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Abstract 

The ultimate goal of this work is to find a region where the response surface of a function that is not well 
characterized in terms of optimality resembles one that is well-characterized in such terms to find, at least, 
a local optimum. The region in the input space where this resemblance occurs, we call a Window of 
Maximum Similarity (WMS) and is identified by formulating and solving an optimization problem. The 
method is one of minimization of squared errors and can be used to explore experimental or simulated data. 
A series of examples are presented to show the method’s feasibility and capability for generating a two-
dimensional WMS. This method is a viable element that will serve for the future development of 
Optimization by Similarity. 
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1. Introduction
Typical approaches when using modeling require identifying an equation that can best approximate a dataset. For 
example, in linear regression, data is used to fit the line that minimizes the sum of squared errors between data points- 
the functions input space- and the fitted line- its expected response. Even so, responsible statistical practice requires 
analyzing those points, in statistics called ‘outliers’, where the model seems not to explain the independent variable 
as well. In this space, data does not behave in a desirable manner, although there will ideally exist a region in the 
dataset where it does. Our statement is that there can be regions where data, any data at hand, behaves, or “looks like” 
a function with desirable optimality conditions and that this can be used to explore the simulated data to find at least 
a local optimum. 

When a complex model, like those frequently used in simulation, is approximated by another simplified one for 
statistical testing, computational efficiency or optimization purposes, we are using a metamodel. It is common in 
metamodeling that the model’s parameters are estimated until the most competitive fit is found (typically) by 
minimization of an error function. Metamodels are often used for optimization purposes; after a model form is 
determined, it can be used to experimentally find optimality conditions of a process, as in Response Surface 
Methodology. In this work, metamodels are used in a different manner but also pointing towards optimization; after 
generating data with a model, the metamodel’s parameters will be fitted to be the one that maximizes the similarity 
between itself and the data. By superimposing both functions and finding their region of maximum resemblance, we 
are looking to identify a window the input space where this similarity occurs.  
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Inverse mappings, when a function’s input is a specific desired performance and its output its associated controllable 
variable settings, was approached in Barton’s (2005) work. From the intricacies he mentioned, it was noted that the 
task of inverse mappings is often reduced to finding one (or more) input parameter combinations for one certain output 
characteristic. As in the method here proposed, solving inverse problems by the identification of the regions, instead 
of points, was assessed in the Couckuyt et al.’s (2010) work. The Window of Maximum Similarity (WMS) method 
differs from the latter in the sense that it was constructed to be applicable to detect zones of interest in different kinds 
of data and does not use probability density functions, but rather least squares estimation and linear programming 
.  
As was first done in Rivera-Nazario and Cabrera-Ríos’s (2013) work, our Optimization by Similarity method is 
applied to search for a region where a metamodel fits best. Their study addresses a common problem faced in modeling 
polymers: the relationship between deformation and viscosity. In contrast, we propose applying the method to any 
problem, that is, any that requires modeling, abstracting it to the mathematical space of functions. We also consider a 
two-dimensional input, or ‘controllable variable’ space, as opposed to only one. Our method entails matching a 
(simulated) function -one that represents, or rather, generates random data- to another one that has desired optimality 
properties-a specific form - and find their region of maximum resemblance, through least squares estimation and 
optimization, where there could exist at least a local optimum. The development of the method is described below, 
and its applicability is tested on several common global optimization test functions and a function created by our 
research group; AOG_1.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Example for construction of the Optimization by Matching of Responses where function to approximate data is 
quadratic and function to superimpose is linear; region in red represents Window of Maximal Similarity. 
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2.  Techniques used in this work  
2.1 Least Squares  
The least squares method is typically used to estimate regression parameters by minimization of the sum of squared 
errors (SSE). Let the experimental region, R, be the ith-dimensional hyper-space made up of all possible values that 
each input variable can take; 

𝑹𝑹: { 𝑓𝑓(𝑥𝑥𝑖𝑖) | 𝑥𝑥𝑖𝑖 ∈ � 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  � }  
 
