𝑘𝑘
𝑁𝑁𝑅𝑅
𝑘𝑘=1

𝑁𝑁𝑅𝑅
𝑘𝑘=1 . 

Deffuzification 
The maximizing method is used to transform the trapezoidal FIF set into a crisp number (Bojadziev & Bojadziev 
2007). This crisp number is referred to as the expert improvement factor 𝐸𝐸𝐸𝐸𝐸𝐸 ∈ (0,1) which is calculated as follows:  

𝑬𝑬𝑬𝑬𝑬𝑬 = �𝟏𝟏 −
�𝑭𝑭𝑭𝑭𝑭𝑭𝑳𝑳+𝑭𝑭𝑭𝑭𝑭𝑭𝑴𝑴𝑳𝑳+𝑭𝑭𝑭𝑭𝑭𝑭𝑴𝑴𝑯𝑯+𝑭𝑭𝑭𝑭𝑭𝑭𝑯𝑯�

𝟒𝟒
𝟏𝟏𝟏𝟏𝟏𝟏

�,  (5) 

Utilizing the EIF, it is possible to perform simulations to improve maintenance operations. A simulation model was 
developed for this study for the purpose of comparing the performance of optimized maintenance based on EIF and 
IF calculations. The results show that overestimating the improvement factor can lead to costly, sub-optimal 
maintenance. 
 
3.3 Simulation Model 
 
The simulation model can be used to estimate the impact of the implementation of different maintenance strategies on 
the cost of operating a system. The system modelled here consists of two identical and brand new repairable 
components. One component is required for production and the second remains on standby and is ready to work 
(available to work). If a component requires maintenance or repair, the component that is available to work will start 
to work without delay. If both components require repair, the system suffers production loss. In this simplified model, 
the cost of maintenance and (unscheduled) repair and costs associated with lost production, occurring only when both 
components are down, are all taken into account. 
 
The proposed model was coded in MATLAB. The simulation starts by setting the status of component one (C1) as 
working and component two (C2) as available to work. The components can have one of the following statuses 
associated with their state: working, available, maintain, and repair. A condition where both components are in 
maintenance status is not allowed in this model because the objective of the system is to have at least one component 
working at any time, if possible, to avoid costly downtime. The age of the working component is compared to the 
simulated time to failure and the time to maintain. If the age is greater than or equal to the simulated time to failure, 
the component’s status is changed to repair. Similarly, if the age is greater than or equal to the time to maintain, the 
component’s status is set to maintain—unless, of course, the other component is unavailable—and the component 
continues to operate. 
 
The maintenance and repair states have associated random downtimes. These random downtimes are estimated based 
on the historical maintenance and repair downtimes probability distribution. The historical maintenance downtimes 
associated with the simulated system are log normally distributed with parameters µ=1.38, and σ=2.41, and the 
historical repair downtimes are log normally distributed with parameters µ=2.22, and σ=1.45. The random downtimes 
are estimated by using the MATLAB random lognormal number generator function. A component being maintained 
or repaired remains in that state until the associated downtime expires. As mentioned above, when a component is 
being maintained or repaired, maintenance of the working component is postponed. Note that, when one component 
is undergoing maintenance or repair, if the second (working) component’s age reaches its simulated time to failure, 
the system goes down, resulting in costly downtime. During system downtime the component whose maintenance or 
repair is completed first is set to work and the system is no longer in a down state. The simulation proceeds until a 
user-provided time horizon, 𝑇𝑇, is reached.   
 
For simplicity, the estimated stochastic time to failure is based on a hypothetical failure rate cumulative distribution 
function, 𝐹𝐹(𝑋𝑋). The k-th component’s virtual age (see Kijima et al. 1988) after the i-th repair or maintenance is denoted 
by 𝑥𝑥𝑘𝑘𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸 ∗ (𝑥𝑥𝑘𝑘𝑖𝑖−1 + 𝑡𝑡𝐹𝐹𝑘𝑘𝑖𝑖), where 𝑡𝑡𝐹𝐹𝑘𝑘𝑖𝑖  is the simulated time to failure. The conditional probability that 𝑡𝑡𝐹𝐹𝑘𝑘𝑖𝑖  takes 
a value between 𝑥𝑥𝑘𝑘𝑖𝑖−1  and 𝑋𝑋 is determined as follows: 

𝑷𝑷  �𝒕𝒕𝑭𝑭𝒌𝒌𝒊𝒊 ≤ 𝑿𝑿�𝒙𝒙𝒌𝒌𝒊𝒊−𝟏𝟏 = 𝒚𝒚� = 𝑭𝑭(𝑿𝑿+𝒚𝒚)−𝑭𝑭(𝒚𝒚)
𝟏𝟏−𝑭𝑭(𝒚𝒚) ,   (6) 
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The 𝒕𝒕𝑭𝑭𝒌𝒌𝒊𝒊  is simulated by assigning a random uniform variable 𝑈𝑈𝑘𝑘𝑖𝑖 ∈ (0,1) to 𝑃𝑃  �𝑡𝑡𝐹𝐹𝑘𝑘𝑖𝑖 ≤ 𝑋𝑋�𝑥𝑥𝑘𝑘𝑖𝑖−1 = 𝑦𝑦�, and solving 

