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Abstract 

Phase field modelling, a robust computational approach for modelling, predicting microstructure 
evolution and to speculate mesoscale morphological in various materials. In this study, we have 
discretized the time variable using semi-implicit instead of explicit scheme, semi-implicit scheme is 
known to allow a larger time step sizes than explicit schemes. Meanwhile, the discretization of the space 
variable is carried out using a Fourier spectral method, having a convergence rate that is exponential 
when compared to the second order Finite-difference method. Meanwhile, a numerical implementation 
of Cahn-Hilliard equation via semi-implicit Fourier spectral algorithm for conserved quantities was also 
demonstrated for binary alloy simulation. However, Isothermal conditions are considered and Non-
dimmensionalisation is done. Lastly, we implemented a MATLAB code to solve the phase field 
equation and visualize our model. 
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1. Introduction

Researchers are increasingly relying on computational technologies to help in simulating and modelling properties 
of advanced materials, computational modelling has functioned as tools at the disposition of engineers and 
scientists, aiding them to a have better grasp of different process parameters influence on microstructural 
evolution, and optimizing the material in the process to obtain very specific material properties. Inexpensive 
personnel resources, lesser time to get the product to the market and aggressive margin depleting pricing has been 
the hallmark of computational material science, under which phase field modelling is categorized(Olanipekun et 
al. 2017). 
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Phase-field method surfaced as an outstanding and effective predicting computational method for the morphology 
and mesoscale evolution of the microstructure in a material. However, phase field method has replaces distinctive 
interface model within nonzero thickness transition regions that has interfacial forces evenly distributed  
(Badalassi et al. 2003). A phase-field principles and procedures are based on the orchestration of a Cahn–Hilliard 
and Ginzburg–Landau energy or entropy functional or Cahn Allen. A variational set of partial derivatives suitable 
thermodynamic quantities namely temperature, concentrations in conjunction and reaction–diffusion equation for 
the phase-field variable, often derived from the functional (Penrose and Fife 1990). 
In the work of Britta Nestler(Janssens et al. 2010), they explained that phase-field model represent a continuous 
order parameter, describing the state of the system in space and time. Meanwhile, different states show smooth 
transition, when using diffuse interface to represent two distinct. With the formulation of the diffuse interface, a 
phase-field model is found to require much less curtailment on the topology of the grain and phase boundaries. 
L,Q Chen and Jie shen (Chen and Shen 1998), discretized time variable by using semi-implicit schemes, as  time 
step sizes is possible with semi-implicit  than explicit schemes. The discretization of the space variable is carried 
out using a Fourier spectral method, that has a convergence rate that is exponential when compared to the second 
order finite-difference method. 
W.M. Feng (Feng et al. 2006) and his co-workers suggested approach for representation of spectral field variable 
continuous spatial profile to achieve high accuracy in space e.g. Fourier series for a periodic system, and adaptive 
mesh approach using dense grid points in the conjunction regions where the field variables have large gradients. 
They also went further in their work to state that the spectral method and its semi-implicit implementation have 
proved to be effective for systems in which, the form and microstructures are influenced by long-range elastic 
interactions. 
Hyun Geun and June-Yub (Lee and Lee 2014) explained that researchers have been able to improve Phase field 
model effectiveness by employing semi-implicit Fourier spectral (SIFS) methods, paving a way for larger time 
steps than explicit scheme. 
Phase-Field Crystal Method has linked the conventional phase-field theory to the atomistic scale, allowing 
simulations on diffusive time scales which may not be obtainable with atomistic simulations (Biner 2017). 
The focus of this paper is to simulate a binary alloy using spinodal decomposition with semi-implicit Fourier 
spectral algorithm. However, this was demonstrated by implementing numerically a semi-implicit Fourier spectral 
algorithm for a conserved Cahn–Hilliard equation solution in phase-field modeling.  
 