In this work, the SSE is given by:  

𝑆𝑆𝑆𝑆𝑆𝑆 =  �  (𝑌𝑌(𝑹𝑹) − 𝑍𝑍(𝑹𝑹))2
𝑛𝑛

𝑗𝑗=1

      

Where 𝑌𝑌 = 𝑓𝑓(𝑹𝑹), is the response of the function to approximate that needs to be optimally addressed and Z = 𝑓𝑓(𝑹𝑹) 
is the response of the model or function to superimpose, which has desired and well-established optimality properties, 
i.e. it is convex and has a global optimum.  
 
2.2 Experimental region discretization  
To generate the grid of experimental points used in the proposed method, a discretization size, or step, ∆x can be 
chosen when the input variable initialization values are selected not to be integers. This ∆x value can be user-defined, 
and its use is presented later on in the evaluation of the method using global optimization test functions.  
 
2.3  Multiple starting points  
The multiple starting points technique, a heuristic method, is frequently used in order to increase the chance of finding 
an attractive solution close to the global optimum. When a local optimization method is used, this method is executed 
many times using different starting points to increase the chance of convergence to a competitive solution (Frontline 
Systems Inc., 2015a). 
 
3. Proposed method 
The aim of this work is to find a region where the response of function that is not well characterized in terms of 
optimality resembles another one that is well-characterized in such terms, to find at least a local optimum. This well-
characterized function, Z = 𝑓𝑓(𝑹𝑹), could have a determined static form, or be, ideally, an adjustable metamodel like, 
for example, a second order polynomial regression with unknown parameters. Once the forms are picked, an 
experimental region for both functions has to be defined. The region where the maximum similarity occurs is identified 
by formulating an optimization problem (shown below) which minimizes the functions’ SSE. The problem’s solution 
will be the location and size of a window in the experimental region where the maximum similarity between the 
responses occurs. The optimization problem formulation and an example are illustrated below:  
Find 𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈, to       
Minimize   1

3
( [𝑙𝑙𝑙𝑙𝑙𝑙 (𝑆𝑆𝑆𝑆𝑆𝑆 + 1)] − [𝑙𝑙𝑙𝑙𝑙𝑙(|𝑥𝑥1𝑈𝑈 − 𝑥𝑥1𝐿𝐿| + 1)] − [𝑙𝑙𝑙𝑙𝑙𝑙(|𝑥𝑥2𝑈𝑈 − 𝑥𝑥2 

𝐿𝐿 | + 1)] ) (1) 

Subject to           𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿  
≤ 𝑥𝑥𝑖𝑖𝐿𝐿

 
≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿  * 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈  
≤ 𝑥𝑥𝑖𝑖𝑈𝑈

 
≤ 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥𝑈𝑈  * 

𝑥𝑥𝑖𝑖𝑈𝑈 − 𝑥𝑥𝑖𝑖𝐿𝐿 ≥  𝜀𝜀 **    𝑖𝑖 = [1,2] 
 

*Experimental region and distance between window bound constraints, respectively. 
**For the integer variable cases, add the restriction: 𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈= integer to the model  
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Figure 2: Example of Window of Maximal Similarity found between sphere and second order polynomial regression.  

In Figure 1, an example is presented to demonstrate the application of the proposed method, where function to 
approximate, 𝑌𝑌 = 𝑓𝑓(𝑹𝑹), is the sphere and the function to superimpose, 𝑍𝑍 = 𝑓𝑓(𝑹𝑹),  is a second order polynomial 
regression of the form: 

 𝑍𝑍 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥12 +  𝛽𝛽2𝑥𝑥22. 

When the function to superimpose has the form of a metamodel, the optimization model has to additionally find 
metamodel parameters 𝛽𝛽0,𝛽𝛽1, … 𝛽𝛽𝑛𝑛.  For the special case where the two functions have the exact same shape, as was 
the case presented in example 1, the optimization problem has infinitely many solutions since all possible window 
sizes and locations in the experimental region provide an SSE value of 0. Hence the maximum similarity was found 
to be all the experimental region, which is precisely the region where both functions are the same.  
 