Equation 6 in terms of 𝑡𝑡𝐹𝐹𝑘𝑘𝑖𝑖  as depicted next: 𝒕𝒕𝑭𝑭𝒌𝒌𝒊𝒊 = 𝑭𝑭−𝟏𝟏 �𝑼𝑼𝒌𝒌𝒊𝒊 ∗ �𝟏𝟏 − 𝑭𝑭�𝒙𝒙𝒌𝒌𝒊𝒊−𝟏𝟏�� + 𝑭𝑭�𝒙𝒙𝒌𝒌𝒊𝒊−𝟏𝟏�� − 𝒙𝒙𝒌𝒌𝒊𝒊−𝟏𝟏.  

 
The application of preventive maintenance is a well-known method for reducing the probability of component failure 
(Bentley 1999). Preventive maintenance is administered at fixed periods of time 𝑇𝑇𝑀𝑀. The maintenance interval renders 
a variable number of component and system failures. The total cost for the si-th simulation at a given 𝑇𝑇𝑀𝑀 is calculated 
as follows: 

𝑻𝑻𝑪𝑪𝒔𝒔𝒔𝒔(𝑻𝑻𝑴𝑴) = 𝑪𝑪𝑴𝑴 �∑ 𝑫𝑫𝑴𝑴𝟏𝟏

(𝒒𝒒) +
𝑵𝑵𝑴𝑴𝟏𝟏

(𝑻𝑻𝑴𝑴)

𝒒𝒒=𝟏𝟏 ∑ 𝑫𝑫𝑴𝑴𝟐𝟐

(𝒒𝒒)𝑵𝑵𝑴𝑴𝟐𝟐
(𝑻𝑻𝑴𝑴)

𝒒𝒒=𝟏𝟏 � + 𝑪𝑪𝑭𝑭 �∑ 𝑫𝑫𝑭𝑭𝟏𝟏
(𝒒𝒒) +

𝑵𝑵𝑭𝑭𝟏𝟏
(𝑻𝑻𝑴𝑴)

𝒒𝒒=𝟏𝟏 ∑ 𝑫𝑫𝑭𝑭𝟐𝟐
(𝒒𝒒)𝑵𝑵𝑭𝑭𝟐𝟐

(𝑻𝑻𝑴𝑴)

𝒒𝒒=𝟏𝟏 � + 𝑪𝑪𝑺𝑺𝑭𝑭 �∑ 𝑫𝑫𝑺𝑺𝑭𝑭
(𝒒𝒒)𝑵𝑵𝑺𝑺𝑭𝑭

(𝑻𝑻𝑴𝑴)

𝒒𝒒=𝟏𝟏 �,  (7) 

 
where 𝐶𝐶𝑀𝑀, 𝐶𝐶𝐹𝐹, and 𝐶𝐶𝑆𝑆𝐹𝐹 are user-defined cost rates for maintenance, repair, and system downtime respectively; 𝑁𝑁𝑀𝑀1

(𝑇𝑇𝑀𝑀) 
and 𝑁𝑁𝑀𝑀2

(𝑇𝑇𝑀𝑀)are the total number of maintenance downtime intervals for C1 and C2 respectively; 𝑁𝑁𝐹𝐹1
(𝑇𝑇𝑀𝑀) and 𝑁𝑁𝐹𝐹2

(𝑇𝑇𝑀𝑀) are 
the total number of failures for C1 and C2 respectively; 𝑁𝑁𝑆𝑆𝐹𝐹

(𝑇𝑇𝑀𝑀) is the total number of system failures; 𝐷𝐷𝑀𝑀1
(𝑞𝑞).and 𝐷𝐷𝑀𝑀2

(𝑞𝑞) 
are the downtimes associated with the q-th maintenance; 𝐷𝐷𝐹𝐹1

(𝑞𝑞) and 𝐷𝐷𝐹𝐹2
(𝑞𝑞) are the downtime associated with the q-th 

repair; 𝐷𝐷𝑆𝑆𝐹𝐹
(𝑞𝑞) is the downtime related to the q-th system failure. A total of 𝑁𝑁𝑠𝑠𝑠𝑠 simulation runs were conducted for each 

𝑇𝑇𝑀𝑀. Hence, the total cost for a given maintenance period, 𝑇𝑇𝑀𝑀 is the average of the estimated costs, 𝑇𝑇𝑇𝑇(𝑇𝑇𝑀𝑀) =
1
𝑁𝑁𝑠𝑠𝑠𝑠
∑ 𝑇𝑇𝐶𝐶𝑠𝑠𝑠𝑠(𝑇𝑇𝑀𝑀)𝑁𝑁𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠=1 . Note that different maintenance frequencies yield unique average total costs. The optimum 

maintenance interval is the frequency that yields the minimum average total cost. Thus, the optimum maintenance 
interval is calculated as follows: 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = arg min

𝑇𝑇𝑀𝑀
𝑇𝑇𝑇𝑇(𝑇𝑇𝑀𝑀). 