2. Phase-field Model 
A phase-field model depicts a microstructure (structural domains and composition) with some field variables 
(Biner 2017). In agreement  to Cahn-Hilliard (Cahn and de Fontaine 1961, Cahn and Hilliard 1958), we have 
conserved field variable and non-conserved field variable. Non-conserved field variables developed with the time-
dependent Ginzburg–Landau equation or Allen–Cahn relaxation equation while conserved field variables 
temporal evolution is regulated by the Cahn–Hilliard nonlinear diffusion equation and the (Allen and Cahn 1972, 
Allen and Cahn 1973). Notably, the two kinetic equations have their foundation from physics rudiment of phase-
field models. 
In the work of Bulent Biner(Biner 2017), he represented Cahn Hilliard equation by equation (1) below. 
 
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

= ∇𝑀𝑀𝑖𝑖𝑖𝑖∇
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿𝑗𝑗(𝑟𝑟,𝑡𝑡)
                                                                                       (1)       

Equation (1) is first Non-dimmensionalised 
Where 𝑟𝑟 is the position, 𝑡𝑡 is the time, 𝑀𝑀𝑖𝑖𝑖𝑖 is the diffusivities of the species or Mobility, and 𝑐𝑐1, 𝑐𝑐2 … … 𝑐𝑐𝑛𝑛 are the 
conserved field variables,  𝐹𝐹 is the system free energy (Biner 2017). 
The total free energy is given as, 

𝐹𝐹 = ∫ �𝑓𝑓(𝑐𝑐) + 1
2
𝑘𝑘(∇𝑐𝑐)2�𝑣𝑣 𝑑𝑑𝑑𝑑                                                                       (2)    

However, k is the gradient energy coefficient and 𝑓𝑓(𝑐𝑐) is the chemical/bulk energy represented by: 
𝑓𝑓(𝑐𝑐) = 𝐴𝐴𝑐𝑐2(1 − 𝑐𝑐)2                    (3) 
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Which is the simple phenomenological double-well potential. An energy barrier between two equilibrium phases 
is controlled by 𝐴𝐴, which is a positive constant, depicted with a  concentration values of 𝑐𝑐 = 0.0 and 𝑐𝑐 = 1.0
 (Biner 2017). 
 

3. Numerical Analysis of the Governing Equation 
From Equation (1) which is the semi-implicit algorithm implementation, we take its functional derivative, which 
gives evolution equation below(Biner 2017). 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇2𝑀𝑀 �𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
− 𝑘𝑘∇2𝑐𝑐�          (4) 

The Fourier transform of both side of Equation (4) is taken, the spatial discretization becomes: 
𝜕𝜕{𝑐𝑐}𝑘𝑘
𝜕𝜕𝜕𝜕

= −𝑘𝑘2𝑀𝑀 �{𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

}𝑘𝑘 + 𝑘𝑘2𝑘𝑘{𝑐𝑐}𝑘𝑘�         (5) 
   
The Fourier transform of the quantity inside the bracket is represented by {∙}𝑘𝑘  and 𝑘𝑘  represent the vector in Fourier 

space, k= (𝑘𝑘1, 𝑘𝑘2,) with a magnitude �𝑘𝑘12 + 𝑘𝑘22 . Expanding Equation (5) we have 𝜕𝜕{𝑐𝑐}𝑘𝑘
𝜕𝜕𝜕𝜕

= −𝑘𝑘2𝑀𝑀 �𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
�
𝑘𝑘
−

𝑘𝑘4𝑀𝑀𝑀𝑀{𝑐𝑐}𝑘𝑘          (6)  
Fourth-order and linear operators are treated implicitly while the non-linear terms are treated explicitly, the semi-
implicit form for Equation (6) will now be: 
{𝑐𝑐}𝑘𝑘

𝑛𝑛+1−{𝑐𝑐}𝑘𝑘
𝑛𝑛

∆𝑡𝑡
= 𝑘𝑘2𝑀𝑀 �𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
�
𝑘𝑘

𝑛𝑛
− 𝑘𝑘4𝑀𝑀𝑀𝑀{𝑐𝑐}𝑘𝑘𝑛𝑛+1                                                       (7)  

Where ∆𝑡𝑡 is the time increment between time steps 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 + 1. Regrouping the equation, it becomes, 
 

