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Abstract 

Peer evaluation has been well established as an effective method to motivate team members to reflect their 
contribution and performance, to enforce sense of responsibility, to act as an incentive for demonstrating 
good interpersonal skills and to help the team achieve its goals. Behaviorally anchored rating scale is 
generally considered as an efficient and fair method to measure certain scores. However, in the application 
of peer evaluation, numerical rating could be influenced by raters’ biased understanding of the scale based 
on their cultural background. Supplementing peer-to-peer comments with numerical peer evaluation system 
could remediate rater bias effect. In this paper, we propose a natural language processing model that (1) 
processes the peer-to-peer comments about rater’s teammates’ teamwork behaviors; (2) converts comments 
into numerical space that allow for computation We evaluate our results against CATME data and validate 
our proposed system. 
Keywords 
Natural language processing, peer evaluation, peer comments, CATME, teamwork 

1. Introduction
Teamwork is rated as the most important competency by engineering graduates based on their professional

practice and the Accreditation Board for Engineering and Technology (ABET) also lists teamwork as one of required 
competency that engineering graduate should demonstrate throughout college training (Wei, 2019). To facilitate 
improving teamwork skills, the Comprehensive Assessment of Team Member Effectiveness (CATME) was developed 
to help instructors better manage teams and help students improve teamwork behaviors by its embedded peer 
evaluation system based on a behaviorally anchored rating scale (Ohland et al. 2012). CATME has currently over 
7,000 active instructor accounts for instructors across multiple disciplines in over 2,000 institutions worldwide. 
CATME evaluation tool includes five dimensions of teamwork behaviors on which team members are asked to rate 
themselves and their teammates: 

• Contributing (C) to the Team’s Work: being able to add value to a team’s work/project. Team
members are rated on how well they meet their commitments, do their share of the work, and help
their teammates.

• Interacting (I) with Teammates: how individuals communicate within their teams. It includes
encouraging teammates, communicating ideas clearly, and listening respectfully to others’ ideas.

• Keeping the Team on Track (K): being aware of milestones and deadlines and ensuring that the
team is making appropriate progress.

• Expecting Quality (E): taking steps to ensure that the team meets or exceeds all requirements for
project outcomes.
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• Having (H) Relevant Knowledge, Skills, or Attributes (KSAs): the base knowledge of individual 
team members. It means having the required KSAs to solve the problems at hand or being willing 
to learn the KSAs the ratee lacks. (Loughry et al. 2007) 

Peer evaluation has been well established as an effective method to improve teamwork experience among 
team members and boost team performance over time. (Gueldenzoph and May 2002; Hansen 2006) Peer evaluation 
mechanisms enforces a sense of responsibility and encourages team members to demonstrate adequate interpersonal 
skills and make contributions to the team to promote team success in achieving its goals. (Loignon et al. 2017) Peer 
evaluation can be conducted both in numerical scoring ratings, as giving peer a score on certain aspects of his or her 
performance, and in comments describing, discussing and evaluating teamwork behaviors of a given team member. 

Previous research work in peer evaluation data, however, has primarily delved into numerical ratings where 
it is straightforward to perform computations with quantitative analysis  (Wei 2019; Ferguson et al. 2018) and the 
peer-to-peer comments have been largely left out with a few works investigating the value of this certain section 
(Brawner et al. 2018). Nevertheless, peer-to-peer comments and self-reflections are free of the influence of both 
unintended or intended raters’ bias towards peer rating and understanding of behavioral scale. We argue that the value 
which peer-to-peer textual comment data possesses deserves more attention from the research community 

In this work, we propose a model through which we are capable of mapping peer-to-peer comments to scores 
in CATME teamwork dimensions by firstly determining whether the words used to describe behaviors in each 
dimension are existing and secondly assigning scores to corresponding dimensions. By assuming that such mapping 
exists, we approximate this mapping with the state-of-the-art model in the field of natural language processing (NLP) 
and then validate the proposed model. 