The logarithm base 10, which is not defined for 0 or negative values, was used in the objective formulation to keep in 
the same order of magnitude between the SSE and the distance between bounds. Distances between bounds (𝑥𝑥𝑖𝑖𝑈𝑈 − 𝑥𝑥𝑖𝑖𝐿𝐿) 
are present:  

1. in the objective function in order to avoid window size dependency on parameters  
2. in the constraints because a minimum value must be included for the formulation to be successful and not 

contain a single point. This suggested value, is 𝜀𝜀 = 1 × 10−6. This value is known as the non-archimedean 
constant, a value commonly used for computational purposes.  

 
Additional constraints include a range to locate the window’s upper and lower bounds, respectively, in accordance to 
the range in which each function varies.  In the case that a metamodel is used, an additional constraint must include 
the range for the metamodel parameter estimates 𝛽𝛽0,𝛽𝛽1, … 𝛽𝛽𝑛𝑛.  
 
An important quality of the method is its use of computational resources; all the optimization problems included in 
this work were solved using Excel Solver, a local optimizer included in MS Excel. MS Solver uses the Generalized 
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Reduced Gradient (GRG) algorithm to solve non-linear optimization problems and the Branch and Bound method to 
solve mixed-integer and constraint programming problems (Frontline Systems Inc., 2015a and 2015b).  
 
4. Method Evaluation 
Two scenarios for evaluation of the method were considered. First, the evaluation of the method using a function to 
approximate which was designed in our research group, AOG_1, is presented. Lastly, a case of an application of the 
proposed method using unconstrained global optimization test functions is presented. The figures were generated in 
QtiPlot software (version 0.9.8.9) (http://www.qtiplot.com/).  
 
4.1 AOG_1 
It was of our interest to find the maximum similarity between function AOG_1 and a quadratic function with the form 
of a bowl because it was reasonable to understand that, potentially, the resulting WMS will match the curve region of 
the function AOG_1 with the quadratic function.   
 

i. The function to approximate, AOG_1 is a piece-wise function which mostly has the form of a plane except 
for a given interval in the central experimental region where it looks like a bowl, as shown in figure 3. The ranges 
𝑥𝑥1 and 𝑥𝑥2 were [-5, 5]. AOG_1 is given by:  
 

𝑌𝑌 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) =  �
  5𝑥𝑥12 + 5𝑥𝑥22    𝑖𝑖𝑖𝑖  𝑥𝑥1 ∈ [−2, 1] , 𝑥𝑥2 ∈ [−3, 0 ]

500 − 5𝑥𝑥1 +   5𝑥𝑥2  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 

 
ii. The function to superimpose was fixed, for this case, and defined by:  𝑍𝑍 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) =  5𝑥𝑥12 + 5𝑥𝑥22 . The 
ranges 𝑥𝑥1 and 𝑥𝑥2 were also [-5, 5]. 
  
iii. The experimental region is a grid that contains 121 points*. 𝑥𝑥1 ∈ [−5,5], 𝑥𝑥2 ∈ [−5,5],  
 
*( |𝑥𝑥1𝐿𝐿 −  𝑥𝑥1𝑈𝑈| + 1 )  × ( | 𝑥𝑥2𝐿𝐿 −  𝑥𝑥2𝑈𝑈| + 1 )  = total number of points in experimental region. For this particular 
case ( |−5 − 5| + 1 )2 = 112 = 121 
 
iv. The optimization problem is given by (1). 
 
v. Optimize the model. The global minimum for AOG_1 is given by solution (0, 0) and its objective value is 0. 
Essentially, the maximum similarity would be found if the WMS is adjusted within the quadratic region of both 
functions. The parameters for setting up the Solver that were used for this evaluation include:  
•  The use of multiple starting points using a population size of 100.  
•  A constraint precision of 1 × 10−7.  
•  A convergence of 1 × 10−4.  
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Figure 3: Function AOG_1 to approximate, quadratic function 𝑍𝑍 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) =  5𝑥𝑥12 +  5𝑥𝑥22  to superimpose, and 
Window of Maximum Similarity found for proposed method. 