{𝑐𝑐}𝑘𝑘𝑛𝑛+1 =  
{𝑐𝑐}𝑘𝑘 

𝑛𝑛−∆𝑡𝑡𝑘𝑘2𝑀𝑀�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿�𝑘𝑘

𝑛𝑛

1+∆𝑡𝑡𝑘𝑘4𝑀𝑀𝑀𝑀
                                                                                     (8) 

 
4. Simulation steps 

A code was developed in MATLAB using the mentioned algorithm steps below. Periodic boundary conditions 
were used. 
Algorithm for microstructural evolution:  
 Given a composition profile at time t = 0, we evaluate Fourier transform of  𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
  and as well as the Fourier 

transform of 𝑐𝑐.  
 Using equation (8), we calculate the composition profile or spatial variation of 𝑐𝑐  in Fourier space at some 

future time t + Δt.  
 The inverse Fourier transform of 𝑐𝑐(t+Δt) gives the composition profile at time t + Δt.  
 Above steps are repeated to process a given number of steps in time. 
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Figure 1. Program structure of the phase-field simulation code 
Inputs needed for the simulation are as follows:  
 
𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦  size of the mesh  
N          Noise strength 
𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑 distance between the nodes in x & y direction  
𝑑𝑑𝑑𝑑        Length of time step  
A         free energy barrier  
𝑀𝑀        Mobility  
Kappa   gradient energy coefficient  
𝑐𝑐 (𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦) Initial composition field information  
 
 
 
 
Table 1. The non-dimensional values of the parameters used in the simulations. 
 

𝐴𝐴             𝑀𝑀           Kappa                       N                                        𝑡𝑡                    𝑐𝑐 

   1.0         1.0           1.0              0.5× 10−1 ,   0.5× 10−2           63,150           0.5 
 

 

Parsing of the configuration file 

Initialization 

Main computation 

data_file.m 

Matlab file close 
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5. Results and Discussion  

 
 Microstructural evolution showing phases was depicted by figure 2. Also, time values are in non-dimensional 
format. The simulation was carried out using a spatial mesh of  𝑁𝑁𝑥𝑥 = 250 by 𝑁𝑁𝑦𝑦 = 250 and with dx=dy=1.0, also 
using all non-dimensional parameter. 
From Fig 2(a), we were able to show a homogenous binary mixture at time t=3, that first separate, followed by 
slow coarsening with relatively fine microstructure that contain many precipitates. Meanwhile, as the time frame 
increases, as shown by fig 2(b) snapshot at time t=63, there is a noticeable second phase coarsening through the 
phase boundaries migration, merging and dislocation. Thus, the grain boundary movement and diffusion that leads 
to grain growth, which can be explained by Oswald ripening process, as explained by Moelans and co-workers 
(Moelans et al. 2008) explaining how small precipitate dissolve  and absolve the lager precipitate through Oswald 
ripening process. However, at t time t= 123, at the later stage the coarsening tends to be very slow as the interface 
of the microstructure reduces, noticeable in the total free energy change rate. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Microstructure showing phase separation in tandem with time evolution, with 

corresponding non-dimensional times using a noise factor 0.5× 10−1 (a) 3, (b) 63, and (c)123. 
 

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

A B 

C 

1226



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Toronto, Canada, October 23-25, 2019 

 

© IEOM Society International 

 
 
Conclusion 
 
In this work we have been able to study microstructural evolution in a binary alloy using semi implicit, Fourier 
spectral algorithm phase field model developed in MATLAB.  A Phase field method was used to present the 
numerical solution, using fewer equations that are relatively lesser than the number of particles in the system.  
Therefore, themo-physical parameters like Mobility that explains or control the composition field (𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦) of the 
system, anisotropy, time, internal energy coefficient, gradient energy co-efficient, has played larger part to control 
microstructural evolution, in terms of grain coarsening, morphology changes.  
The parameters used is not specific to any material. Lastly, the present studies vividly show microstructure 
evolution of binary alloy due to complex interactions of thermophysical properties and parameter. Meanwhile, we 
were able to validate the contribution of Oswald ripening process explaining the microstructural evolution. 
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