To realize projecting textual comments to the numerical space, we introduce several plausible natural 
language processing techniques. The field of natural language processing or computational linguistics has seen a 
tremendous development along with the resurgence of artificial neural network. After the introduction of word 
embeddings (Mikolov et al. 2013; Pennington et al. 2014) and large language models (Peters et al. 2018; Radford et 
al. 2018; Devlin et al. 2019; Radford et al. 2019; Yang et al. 2019; Liu et al. 2019), some of which are capable of 
surpassing human performance on certain tasks like sentence classification, where each sentence is assigned a label 
by humans and the task is to devise an automated system to classify each sentences into the correct category. With the 
help of these techniques, we developed the model shown in Section 4. With empirical validation evidence, we 
conclude that we have reached a model with great performance. 

We have our literature review in Section 2 and some preliminaries in Section 3. In Section 4, we present our 
model and how it came to be. In Section 5 we show our evaluation of our proposed model and in Section 6 and 7 we 
discuss the limitations and the future improvements of the current model. 

2. Literature Review 
2.1 Peer Evaluation and Peer-to-Peer Comments 
Investigation into peer-to-peer comments has been of interests for recent studies (Brawner et al. 2018), which 

observe that good quality written comments are congruent with peer ratings and also very informative about individual 
dysfunctionality or dysfunctional team behaviors. Such comments can indicate certain behaviors that is not noticeable 
through ratings alone as evidenced in Table 3 of the study. This study also shows that it is difficult for exact agreement 
on short snippets of comments. Although this study also suggests training for students to improve the quality of 
comments, it does not, however, provides means to analyze the comments automatically, which is very important for 
class with a large number of teams.  

2.2 Natural Language Processing 
With the advancement in machine learning field, especially the resurgence of artificial neural networks, 

natural language processing community has evidenced tremendous progress in recent years. Word2Vec (Mikolov et 
al. 2013) and other methods for word embeddings encodes natural language words into continuous domain of lexical 
information with each of the vector encodes syntactical and semantical information of its corresponding word. Large 
language models like ELMo (Peters et al. 2018), GPT (Radford et al. 2018), BERT (Devlin et al. 2019), GPT-2 
(Radford et al. 2019), XLNet (Yang et al. 2019), ERNIE (Sun et al. 2019) and RoBERTa (Liu et al. 2019), pre-trained 
on unprecedented amount of data with the single objective of predicting a single word given its context, continues to 
push the boundaries of state-of-the-art results on NLP tasks sentiment analysis, sentence classification, semantical 
similarity detection, question answering, and reading comprehension.  

In this study we mostly use RoBERTa as our backbone model as it is the most successful model at the time 
of this work (More information is provided in Section 2.2.1 and 2.2.2). RoBERTa is short for a robustly optimized 
BERT pre-training approach, which is a reiteration of BERT architecturally but a more robust way to perform the 
optimization, or training, procedure. BERT is regarded one of the milestones in NLP community because of its state-
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of-the-art and even super-human performance on a great variety of tasks. We give a brief high-level overview of the 
architecture and training procedure of RoBERTa in Section 3, but there are more left for the interested readers in the 
thread of work (Vaswani et al. 2017; Radford et al. 2018; Devlin et al. 2019; Yang et al. 2019; Liu et al, 2019) as it 
requires significant effort and space to elaborate in a detailed fashion. 

2.2.1 BERT 
BERT (Devlin et al. 2019) is short for Bidirectional Encoder Representations from Transformers. 

Bidirectional means this model extract information from one sentence not only in left-to-right direction but also the 
other way around, mimicking what we often find ourselves doing when reading a sentence. Encoder is simply 
describing BERT is encoding each input sentence into numerical space with continuous vector representations. 
Transformer (Vaswani et al. 2017) is an architecture devised, in the first place, for neural machine translation, in which 
field despite its smaller model size and faster training time surpassed then state-of-the-art results. Researchers since 
then have been trying to incorporate the Transformer architecture into other tasks in addition to neural machine 
translation. Because of its ability to model long term dependencies (Hochreiter and Schmidhuber 1997), a problem 
faced by NLP community from the start, and to parallelize computation for faster runtime with multiple computation 
cores (Vaswani et al. 2017), Transformers have gained tremendous focus and proved the architecture’s performance 
is better than those of the previous models.  

At the time of its release, BERT topped GLUE (Wang et al. 2019), RACE (Lai et al. 2017) and SQuAD 
(Devlin et al. 2016) leader boards. Some of the performance even match or surpass that of humans. 

