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Abstract 

Logical Analysis of Data (LAD) is a classification algorithm known for its high accuracy and interpretable results, but 

it has relatively long computational time, which makes it unsuitable to treat big data. In this paper, we propose a 

platform for improving the computational efficiency of LAD especially in large scale and big data applications. We 

develop an approach based on a merging operation of two different LAD models. The proposed approach is ideal to 

develop incremental learning platform based on LAD. In addition, it enables LAD to be performed in parallel 

computing environments. The suggested operation determines the intersection between each pair of patterns from the 

two models. Each intersection is a new pattern in the new merged model and its characteristics are inherited from its 

parent patterns. Numerical experiments are conducted by using an industrial data set. The experiments demonstrate 

the trade-off between accuracy and computational efficiency of the proposed approach and the classical 

implementation of LAD with a sole run on the whole data. The proposed approach resulted in a maximum accuracy 

reduction of 5% and computational time reduction of 87% from the accuracy and computational time of the classical 

implementation of LAD, respectively. 

Keywords 
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1. Introduction

Machine learning is one of the artificial intelligent (AI) applications that give the ability to learn and improve systems 

automatically. Algorithms of machine learning are categorized into supervised and unsupervised machine learning 

algorithms. Supervised machine learning is to learn and gain structural information from labeled training data.  As 

such algorithms produce models or functions which able to provide correct predictions about new unlabeled data. 

Many supervised machine learning algorithms have been developed for classification problems, such as support vector 

machines, decision trees and neural network (Safavian and Landgrebe 1991, Scholkopf and Smola 2001, Hagan et al. 

1996). Although these algorithms show high accuracy in the literature, but they don’t have powerful explanation and 

interpretability of results. Logical Analysis of Data (LAD) is developed and used as a classification method that has 

competitive accuracy and powerful abilities of interpretability by providing patterns that contain structural information 

by analyzing the training data (Boros et al. 1997, Boros et al. 2000, Hammer and Bonates 2006). LAD is used as a 
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powerful classification method in various fields such as medical, services, and manufacturing (Hammer and Bonates 

2006, Mortada et al. 2011, Bennane and Yacout 2012, Mortada et al. 2013, Ragab et al. 2015, Ragab et al. 2016, 

Shaban et al. 2017, Jocelyn et al. 2017, Ragab et al. 2018). 

 

Developing scalable machine learning algorithms which can handle large datasets has attracted the researchers in the 

machine learning community. A taxonomy was proposed in (Zhou et al. 2017) for methods/platforms for machine 

learning on big data. In this taxonomy, studies are categorized based on whether any parallelism is considered in the 

algorithms/platforms or not. Methods in the non-parallelism category aim at providing much faster optimization 

algorithms that can deal with big data without any parallelism and run more efficiently, with significantly better time 

complexity and/or space complexity. The parallelism category reflects most of state of the art in scalable machine 

learning methods (Zhang et al. 2017). To deal with big data that is characterized by huge dimensions in terms of 

number of features and sample size, methods in this category exploit data geometry in the input or algorithm/model 

space or both at the same time (Al-Jarrah et al. 2014). Specifically, parallelism methods that make machine learning 

algorithms more scalable are classified into two sub-categories: (i) data parallelism: partitioning input data vertically, 

horizontally, or even arbitrarily into manageable pieces, and then computing on all data subsets simultaneously, and 

(ii) model/parameter parallelism: developing parallelized versions of learning algorithms by first dividing the learning 

model/parameters and then performing computations on each division concurrently. (Zhou et al. 2017) 

 

Existing machine learning algorithms could use big data processing techniques to achieve scalability. Such efforts 

could be classified into two categories. In the first category, a general middleware layer that re-implements existing 

machine learning algorithms is developed (Zhou et al. 2017). For example, Spark MLlib (Sankar and Karau 2015) and 

Mahout (Owen et al. 2011) are two representative opensource packages that support many scalable machine learning 

algorithms. Many common learning algorithms, including classification, regression, clustering, collaborative filtering 

and dimensionality reduction, are included in both Spark MLlib and Mahout. These packages are independent layer 

that separate front-end algorithm from back-end execution engine, so it can be used on many big data engines, for 

example Mahout supports Hadoop, Spark and H2O as its big data engines. In the second category, existing learning 

algorithms are employed to run directly on big data platform as Hadoop or Spark. Many machine learning algorithms 

can be implemented by MapReduce, including linear regression, k-means, logistic regression, Naive Bayes, etc. (Zhou 

et al. 2017).  