 

 

Table 1 reports the best solutions for function AOG_1. The type of variables (ToV) is included since evaluations 
considered the bounds (𝑥𝑥1𝑈𝑈, 𝑥𝑥1𝐿𝐿 , 𝑥𝑥2𝑈𝑈, 𝑥𝑥2𝐿𝐿) as both continuous and integer variables. Also, the best solution, the best 
objective function value (OFV) found, WMS dimensions and location for each case are reported. The function AOG_1, 
the quadratic function Z = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) to superimpose, and the WMS of the composite objective function for the integer 
case are presented in Figure 3. In all cases, the stationary point (0, 0) is within the WMS. According to the results, it 
is possible to conclude that the method demonstrated potential to find regions of similarity between two responses, 
where optimality can be a pattern of interest.  
 

Table 1: Solutions obtained for function to approximate, AOG_1, and a quadratic function to superimpose.   

Type of 
Variable 

Best Solution Best Objective Value Found 

WMS Size 
𝑥𝑥1𝐿𝐿 𝑥𝑥1𝑈𝑈 𝑥𝑥2𝐿𝐿 𝑥𝑥2𝑈𝑈 

Objective 
Function Value 

SSE 𝑥𝑥1𝑈𝑈 − 𝑥𝑥1𝐿𝐿 𝑥𝑥2𝑈𝑈 − 𝑥𝑥2𝐿𝐿 

C -2.17 1.11 -3.73 0.35 -0.45 0 3.28 4.08 3.28 x 4.08 

I -2 1 -3 0 -0.40 0 3 3 3 x 3 
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4.2 Global optimization test functions 

Considered in a two-dimensional input space, the unconstrained global optimization test functions in which the method 
was tested on included: Sphere, Rosenbrock, Rastrigin, Griewank, Goldstein-Price, Easom, and Schwefel*. The 
objective was to find a zone of data with maximum similarity between each test function and a quadratic function, 
which is presented below. The optimization problem was executed using two different initial solutions for each 
function, from which the best results were selected.  
*More information about these functions can be found in Pohlheim (2006) and (Surjanovic and Bingham, 2013) 
 

i. Typical optimization test functions in literature were chosen as the functions to approximate as previously 
mentioned.  

 
ii. The function to superimpose was a metamodel; a second order polynomial regression of the 

form: 𝑍𝑍 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥12 +  𝛽𝛽2𝑥𝑥22. The ranges of the variables of this quadratic function were the 
same in which each test function varies respectively.  

 
iii. To generate the grid of experimental points, the ranges of the variables of each test function were divided 

according to a specific value of delta x (∆x) as indicated in Table 2.  
 

iv. The optimization problem, as given by (1), also had to find metamodel parameter estimates 𝛽𝛽0,𝛽𝛽1 and 𝛽𝛽2. 
An additional constraint to this LP formulation included a minimum and maximum value for each of the 
estimates to vary in of -1000 and 1000. The parameters for the Solver included:  

• The use of multiple starting points using a population size of 100.  

• A convergence of 1x10-4.  
• Bounds are required on variables.  