2.2.2 RoBERTa 
RoBERTa (Liu et al. 2019) is another iteration of BERT which uses a more robust training recipe. It drops 

the objective of next sentence prediction, in which a model predicts whether two input sequence are supposed to be 
consecutive. It also utilizes a significantly larger dataset from 16GB to 160GB and a larger batch size for a longer 
period of time for training. Upon its release, RoBERTa topped BERT GLUE (Wang et al., 2019), RACE (Lai et al.  
2017) and SQuAD (Devlin et al. 2016) leader boards. 

3. Preliminaries 
3.1 Deep Learning  

3.1.1 Machine Learning 
Machine learning (ML) is commonly viewed as a subfield of artificial intelligence, where practitioners and 

researchers do not hard-code rules into machines to perform certain intelligent actions or inference but instead make 
the model to learn from data (LeCun et al. 2015). Canonical machine learning problems can be divided into three 
subsets, namely supervised learning where data are labeled usually by humans (as supervised by humans) (LeCun et 
al. 2015), unsupervised learning where the data is not labeled and reinforcement learning where a model performs a 
certain action and receives a reward or punishment somewhere in the future (Kaelbling et al. 1996). In our paper, we 
mostly leverage the advances from the supervised learning branch of the community where the advancements are 
arguably most fruitful.  

In a typical supervised learning fashion, when one is given a dataset, we split the dataset into training set and 
testing set with techniques like bootstrapping, or just simple random selection. We also determine what model 
architecture to use. During training, we try to optimize the parameters of the model based on certain objective function, 
also referred to as loss function in ML community, with the information provided by both the inputs and the 
corresponding labels of the training set. The idea is that after the model is trained on the training set, the model 
parameters are fixed, and hopefully it will be capable of performing reasonably well with respect to the objective 
function, on the testing set which it has not seen during training time. Usually such objective functions are based on 
the idea to improve alignment between the model prediction of certain inputs and their corresponding labels, as is our 
setting. 

3.1.2 Deep Learning 
Supervised machine learning is about building models that take in data as input and output predictions. In 

this paradigm, the most significant advancement is the resurgence of deep learning, which uses deep artificial neural 
network (DNN) as the model that learns from the data. DNN can be viewed as a universal function approximator, 
which means that we can approximate the true mapping with such model given enough data. However, the 
performance such approximator depends largely on the dataset chosen, the compatibility of the model architecture, 
the dataset and the given tasks. The elaboration of deep learning is beyond the scope of this work, we refer the readers 
to this review (LeCun et al. 2015). 

3.1.3 Training 
The term training in the setting of machine learning generally means optimization with objective functions 

that align with the goal of the objective of the machine learning research or practice. The optimization, however 
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because of the complexity of the surface of the objective function, mostly ends up in local minima, which have been 
suggested to be good enough in most situations. Training is performed on the dataset. However, not all data can be 
used for training, as we also need some parts of the data to validate the performance of developed model and, 
sometimes, inference to guarantee the quality of the training. Hence, we usually divide our dataset into training set, 
validation set and testing set. 

The optimization algorithm used ubiquitously by ML community is stochastic gradient descend (SGD) or its 
variants such as adaptive momentum (Kingma and Ba 2015), which is one of the most prevalent optimizers and the 
one we employ in this work. In its core, SGD is about to perform the following update to parameter 𝑤, 

𝑤 = 𝑤 − 𝛼 × 𝑤&, 
where 𝑤 is the original parameter value, alpha is called learning rate and 𝑤’ is the derivative of 𝑤. We use the chain 
rule of differentiation to propagate loss signal Variants of SGD usually perform some augmentation with momentum 
or utilize the approximation of the second order derivative since the exact computation is computationally inefficient. 
The differentiation is performed with respect to the loss function, which is usually computed by a mini-batch of the 
entire dataset for its feasible memory requirements. 
 Training is performed, in an ideal setting, as long as the model is not overfitting, which is determined by the 
trend of the validation loss, that is, the loss function value computed using the validation dataset. During training, the 
validation set has never been seen by the model, which guarantees the determination process of the overfitting criterion 
is adequate. Before the overfitting, both the training loss, computed by training dataset, and the validation loss should 
share the same trend of decreasing. For overfitting, however, one can observe that with the decrease of training loss, 
which is guaranteed by the algorithm, the same no longer holds for validation loss.  