 

The incremental learning algorithms are developed for learning from streaming data and update the model according 

to the new extracted knowledge. In (Polikar et al. 2001), an incremental learning algorithm is defined as one that 

includes the following criteria: (1) Learning new knowledge from the new data. (2) No needing access to the data used 

to train the existing model. (3) Not suffering from catastrophic forgetting (preserve previously acquired knowledge). 

(4) It should be able to accommodate new classes when it is available in the new data.   

 

However, current proposed algorithms for implementing LAD are not capable of offering solutions that satisfy the 

requirements of big data and incremental learning of streaming data. There is no method in the literature for 

implementing LAD on large scale data sets and for learning incrementally from streaming data. Therefore, we propose 

an algorithm to merge different LAD models which trained on different data subsets. This algorithm shall be used 

later as a reducer function in MapReduce paradigm and to learn incrementally from streaming data. In this paper, we 

explain our proposal and demonstrate that the proposed merging algorithm has competitive accuracy and reduces the 

computational time of processing large data sets even when it is run in a sequential paradigm.  The accuracy of the 

merging algorithm is demonstrated by using a real industrial data set. Using this algorithm in parallel environment 

and for incremental learning will be accomplished in future research work. 

 

2. Logical Analysis of Data (LAD) 
 

LAD is a supervised data mining approach which was first proposed in (Crama et al. 1988). It has been considered as 

an effective classification technique that relies on extracting patterns from two-class binary datasets. These patterns 

are used as decision rules that classify the data into distinct classes (Moreira 2000). 

 

LAD decision making approach consists of three main steps: data binarization, pattern generation, and theory 

formation as illustrated in Fig. 1. The step of data binarization intends to convert numerical and nominal data to binary 

data. Pattern generation is the essential step that identifies the patterns of different classes from the binarized dataset. 

Theory formation is the final step that uses the generated patterns to create a model called discriminant function. This 
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model is called LAD model and is used as a classifier for new data. The characteristics of the generated patterns have 

an essential impact on the accuracy of LAD decision model (Boros et al. 2000). The positive (negative) pattern is a 

set of literals which are true in at least one positive (negative) observation and false in all negative (positive) 

observations in the training data set. A literal is a Boolean variable 𝑥 or its negation 𝑥̅. Each binary attribute 𝑏𝑖 can be 

represented by the corresponding literal 𝑥𝑖 or its negation 𝑥𝑖̅, where 𝑥𝑖 is used for 𝑏𝑖 = 1 and 𝑥𝑖̅ for 𝑏𝑖 = 0. The degree 

of a pattern is the number of its literals. (Boros et al. 2000) 

 

There are four types of patterns; prime, spanned, strong and maximal. A prime pattern is the pattern such that if any 

of its literals is removed it will be no longer a pattern. A spanned pattern is the pattern that has the maximum number 

of literals without reducing the number of covered observations. A strong pattern is the pattern which its covered 

observations is not a subset of another pattern. A maximal pattern is the pattern that has the maximum coverage among 

all patterns that cover a certain observation in the training data set. (Hammer et al. 2004)  

 

 
 

Figure 1. Framework of LAD. 

 

For applying LAD in multi-class (𝑘 ≥  3) classification problems, where k is the number of classes, a decomposition 

technique is used to divide the multi-class problem into many two-class problems. This technique can be implemented 

in two different ways; One versus All (OvA) and One versus One (OvO) (Tax and Duin 2002). 

 

OvA approach divides the multi-class problem into 𝑘 different binary (two class) classification problems. Each 

problem considers one class 𝑖 as the positive class and all the remaining (𝑘 − 1) classes as the negative class.  A LAD 

classifier 𝑓𝑖, where𝑖 ∈ [1: 𝑘] is constructed for each problem. By combining all 𝑘 classifiers, the following multi-class 

OvA model for a new event/observation 𝑥 is resulted: 

 

f(𝑥) = arg max
𝑖

𝑓𝑖(𝑥),  (1)     

 

This model (equation 1) classify the new event 𝑥 as class 𝑖 which has the largest value 𝑓𝑖(𝑥). (Tax and Duin 2002). 