• A level of precision of 1x10-3 for the functions Sphere, Rosenbrock, Griewank, Goldstein-Price, 

Easom, and Schwefel; a level of precision of 1x10-9 for the function Rastrigin.  
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Figure 4: Griewank function (s variables): 𝑓𝑓(𝑋𝑋) =  ∑ 𝑥𝑥𝑟𝑟2

4000
− ∏ cos �𝑥𝑥𝑟𝑟

√𝑟𝑟
� + 1, −50 ≤ 𝑥𝑥𝑟𝑟 ≤ 70𝑠𝑠

𝑟𝑟=1
𝑠𝑠
𝑟𝑟=1  

 
The best objective value found, SSE value and WMS are reported in Table 2 for each of the test functions. 
Although estimated metamodel parameters are omitted to emphasize analysis on window results, the Sphere’s, 
Griewank’s, and Schwefel’s quadratic function, 𝑍𝑍 = 𝑓𝑓(𝑹𝑹), followed the test function shape, as is shown in figure 4 
for Griewank case. The WMS generated for functions Griewank and Schwefel potentially detected a zone of maximum 
similarity. The global solution for each global test function is additionally included.  The solution is in all cases 
contained within the window of maximum similarity in, at least, one of the independent variables.  For three other 
cases: Sphere, Griewank and Easom, the global solution is contained within the window for all the independent 
variables. The simplest case, the Sphere, is the most evident case where the quadratic function is a good descriptor of 
the ‘data at hand’, unlike the results of the remaining test functions which displayed quadratic functions of varied 
shapes and consequently their WMS were adjusted in varied zones.  
 

Table 2: Results for typical optimization test functions in literature and metamodel 

1252



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Toronto, Canada, October 23-25, 2019 
 
 

© IEOM Society International 
 

Function 𝑥𝑥1𝐿𝐿 𝑥𝑥1𝑈𝑈 𝑥𝑥2𝐿𝐿 𝑥𝑥2𝑈𝑈    SSE 
Objective 
Function 

Value 

WMS 
Dimensions 

Global Solution 

Is solution 
within 

window? 
(Y/N) 

Sphere 
(∆x =1.024) 

-5.12 5.12 -5.12 5.12 
1.70E-

10 
-0.70 

10.24 x 
10.24 

(0,0) Y 

Rosenbrock 
(∆x = 0.5) 

-2 5 -2 -1.5 0 -0.36 7 x 0.50 (1,1) N 

Rastrigin 
(∆x = 0.5) 

4.50 5 -5 5 0 -0.41 0.50 x 10 (0,0) N 

Griewank 
(∆x = 2) 

-50 70 32 34 0 -0.85 120 x 2.00 (0,0) Y 

Goldstein-
Price (∆x = 

0.25) 
-2 2 -0.25 0 0 -0.27 4 x 0.25 (0, -1) N 

Easom 
(∆x= pi) 

-35.15 31.55 -35.79 66.64 5.71 -1.01 
66.71 x 
102.43 

(0,0) Y 

Schwefel 
(∆x = 5) 

495 499.52 -500 500 0 -1.26 4.92 x 1000 (420.97,420.97) N 
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5. Conclusion and Future Work  
This work proposed the use of WMS for future optimization by similarity. The method intends to find the experimental 
region where a model with desirable characteristics is a good descriptor of the data at hand. An evaluation case using 
function AOG 1 was presented. According to these results, the method demonstrates the potential to find regions of 
similarity between two responses where optimality can be a pattern of interest.  
The evaluations of the method in seven unconstrained global optimization test functions served to show the use of 
window of maximum similarity in examples of functions with different shapes. Also, it was observed in the evaluations 
that the WMS method potentially detected zones of maximum similarity between the different test functions and a 
quadratic function.  
 
According to these results, the method demonstrates the potential to find regions of similarity between two responses 
where optimality can be a pattern of interest and can be a useful tool for exploration of simulated data to find, at least 
a local optimum.  
 
In many cases, the WMS obtained by the method were limited to take the minimum size or epsilon value assigned, 
which is why future work includes:  

1. Substitute Optimization of one composite objective function to multiple criterion optimization, as presented 
in Rodríguez-Yáñez, Méndez-Vázquez, and Cabrera-Ríos, M., 2014.  

2. Include more variables to the test functions to evaluate.  
3. Experiment using alternative metamodels.  
4. Use Design of Experiments for Experimental Region 
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