3.1.4 Inference 
After training ended, the model performs inference to either carry out its design purpose or to evaluate its 

performance. We use the testing set to report the performance of our model. How these test, training and validation 
set came to be will be discussed in Section 4. 

3.2 Natural Language Processing 
The most exiting advancement recently in NLP is the advent of large pre-trained language models. Because 

its performance, we use RoBERTa as our base pre-trained model. Modern language models are based on layers of 
artificial neural networks of Transformer layer (Vaswani et al. 2017), which has a representation each layer that we 
can extract and feed as features into the classifiers. 

 
Figure 1. Transformer layer from (Vaswani et al. 2017) 

3.2.1 Language Models 
Language models (LM) are models that predict the words based on their context. LMs are generally trained 

through the techniques of machine learning and deep neural network. Next word prediction, for instance, where the 
model predicts the next word in a sentence provided the previous words of the sentence, is one of the earliest language 
model objectives. Cloze task, on the other hand, is to predict a masked token given the background. With an objective 
like the next word prediction and cloze task, LMs can be trained with unannotated data as the next word is 
automatically the label, which allows models of particular large architectures and allows the access to huge amount 
of training data.  

3.2.2 Transformers 
Before Transformers (Vaswani et al. 2017), NLP community mostly use recurrent neural networks (RNN) 

(Chung et al. 2014) and its variants like Long Short-Term Memory(LSTM) (Hochreiter and Schmidhuber 1997). 
Problems with this method includes issues in training for deeper models as people put more and more layers of LSTM 
on top of the lower ones, not capable of learning long term dependencies, and not able to parallelize its computation 
as the output of RNN on one token over one sequence depends on the output value of previous token.  

Attention mechanisms (Bahdanau et al. 2015), on the other hand, generally do not have those constraints. 
Hence, Transformers use stacks of mutli-headed Attention layer, which is attention performed several times on one 

232



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Toronto, Canada, October 23-25, 2019 

© IEOM Society International 

layer, and totally rid of RNNs. A typical transformer layer, as in Figure 1, consist of a mutli-headed attention layer 
with its inputs added onto its output, called residual connection (He et al. 2016), followed by a simple feed-forward 
layer with the same residual connection, both residual connections were followed by LayerNorm (Ba et al. 2016). 
With extensive empirical results and performance reports (Vaswani et al. 2017) (Radford et al. 2018), it is reasonable 
to trust that Transformers are a better alternative to RNNs.  

3.2.3 Transformer-based Language Models 
Though Transformer was designed as a model to perform natural language translations, which uses an 

encoder-decoder transduction structure, great efforts have been put in and tremendous results have been reported from 
using only the encoder part of Transformer as the basic building block of large language models. Transformer layers 
enable the models to go deeper. For example, ELMo (Peters et al. 2018) used only LSTMs and can only go as deep 
as three layers while the original Transformer has 12 layers in total and BERT (Devlin et al. 2019) has 24 in its larger 
version. 

 
4. Methodology 

Given the fact that trained expert raters are capable of performing such comments-to-scores mapping, we 
argue that our hypothesis holds. However, to hard code such a mapping requires tremendous effort. As an alternative, 
we leverage the recent advances in the deep learning and natural language processing community to build this 
mapping. 

4.1 Data 
4.1.1 Dataset details 

We use the data from (Brawner et al. 2018), in which the process of obtaining expert-rating system is 
described in Section 3. After carefully selected teams to code, one of the authors of the paper calibrates her ratings 
with Dr. Ohland, CATME Principal Investigator, considered a subject matter expert. This author then went on and 
coded 46 teams. Another author, who was then a previous user of CATME, coded 15 of those teams and their results 
are compared. 77% exact agreement and 85% agreement within 1 on 5-point scale discrepancy was reported.  