 

OvO approach divides the multi-class model into 𝑘(𝑘 − 1) binary classification problems by considering each 

possible class pairs as an individual binary classification problem. Each problem consider class 𝑖 ∈ [1: 𝑘] as a positive 

class and 𝑗 ∈ [1: 𝑘] as a negative class where i ≠ j. By combining all classifiers 𝑓𝑖𝑗 ,  the following multi-class OvO 

model for a new event 𝑥 is resulted 

 

f(x)  = arg  max
𝑖

∑ 𝑓𝑖𝑗(𝑥)𝑖≠𝑗  (2)     

 

This model (equation 2) classifies the new event 𝑥 as class 𝑖 which has the largest value ∑ 𝑓𝑖𝑗(𝑥)𝑖≠𝑗  (Tax and Duin 

2002). 

 

Pattern generation step is very expensive in terms of computational time. The challenge is to generate patterns that 

enhance the accuracy of LAD decision model in such a way that minimizes the computational time while handling 

big data sets. Many approaches are used to generate patterns from the training data set. Most of these approaches are 

based on enumeration, heuristic algorithms or integer programming techniques. In this research, we use cbmLAD 

software (Dexin, 2017) which is based on Ant Colony heuristic technique to provide maximal patterns. 
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3. Merging of LAD models 
 

3.1. Notation 
 

In the case of two-classes data set, the training set is 𝛺 = 𝛺+ + 𝛺− with 𝑛 features. The data set is partitioned into 

two sub sets 𝛺1 = 𝛺1
+ + 𝛺1

− and 𝛺2 = 𝛺2
+ + 𝛺2

−, where 𝛺 = 𝛺1 ∪ 𝛺2. Both of 𝛺1 and 𝛺2 have same 𝑛 features of 𝛺. 

If LAD is applied on each subset 𝛺1 and 𝛺2 separately, two patterns sets will be produced independently; Π1 =
{𝑃11, … , 𝑃1𝑟1

} and Π2 = {𝑃21, … , 𝑃2𝑟2
}, where 𝑟1 and 𝑟2 are the numbers of patterns generated from applying LAD on 

Ω1 and Ω2, respectively. Each pattern set has positive and negative patterns. Each 𝑃𝑖𝑗 is an 𝑛 – dimensional hypercube 

that covers at least one observation from one of the sets Ω𝑖
+ or Ω𝑖

− and no observations from the other set Ω𝑖
− or Ω𝑖

+, 

respectively. 𝑖 is a subscript to identify the data subset and 𝑗 is a subscript to identify the pattern. Partitioning the data 

set 𝛺 into 𝛺1 𝑎𝑛𝑑 𝛺2 results in generating pure patterns, but for the sake of simplicity in implementing the merging 

operation, we will relax the purity condition of the generated pattern to allow for generating non-pure patterns. The 

union of patterns (𝑃𝑖1 ∪ … ∪ 𝑃𝑖𝑟𝑖
)  in each set of patterns Π𝑖 covers all the 𝑛 – dimensional space of data subset Ω𝑖 . 

 

Each 𝑃𝑖𝑗 has characteristics which come from the observations covered by it. In the merging operation discussed in 

section 3.2, these characteristics will be transferred to the new merged patterns directly or indirectly. We illustrate 

these characteristics as follows; (1) 𝐶𝑖𝑗 is the class (the sign positive or negative) which is assigned to pattern j, (2) 

𝐶𝑜𝑣𝑖𝑗  is the number of observations from 𝛺𝑖  covered by pattern j,  (3) 𝐶𝑜𝑣𝑖𝑗
+ is the number of positive observations 

from Ω𝑖
+ covered by pattern j,  (4) 𝐶𝑜v𝑖

− is the number of negative observations from Ω𝑖
− covered by pattern j, (5) χij 

is the homogeneity of pattern 𝑃𝑖𝑗; χij = 𝐶𝑜vij
+/𝐶𝑜vij if 𝐶𝑖𝑗 is positive or χij = 𝐶𝑜vij