 
4. Results and Discussions 
 
The ultimate goal of this paper is to present a method for estimating an unbiased expert improvement factor (EIF) 
from which the probability of component failure following the application of maintenance or repair can be calculated. 
This probability can be used to estimate the optimum maintenance interval of the proposed system. As discussed 
previously, to demonstrate the effectiveness of the proposed framework it is assumed that the EIF factor indicates the 
actual maintenance performance. Thus, a comparison between the estimated optimum maintenance interval based on 
EIF and the maintenance interval based on an IF, to be discussed below, was performed. This comparison shows the 
advantages of using an accurate improvement factor when using simulation to estimate an optimal maintenance 
interval. 
 
Four recognized experts at an oil and gas installation were individually asked for their appraisal of the maintenance 
quality. Each provided a number between zero and one, where one indicates that the component remains the same as 
before the maintenance, and zero shows a renewal of the component. The interview results were averaged yielding an 
optimistic 𝐼𝐼𝐼𝐼 =0.30. As previously explained, all such judgments are inherently biased. In order to circumvent the 
judgment biases of our experts, the above methodology was applied to calculate the EIF. Experts were interviewed 
and questionnaires were administered to all 39 maintenance crew members at the oil and gas installation. This 
methodology yielded an EIF factor of 0.49, indicating that the maintenance performance was between ‘as bad as old’ 
and ‘as good as new’ and certainly worse than the IF of 0.30 estimated solely by interviewing experts. The optimum 
maintenance interval was determined through simulations for both the IF (𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼) and the EIF (𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸) utilizing 
the following parameters: virtual component age (𝑥𝑥𝑘𝑘𝑖𝑖)=0, repair cost per hour (𝐶𝐶𝐹𝐹)= 53, maintenance cost per hour 
(𝐶𝐶𝑀𝑀)= 20, system failure cost per hour (𝐶𝐶𝑆𝑆𝐹𝐹)= 700, time horizon hr (𝑇𝑇)= 57,684, iterations (𝑁𝑁𝑠𝑠𝑠𝑠)= 10000, and  
maintenance range (𝑇𝑇𝑀𝑀)= [720 ,26280], (Note that these parameters do not show the cost currency, as it cannot be 
disclosed since the oil and gas installation used in this survey has requested confidentiality). Figure 5 shows the total 
cost associated with the maintenance interval, 𝑇𝑇𝑀𝑀, where it is assumed the improvement factor IF=0.30. As can be 
seen in the figure, the optimal maintenance interval is 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼 = 5760 ℎ𝑟𝑟, and the total cost at this value is 171,681.  
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Figure 5. Optimum maintenance interval based on biased IF of 0.30. 

 
It is assumed that the EIF factor indicates the maintenance performance at the installation. Thus, the simulation results 
(total costs) based on this factor are considered to be an accurate representation of the installation. Figure 6 shows the 
total cost associated with the maintenance interval where the improvement factor EIF = 0.49. The 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼 and the 
𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 values are 5760 hr and 5040 hr respectively. Figure 6 shows that the 5760 hr interval results in a cost of 
205,956 and the 5040 hr interval results in a cost of 203,936. Thus, the 720 hr maintenance interval delay allowed by 
the IF results in an additional expense of 2,020.  
 

 
Figure 6. Cost comparison between IF and EIF 

 
Accordingly, an accurate 𝐸𝐸𝐸𝐸𝐸𝐸 is the building block for calculating the optimum maintenance interval. The proposed 
method, in combination with a simulation model, provides a tool for managers to optimize maintenance costs. Based 
on the EIF estimate of 0.49, the simulation shows that a maintenance interval of 5040 hr is most suitable for the given 
system of the oil and gas installation. 
 
5. Conclusions 

 
This paper presents a novel methodology for calculating an unbiased EIF based on expert estimates and a survey that 
incorporates human error identification factors. The proposed methodology aims to overcome the limitations of other 
methods previously described in the literature, by circumventing the bias embedded in expert opinion. This 
methodology was tested using a simulation model that estimated the optimum maintenance interval for a given system. 
The EIF and the IF were calculated for a system located in a real-world offshore oil and gas installation. The IF was 
estimated by asking recognized experts at the installation for their appraisals of the maintenance performance. 
Consistent evidence of a bias embedded in expert opinion has been found in the literature; hence, this IF is arguably 
biased. The simulation results from using the EIF and the IF to estimate the optimum maintenance intervals indicate 
there is likely a significant cost saving from utilizing the EIF. The EIF methodology can be customized and applied 
to other industries aiming to reduce total costs. Further work on the simulation model can be done through the design 
of an appropriate failure rate approach and by increasing the number of components within the system.  
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