4.1.2 Data Augmentation 
 As per the general underlying assumption of training most, if not all, deep neural networks, we need a huge 
amount of data. In our settings, the requirement is even higher as we need labels to train the models. Based on the 
dataset that we have with its 480 instances, to develop any robust model, we need proper data augmentation techniques. 
 The first technique that we use is referred to as back translation (Sennrich et al. 2016) (Lample et al. 2018) 
in the natural language processing community where we translate an original sentence into another intermediate 
language like Chinese or French and then translate it back into English. In such a fashion, we obtain two sentences, 
though almost identical meaning, of two separate and different representations which we can use the same labels 
because while syntactically different, the new English sentence and the original sentence are semantically rather close. 
In our implementation, the intermediate language that we chose to perform back translations are Chinese, French, 
German, Spanish, Korean, Greek, Romanian, Hindi, Japanese, Italian, Irish, Georgian, Finnish and Czech, summing 
up to a total of 14 intermediate languages, which brings the total number to 7,200 instances. 
 Though a 14-time increasement may seem large at first, we must acknowledge the fact that though 
syntactically diverse, these instances share around only 480 clusters in the semantic space, which means we need to 
augment the data through other techniques. One of which is to utilize large pre-trained language models. Many works 
(LeCun et al. 2015) have been done in this fashion to augment small datasets, which constitutes a paradigm in machine 
learning called few-shot learning where a model learns the smaller dataset after trained on a large, general dataset.  

RoBERTa (Liu et al. 2019), the large language model that we use in this work, was trained with 160 GB raw 
text data. We will use the last layer of the model as the sentence representation. While we are not directly augmenting 
the dataset itself, the fact that the language model is capable of correctly determining the word based on context words, 
it must learn to extract both syntactically and semantically meaningful representations through proper analysis of the 
context words. We expect it to perform similar, if not identical, analysis in our settings. It is a proper expectation to 
hold given the success of such procedure done for FewRel dataset (Han et al. 2018) by (Baldini Soares et al. 2019), 
some of which actually reports human-surpassing performance. Without such analysis, our whole model would have 
to learn to conduct these analyses on a very small and yet challenging dataset, which will almost be guaranteed to 
overfit the dataset, that is, the performance results only pertain to the 480 instances that we have. 

4.1.3 Splitting data 
To properly evaluate when to stop training and more importantly measure the end performance of our model, 

we need to split our data properly. 
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For the testing set that we use to test the performance of our model, we randomly select 80 instances out of 
the 480 original data instances without back translation. Data splitting is performed without replacement and the 
probability of each instance to be chosen following a uniform distribution. 

If we simply divide the remaining data into training and validation set, we would lose another chunk of the 
data to validation rather than training. To avoid this issue, we instead split the data in 𝑘 equal-sized splits. We use this 
as a method to train ensemble models where one trains many models and use the average of the output of each model 
as the output of his or her final model (Mosteller and Tukey, 1968). For each single model that we train, we take one 
of the splits as the validation set and train this particular model on the remaining splits. We perform such training 
method on 𝑘 models in total. We made sure that one split only served once as the validation set. This allows the final 
ensemble model to leverage all the information in the training set without compromising validation. 

It is worth noting that we perform all the above procedures on the original 480 instances and only the training 
set is back translated to boost performance. 

4.1.4 Text Encoding 
Before the text is ready to be processed by the core model of the pipeline, there are certain processes to be 

performed in order to make it easier for the model to understand the text.  
4.1.4.1 Lowering the case 

In a way, we can view our task in this paper as sentence classification, that it, we classify each sentence as 
whether it mentions anything related to the CATME teamwork dimensions behavior scale description, and if so, we 
classify the related information into actual scores on a scale of 1 to 5 with 1 being the lowest and 5 being the highest. 
From this standpoint, we argue that it loses some but far from significant information if we lower the cases of all the 
word in the comments, but this specific action will lower the pressure of the model as it does not have to learn a 
separate representation for the same word with different cases. 

4.1.4.2 Byte-Pair Encoding 
Byte-Pair Encoding (BPE) (Gage 1994) (Sennrich et al. 2016) is a word representation scheme, hybrid of 

character and word level representation. Depending on the word performed on, BPE might leave the word untouched, 
or separate it into two or more sub-word units, whether each word should be dissected and, if so, what it should be 
dissected into are learned with statistical analysis of a chosen corpus. This allows us to deal with unmet words, 
misspelled word, for example, during inference when we put our trained model into task. 

 
Figure 2. The general structure of our model 

4.2 The Model 
4.2.1 Base Model Configuration 

Due to limitations of our computation resources, we have chosen the base model of RoBERTa rather than 
the better, larger version of it. However, a base model is far from inadequate. It still contains 12 Transformer layers 
and the last layer output has a dimension of 768. We add a classification head on top of the last layer for each dimension 
to get its score and another classification head for its threshold. The classification consists of three layers of fully 
connected neurons with ReLU (Gordon and Dunson 2011) activation and 0.7 probability of dropout (Srivastava et al. 
2014). The middle layer is of dimension 3072. The classification heads for score values are activated through a 
LeakyReLU layer and the last layer is passed to a linear layer and the threshold heads were passed in through sigmoid 
function, 
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒67, 
which restrains the output into a single interval from 0 to 1. The model is as demonstrated in Figure 2. 
 