−/𝐶𝑜vij if 𝐶𝑖𝑗 is negative, (6) 𝜔𝑖𝑗  is 

the weight of the pattern 𝑃𝑖𝑗;  ωij  =  𝐶𝑜vij
+/ ∑ Co𝑣𝑖𝑘

+𝑟𝑖
𝑘=1  if 𝐶𝑖𝑗 is positive and ωij  =  𝐶𝑜vij

−/ ∑ Co𝑣𝑖𝑘
−𝑟𝑖

𝑘=1  if 𝐶𝑖𝑗 is 

negative, (7) 𝑉𝑖𝑗 is n–volume of the hypercube (pattern) 𝑃𝑖𝑗 , (8) 𝑉𝑖𝑗
𝑟  is the relative n–volume of the hypercube; 𝑉𝑖𝑗

𝑟 =

𝑉𝑖𝑗/ ∑ 𝑉𝑖𝑘𝑘
𝐶𝑖𝑘=𝐶𝑖𝑗

 , (9) 𝐷𝑖𝑗
𝑟  is the relative density of the pattern; 𝐷𝑖𝑗

𝑟 = ω𝑖𝑗/𝑉𝑖𝑗
𝑟  and (10) 𝐷𝑖𝑗 is the density; 𝐷𝑖𝑗 = ω𝑖𝑗/𝑉𝑖𝑗. 

We use the weight and the relative volume to determine the relative density. The relative density is used to reduce the 

impact of unbalanced data with the number of observations or the space of data that is reserved by each class. 

 

3.2. Merging Operation of two LAD models 

 

The proposed merging operation of two LAD models is explained in this section.  The operation merges two patterns 

sets; 𝛱1 and 𝛱2 which are extracted from applying LAD on two different subsets of data 𝛺1 and 𝛺2 into one merged 

interpretable set of patterns 𝛱𝑚 as illustrated in Fig. 2. 

 

 
 

Figure 2. Schematic of running LAD on two different data subsets and merging results into one result. 

 

The operation consists of two main steps; determining the intersection between each pair of patterns and computing 

the characteristics of the new intersecting patterns. 

 

Step 1: Determine intersecting patterns 

 

For each pair of patterns (𝑃1𝑖 , 𝑃2𝑗), with 𝑃1𝑖  ∈ Π1, 𝑃2𝑗 ∈ Π2, 𝑖 ∈ [1, … , 𝑟1] and 𝑗 ∈ [1, … , 𝑟2], the intersection pattern 

𝑃𝑚𝑘 = 𝑃1𝑖 ∩ 𝑃2𝑗 is computed and added to the merged patterns set Π𝑚. The steps of finding this intersection is 

explained in the following paragraphs. If there is no intersection or there is just partial intersection between a pattern 

𝑃1𝑖  with any pattern from Π2, the pattern 𝑃1i or the remaining part of it will be added to the merged patterns set Π𝑚. 

By completing this process, the merging patterns set Π𝑚 will cover the n – dimensional space of data subsets 𝛺1 and 

𝛺2. 
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The algorithm proposed in (Andrzejak et al. 2013) is used in our work to determine the intersection between each two 

patterns. Andrzejak et al. 2013 propsoed a merging algorithm to determine the intersection between two decision trees 

after converting them to sets of boxes. This algorithm uses a line sweep technique to be run on 

𝑂(𝑛(|Π1| + |Π2|) 𝑙𝑜𝑔(|Π1| + |Π2|) + |𝑆|). Where n is the number of features, and S is the pairs of patterns that are 

intersected. 

 

For each feature 𝑡, the algorithm determines a list 𝐸𝑡 to contain the boundaries of feature 𝑡 for each pattern in Π1 and 

each pattern in Π2. Each entry in 𝐸𝑡 is annotated by its origin information (e.g. its pattern, pattern set Π1 or Π2, starting 

or ending boundary). 

 

After sorting 𝐸𝑡 list, the algorithm starts to sweep the entries and update an active patterns list by entering a new 

pattern to it if the entry is a starting boundary and remove the pattern from it if the entry is an ending boundary on 

feature t. During the line sweeping process, a list 𝑆𝑡 is being developed to contain the pairs of patterns from Π1 and 

Π2 that overlap on the attribute 𝑡.  The intersection list 𝑆 = 𝑆1 ∩ … ∩  𝑆𝑛 contains the intersected pairs of patterns 

which are overlapped on all 𝑛 features. Merging patterns set Π𝑚 is determined from the intersections of each pair of 

patterns in the list S. 

 

Step 2: Computing the characteristics of the new intersecting patterns 

 

In this step, the characteristics of each pattern in the merging patterns set Π𝑚 will be determined based on its parent 

patterns from Π1 and Π2. Let 𝑃𝑚(𝑗,𝑘) ∈ Π𝑚 is a merged pattern. 𝑃1𝑗 ∈ Π1 and 𝑃2𝑘 ∈ Π2 are the parent patterns where 

𝑃1𝑗 ∩ 𝑃2𝑘 = 𝑃𝑚(𝑗,𝑘). The n – volume of the merged pattern is the n – volume of the intersection between the parent 

patterns. There will be two cases; the first case is that the parent patterns have the same class and the second one is 

that they have different classes. In the first case, the class of the merged pattern will be the same class of its parent 

patterns. To determine the coverage of the merged pattern, we introduce the following assumption; the observations 

that are covered by any pattern have a uniform distribution on the space bounded by this pattern. According to this 

assumption, any portion of a pattern covers a number of observations is computed as shown in equation (3). The 

coverage of the merged pattern 𝑃𝑚(𝑗,𝑘) will be determined using the same way. The coverage of the intersected portion 

of each parent pattern (𝑃1𝑗 and 𝑃2𝑘) will be determined and then will be added together as shown in equation (4).  In 

the second case, there is a confliction between the parent patterns 𝑃1𝑗 and 𝑃2𝑘. The class of the parent pattern that has 

the higher relative density will be assigned to the merged pattern 𝑃𝑚(𝑗,𝑘) .  

 

Covportion =  
𝑉𝑝𝑜𝑟𝑡𝑖𝑜𝑛

𝑉𝑝𝑎𝑡𝑡𝑒𝑟𝑛
  × Covpattern (3)     

 

Cov𝑚(j,k) =
V𝑚(j,k)

V1j
× 𝐶ov1j +

V𝑚(j,k)

𝑉2𝑘
× 𝐶ov2𝑘 (4)     

 

Simple numerical example 

 

For more explanation of the merging operation, we generated a two-classes data set 𝛺 = 𝛺+ + 𝛺− with two features 

(X and Y) to explain the proposed operation. We partitioned the data set into two data subsets 𝛺1 = 𝛺1
+ + 𝛺1

− and 

𝛺2 = 𝛺2
+ + 𝛺2

−, where 𝛺 = 𝛺1 ∪ 𝛺2. The generated data set and the two data subsets are illustrated in Fig. 3. Each 

data subset was processed by LAD separately. The two LAD processes provided two patterns sets Π1 = {𝑃11, 𝑃12} and 

Π2 = {𝑃21, 𝑃22} from 𝛺1 and 𝛺2 respectively as shown in Fig. 4.a and Fig. 4.b. The characteristics of the patterns are 

determined and illustrated in table 1. The generated patterns by classical LAD is showed in Fig. 4.d. 

 

The first step of the merging operation is to determine the intersections between each pair of patterns from Π1 and Π2. 

These intersections are the new patterns in the merging set. As shown in Fig. 4.c, there are three new patterns are 

generated from three intersections; 𝑃𝑚(1,1) = 𝑃11 ∩ 𝑃21 , 𝑃𝑚(1,2) = 𝑃11 ∩ 𝑃22 and 𝑃𝑚(2,2) = 𝑃12 ∩ 𝑃22. It is obvious 

that no intersection exists between the pair (𝑃12, 𝑃21); 𝑃12 ∩ 𝑃21 =  ∅. In case of the pattern 𝑃𝑚(1,1), there is no 

confliction between the parent patterns 𝑃11 and 𝑃21. The coverage 𝐶𝑜𝑣𝑚(1,1) is computed by using equation (4): 

 

𝐶𝑜𝑣𝑚(𝑗,𝑘) =
𝑉𝑚(1,1)

𝑉11

× 𝐶ov11 +
𝑉𝑚(1,1)

𝑉21

× 𝐶ov21  =  
0.5

0.5
× 70 +

0.5

0.6
×  30 =  88.3 
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Figure 3. Generated data set 𝛺 and two data subsets 𝛺1 and 𝛺2 

 

In case of pattern 𝑃𝑚(1,2), a confliction between the parent patterns exists. As the relative densities of the parent 

patterns 𝑃11 and 𝑃22 are equal as shown in table 1, we relax and use the density 𝐷 in this case instead of the relative 

density 𝐷𝑟 . So, the negative class of pattern 𝑃22 is assigned to the merging pattern  𝑃𝑚(1,2) as the density of 𝑃22 (D22 =

2) is higher than the density of 𝑃11 (𝐷11 = 2). The coverage 𝐶𝑜𝑣𝑚(1,2) is computed as the previous pattern. The last 

merging pattern 𝑃𝑚(2,2) doesn’t have confliction between its parent patterns 𝑃12 and 𝑃22. The characteristics of the all 

three merging patterns are computed and illustrated in table 2. 