4.2.2 Loss function 
We use mean square error (MSE) with mean reduction to compute the loss of scoring discrepancies and use 

Focal Loss (Lin, Goyal et al. 2017) to compute the loss for binary classification on whether to output this dimension 
score or not. The MSE loss is clipped where the model prediction is larger than 5 and the real expert rating is 5 and 
where the model prediction is smaller than 1 and the real expert rating is 1. It is also disregarded if the expert rating 
does not exist. The focal loss is computed as follows, 

𝐹𝐿(𝑝;) = −𝛼;(1 − 𝑝;)< log(𝑝;), 
where 

𝑝; = @		𝑝																														𝑖𝑓	𝑒𝑥𝑝𝑒𝑟𝑡	𝑐𝑜𝑑𝑖𝑛𝑔	𝑒𝑥𝑖𝑠𝑡𝑠1 − 𝑝																																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝛼; is the scaling factor where it is set by inverse class frequency, 𝑝 represents the output of binary classification heads 
and 𝛾 is a hyperparameter and is set as 2 in our setting. We use the sum of both MSE and Focal Loss functions as our 
final loss signal. Focal loss is better suitable for class imbalance problems in binary classification as it lowers the 
weight for easier examples that the model already learns well. We use this loss because it is suggested in previous 
study (Brawner et al. 2018) that certain dimensions are coded (rated) more regularly than not. 

4.3 Training procedure 
We use Adam optimizer (Kingma and Ba 2015) with the default parameters except learning rate 	𝛼  is 

configured to 106J using PyTorch framework to train 5 models of the same architecture. Hence, we split the data into 
𝑘 = 5 folds. For each fold, we use batch size of 64 for two full epochs before overfitting. 

5. Evaluation 
5.1 Metrics 
For the decision on whether to code (whether there is relevant information), we use 𝐹L score as our metric, 

𝐹L =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

, 

where, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

which has good qualities for imbalanced classes. For a higher 𝐹L score, a binary classification model has to be able to 
produce both good precision and good recall metrics. 
  We also use agreement as found in (Brawner et al. 2018). 

5.2 Results 
We report our 𝐹L score as 0.67 on the testing dataset with the threshold of determination determined on the 

validation set. Since for each sentence this task contains 5 binary classification tasks for 𝐹L score to be computed on, 
we deem this result very positive. Though our model achieves good results for its design purpose, it is very reasonable 
to assume that with more data we are expecting substantial performance boost on the next iteration of the model. 
Moreover, we are excited to be able to bring this feature online for instructors to use. 

For the agreements, the model agree with the expert rater 61.5% exactly and 71.5% with 1-point discrepancy on 
a 5 points scale (where we allow for right decision on whether to code and at most 1 points off from the expert rater 
Author Brawner in the original paper for this dataset). Given previous studies have recognized the difficulty of exact 
agreement (Brawner et al. 2018), we regard this result satisfactory. this We note that this is largely limited by the 
available dataset size and argue that with a bigger dataset we can have 1-point discrepancy over 80%, which is the 
threshold normally considered acceptable for inter-coder reliability (Fraenkel and Wallen, 1993). 

6. Discussion 
Though our model achieves good results for its design purpose, it is very reasonable to assume that with more 

data we are expecting substantial performance boost on the next iteration of the model. Later, we could utilize this 
instrument to analyze the relationship between students’ written comments and provided numerical rating to provide 
constructive suggestion and tool to improve the quality of students’ comment and perhaps, automating dimension 
grade assignment based on comment.  
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This pivot study also explores a new research method to investigate qualitative data. Hopefully, this work 
inspires lots of other novel research in this field. 

7. Conclusion 
We proposed a model capable of processing the peer-to-peer comments about rater’s teammates’ teamwork 

behaviors by converting comments into numerical space that allow for computation. The performance of the system 
is satisfying based on the dataset size that we have, which reaches 61.5% accuracy. 
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