 

Table 1. Characteristics of the patterns in Π1 and Π2 sets. 

 
Pattern Class 𝐶𝑜𝑣 𝐶𝑜𝑣+ 𝐶𝑜𝑣− 𝜒 𝜔 𝑉 𝑉𝑟 Dr 𝐷 

𝑃11 Positive 70 70 0 1 1 0.6 1 1 1.66 

𝑃12 Negative 30 0 30 1 1 0.4 1 1 2.5 

𝑃21 Positive 30 30 0 1 1 0.5 1 1 2 

𝑃22 Negative 70 0 70 1 1 0.5 1 1 2 

 

Table 2. Characteristics of the merging patterns. 

 
Pattern Confliction Class 𝐶𝑜𝑣 𝐶𝑜𝑣+ 𝐶𝑜𝑣− 𝜒 𝜔 𝑉 𝑉𝑟 𝐷𝑟 𝐷 

𝑃𝑚(1,1) No Positive 88.3 88.3 0 1 1 0.5 1 1 2 

𝑃𝑚(1,2) Yes Negative 25.7 11.7 14 0.54 0.14 0.1 0.2 0.7 1.4 

𝑃𝑚(2,2) No Negative 86 0 86 1 0.86 0.4 0.8 1.075 2.15 

 

3.3. Merging Operation for incremental learning and big data 

 

In case of the incremental learning, streaming data are loaded in chunks. The first chunk of the streaming data will be 

analyzed by LAD to generate first patterns set Π1 and the first model (classifier). Then the second chunk will be 

analyzed by LAD to generate the second patterns set Π2. By using the merging operation of LAD discussed in the 

previous section, the first two sets of patterns will be merged to produce the first merging patterns set Π𝑚1 and update 

𝜴 

𝜴𝟏 𝜴𝟐 

𝜴+ 𝜴− 

𝜴𝟏
+ 𝜴𝟏

− 𝜴𝟐
+ 𝜴𝟐

− 
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the LAD model using this set. Each new chunk of the streaming data will generate a new set of patterns which will be 

merged with the current one as illustrated in Fig. 5. 

 

 
Figure 4. a: patterns set Π1, b: patterns set Π2, c: merging patterns set Π𝑚 and d: the generated patterns by classical 

LAD 

 

 
Figure 5. Framework of Incremental LAD using the merging operation 

 

In case of big data set, data set Ω will be divided into n data subsets [Ω1, …  , Ω𝑛]. Each subset will be analyzed by 

LAD individually and provide a corresponding set of patterns. Sets of patterns [Π1, …  , Π𝑛] will be generated, then 

will be merged together on a pairwise mechanism as illustrated in Fig. 6 till it ends with one general set of patterns. 

This framework is ideal to be used in distributed processing environments. 
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Figure 6. Framework of processing big data set Ω with LAD using Merging Operation 

 

4. Numerical Experiments 
 

We conducted a numerical experiment to evaluate the performance of the merging operation using OvO multi-class 

LAD. We expand the merging operation to deal with OvO multi-class LAD by running it 𝑘(𝑘 − 1)/2  times; one for 

each two pairs of classes, where 𝑘 is the number of classes. The numerical experiment is performed as follows. 

 

4.1. Design of Experiment 

 

In our experiment, we use an industrial dataset which is provided by a research industrial partner in the chemical field. 

The data includes six different operation modes. The object is to learn from the historical data to detect which mode 

is currently online. The data set is summarized in Table 3. The merging operation is implemented sequentially in this 

research work. The parallel implementation is still in the developing state. The K-Fold method is used with 𝑘 = 5 to 

determine the average results from five different training data subsets and five corresponding testing data subsets. In 

our analysis, we compare between running classic LAD using cbmLAD software (Dexin, 2017) on the whole training 

data subsets and our proposed merging operation of LAD. For the merging operation, we load the training data subset 

to cbmLAD chunk by chunk. Every chunk has 5 × 103 observations. Each chunk is processed separately by cbmLAD 

and patterns sets are gathering in patterns’ sets for the next step. The merging operation runs on pairs of sets of patterns 

and provides merging patterns sets which are merged together until we have one final merging set as illustrated in Fig. 

6. So, the merging operation is repeated 𝑛 𝑙𝑜𝑔 𝑛 times, where, 𝑛 is the number of sets which are provided to run LAD 

on the chunks. If any chunk has only one class, LAD will provide an empty set of patterns. We then evaluate the 

quality and the classification accuracy of the final set of patterns using the testing data sets. The quality will be 

evaluated in terms of degree, weight and homogeneity of the pattern. 

 

4.2. Experimental Results 

 

First, we compare the patterns set produced by running classic LAD on the whole data, and the final patterns set 

produced from merging operations. The comparison is illustrated in Table 4 by averaging the results from the 5 folds. 

Because this data set has six classes, the OvO multi-class type has thirty positive sets as shown in table 5. The merging 

operation of LAD produces higher number of patterns in most of the sets. The average degree of patterns produced by 
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merging operation is higher than those produced by one run of LAD on the whole data. It is obvious that the average 

weights of the patterns produced by the merging operation are lower than those produced by one run of LAD, 

especially when the number of patterns is high such as in the cases of the two pattern sets 1v6 and 6v1. This is because 

of distributing the coverage to many patterns. But we must consider the maximum weight which is not very low 

regarding to the average; 45% and 37% for 1v6 and 6v1 sets respectively. This observation reveals that there are some 

dominant patterns which have high weights. In addition, we relaxed the purity condition on the merging operations 

that transfers some coverage to opposite class patterns and reduces the weights of the patterns.  

 

Table 3. Data Summary 

 
Feature Value 

# of attributes 8 

# of classes 6 

# of observations Class 1 2099 

Class 2 517 

Class 3 4828 

Class 4 744 

Class 5 459349 

Class 6 830 

 Total 468367 

 

Second, we compare the performance of the sets of patterns in term of the accuracy for each class. The average 

accuracy is determined by performing classifiers that are produced by the whole data run of classic LAD and the 

merging operation classifiers on the five testing data subsets. The comparison is illustrated in Fig. 7. This comparison 

reveals that the merging operation performs well in this data set. The worst accuracy is the class six accuracy which 

is reduced from 98.6% to 93.8%, That is, about 5% reduction from the whole data run of classic LAD. 

 

 
Figure 7. Accuracy comparison between LAD and merging operation 

 

 

Table 4 shows the CPU runtime of performing the whole data run of classic LAD and the proposed merging operation 

on each fold of the data set. The computing platform was an Intel i5-3320M 2.60 GHz processor with 12 GB RAM. 

Although the merging operation was performed sequentially and not on parallel environment, the reduction of the 

computational time is 87%. 

 

Table 4. Comparison of CPU Time (Minutes) between sole run of LAD and merging operation 

 

Fold LAD Merging LAD Reduction % 

1 30.37 4.62 84.79 

2 30.50 3.88 87.28 

3 29.70 4.00 86.53 

4 29.72 2.83 90.48 

5 29.80 4.37 85.34 

Average 30.02 3.78 87.41 
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Table 5. Comparison of patterns produce by LAD and Merging Operation of LAD 

 
Patterns 

set 

Patterns produced by LAD (sole run on the whole data set)  Patterns produced by Merging Operation of LAD 

# of 

patterns 

Degree  Weight (𝜔) %   Homogeneity %  # of 

patterns 

Degree  Weight (𝜔) %  Homogeneity %  

min average max min average max   min average max min average max min Average max 

1v2 1 1 1 1 100 100 100 100  2.8 2 2.1 2.2 22.5 35.3 48.0 99.4 99.6 100 
1v3 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 

1v4 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 
1v5 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 

1v6 8 1 2.65 3.8 1.0 17.0 56.0 100  73.4 1.2 4.32 6.6 0.08 3.5 45.0 33.4 97.6 100 

                    

2v1 1 1 1 1 100 100 100 100  3.2 1 1.8 2.6 53.4 67.0 99.4 48.6 61.4 84.3 

2v3 2 1 2.4 3.4 65.0 81.0 98.0 100  8.4 1 4.26 6.4 20.9 50.7 97.9 50.2 70.4 96.9 
2v4 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 87.5 87.5 87.5 

2v5 1 1 1 1 100 100 100 100  2.2 1.6 2 2.4 7.7 27.3 59.1 25.2 55.1 88.5 

2v6 1.6 1 2 3 55.0 77.0 99.0 100  3.8 1.8 2.76 3.8 44.7 56.7 98.3 58.7 73.6 94.6 
                    

3v1 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 

3v2 1 2 2 2 100 100 100 100  5.4 2 4.46 6.2 1.0 8.8 54.0 100 100 100 
3v4 1 1 1 1 100 100 100 100  2 1 1.5 2 17.3 44.3 98.3 99.0 99.3 99.8 

3v5 1 1 1 1 100 100 100 100  4.2 1 1.99 2.8 0.6 13.7 79.8 60.2 78.6 97.2 

3v6 1 1 1 1 100 100 100 100  3.2 1.6 1.82 2.4 60.8 71.8 90.3 99.1 99.5 99.8 
                    

4v1 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 

4v2 1 1 1 1 100 100 100 100  1.8 1 1.4 1.8 60.8 73.2 79.4 92.0 93.9 97.8 
4v3 1 1 1 1 100 100 100 100  1 1 1 1 99.8 99.8 99.8 91.3 91.3 91.3 

4v5 1 1 1 1 100 100 100 100  1.8 1.6 1.7 1.8 13.5 35.2 69.1 45.7 70.8 99.8 

4v6 1 1 1 1 100 100 100 100  1.4 1 1.2 1.4 89.9 89.9 90.0 95.0 96.6 99.7 
                    

5v1 1 1 1 1 100 100 100 100  1 1 1 1 100 100 100 100 100 100 

5v2 1 1 1 1 100 100 100 100  2.2 1.8 1.9 2 19.2 28.5 37.5 44.0 69.8 95.8 
5v3 1 1 1 1 100 100 100 100  2.4 1.8 1.88 2 50.7 58.1 65.5 76.7 83.3 90.0 

5v4 1 1 1 1 100 100 100 100  1.8 1.6 1.7 1.8 43.0 54.4 65.7 48.8 72.3 95.8 

5v6 1 1 1 1 100 100 100 100  2.4 1 1.55 2 44.9 50.9 61.8 86.4 94.4 99.1 
                    

6v1 9.2 1 2.91 4.4 0.02 0.15 0.36 100  58.6 1 3.39 6 0.2 2.8 37.0 6.9 87.5 100 

6v2 2 1.8 1.8 1.8 0.49 0.76 0.97 100  4.8 1.8 2.60 3.6 17.3 33.0 55.7 96.2 98.6 100 
6v3 1 1 1 1 1 1 1 100  2.6 1.4 2.05 2.8 59.2 64.7 73.4 54.9 78.2 94.0 

6v4 1 1 1 1 1 1 1 100  1.3 1 1.1 1.2 81.7 86.1 95 76.9 80.0 86.3 

6v5 1 1 1 1 1 1 1 100  2.6 1 1.53 2 35.9 43.1 54.2 49.0 56.7 71.8 
                    

 

© IEOM Society International 192



Proceedings of the International Conference on Industrial Engineering and Operations Management 

Toronto, Canada, October 23-25, 2019 

 

5. Conclusion 

 

In this paper, we developed an efficient merging operation for different sets of patterns which are produced 

by performing LAD on different data subsets. The motivation behind this operation is developing 

incremental learning framework using LAD and allowing LAD to process big data sets in parallel 

computing environments. We evaluated the proposed technique in terms of pattern’s quality, accuracy and 

computational time. Overall, the quality of the patterns is reduced in terms of the degrees and weights 

comparing to the patterns produced by a single run of LAD, but the accuracy and the computational time 

are promising to apply the proposed technique in an incremental learning platform and parallel computing 

environments. In the future research, we plan to modify the merging operation for the incremental learning 

platform by adding some tuning parameters to reduce the noise of new chunks of data until building a robust 

model. In addition, LAD will be implemented on different parallel computing systems using this merging 

operation and will be evaluated using various data sets.  
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