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Abstract 

A Data-driven stochastic optimization framework that leverages big data in design and operation of power 
generation units is proposed. A k-means clustering algorithm is adopted to generate uncertainty scenarios for the 
stochastic optimization framework. In order to do this, the power generating design and operation problem is 
formulated as a two-stage stochastic programming model. The first stage variables are associated with design 
decisions, whereas the second stage variables are associated with unit commitment operation (i.e. scheduling). The 
historical demand data was first collected and reprocessed. After that, the processed electrical demand (uncertain 
parameter) is processed and recognized using unsupervised machine learning. K-means clustering algorithm is used 
to produce electrical demand scenario profiles. These scenarios are used as inputs to the stochastic model. The 
proposed model is formulated as a mixed integer linear programming (MILP) and solved using GAMS. The 
stochastic data driven method enjoys the following features: it is based on information derived from real data 
without explicitly knowing the data distribution and it applies the recent advances of data analysis tools (e.g. 
machine learning) to generate a reduced size data set (i.e. clusters) integrated into mathematical model (i.e. design 
and planning model) that leads to a computationally tractable problem.  

1. Introduction

Deterministic process design and operation models can help ensure an optimal solution for certain process 
parameters (e.g. demand, fuel price) where it satisfies the constraints associated with that parameter (i.e. product 
should be greater than or equal to demand). As most real-life problems involve some sort of uncertainty, 
deterministic models are incapable of resolving them. In reality, most model parameters are uncertain, such as the 
availability of renewable energy and power demand are not known with certainty and are hard to predict. There exist 
a considerable number of studies from industry and academia on optimization under uncertainty (Sahinidis 2004, 
Grossmann et al. 2016, Ierapetritou et al. 1996). However, these approaches do not take advantage of the recent 
advances in machine learning and big data analytics to leverage uncertainty data for optimization under uncertainty. 
Hence, the goal of this paper is to propose a data- driven stochastic decision-making framework that integrates 
machine learning methods to uncertainty data with the design and operation of power generation problem. 
Traditional models of decision-making under uncertainty assume perfect information which means either accurate 
values for the system parameters or specific probability distributions for the random variables. Nevertheless, such 
exact knowledge is rarely available, prior knowledge on uncertain parameter distribution is unknown and fitting 
random variables (uncertain parameter) into a popular distribution is complicated and impractical (Bertsimas and 
Thiele 2006). Furthermore, it is mathematically intractable to deal with erroneous inputs (all sets of uncertain data) 
and this could lead to infeasible solutions or exhibit poor performance when implemented (Bertsimas and Thiele 
2006). Therefore, in this paper we propose a data-driven stochastic approach for power generation design and 
operation optimization that can efficiently utilize the available historical demand data through advances of data 
analytics tools such as k-means clustering (a machine learning tool) By doing this, data-driven power planning is 
achieved against uncertainty realization.
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The rest of this paper is structured as follows: Section 2 states the methodology of the proposed method. Section 3 
presents the mathematical formulations of the deterministic and the stochastic models of the design and operation of 
power generation problem. Section 4 covers the construction of data-driven uncertainty scenario. The results of  
both mathematical formulation problems are discussed in section 5. Conclusions are drawn in section 6.  
 
2. Methodology 
 

In this paper, the unit commitment (UC) model was reformulated in such a way that its design and operational 
decisions can be determined. The main objective of this paper is to formulate and solve the mathematical problem of 
the design and operation for power generation units. The model is expected to incorporate design and operational 
decisions based on uncertain electricity demand. The UC problem can be defined as finding the optimal scheduling 
of electric power generating units over a short-term period (i.e. typically from 24hours to one week, in order to 
minimize the operations costs. The unit commitment optimal solution must obey the technical constraints and must 
satisfy the demand. The design and operation of the power generation model can be divided into two phases, namely 
deterministic and stochastic with recourse formulation. In the deterministic model the hourly expected values (i.e. 
means) over one year for one day of the electricity demand were used as inputs. The deterministic model was solved 
for a one-day time horizon and the electricity demand was assumed to be certain. We have only one-day profiles for 
demand that represent the entire block of previous year/ years. In the stochastic approach, the problem was 
formulated as a two-stage stochastic programming model. The first stage variables are associated with power 
generating units design decisions, whereas the second stage variables are associated with unit commitment operation 
(i.e. scheduling). The uncertain parameters (i.e. electricity demand) were processed and recognized using 
unsupervised machine learning. Different scenarios were generated for this uncertain parameter. A clustering 
algorithm was used to produce uncertain parameters profiles (i.e. each scenario corresponds to the profile of 
electricity demand for 1 day, in other words each scenario is a vector with 24 dimensions and each cluster is 
associated with a certain occurrence/probability). Different scenarios were used as inputs to the stochastic model. 
The time horizon for the stochastic model was also one day, however, there were many scenarios for this day at each 
hour (e.g. the electrical demand at 2 hours of the day is different depending on the scenario/profile). Clustering 
strategies have proven their ability to aggregate cyclic data based on the concept of cyclic scheduling (e.g. electricity 
demand follows daily cycle). It was used extensively in process systems engineering (Pochet and Warichet  2008, 
Wu and Ierapetritou 2004), cyclic scheduling which requires certain demands to be processed over certain time 
periods repeatedly within the time horizon. However, these aggregated cyclic results, to our knowledge have only 
been incorporated in deterministic modelling which works only under the presence of certain information. 
Clustering techniques were not widely used to reduce the size of the uncertain data. Therefore, applying clustering 
algorithms to extract patterns from uncertain data and use its output to be fed into a stochastic optimization 
formulation is an interesting research area and more exploration on this approach can be performed.  
This stochastic model has two level decisions (i.e. operational and design) whose objective is to minimize the capital 
and operating cost. The capital costs correspond to the number of generator units that need installation, while the 
operating costs are associated with the amount of power generated by these units while meeting electricity demands. 
There are several mathematical models for the unit commitment problem available in the literature (Tumuluru et al. 
2014). In this study, we adopted Marcovecchio et al. (2014) the UC model formulation as the basis for our 
formulations of power generating model. The model is formulated as a mixed integer linear programming (MILP) 
(Alhameli 2017). The following sections present the model formulations and related consideration.  

 
3. Mathematical Formulation 
 
3.1 Deterministic Mathematical Formulation of Power Generation Design and Operation 
  
Consider a set of I thermal  to be scheduled over a time horizon T. The goal is to minimize the overall cost (i.e. 
capital and operating). This goal can be achieved by optimally determining the number of power generation units 
(both thermal) and scheduling the thermal generating units. The mathematical programming framework ensure that 
these optimal solutions are meeting the electricity demands and operating within the units’ capacities (i.e. technical 
constrains). The problem is solved for 10 thermal units and 24 hours.  
Objective Function: The objective function (see equation (1)), represents the net present cost, including capital cost 
of the power units and their operating cost. In this study, the operating cost covers fuel consumption calculated by a 
linear function with fixed charges, and fixed start-up and shut-down costs (Alhameli 2017). Net present cost is the 
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sum of the discounted values of all the cost cash flow at the present. Assume the annual discount rate for the 
calculation is 𝑟𝑟 and the system life span is L years. As fuel consumption considered to be the costliest component of 
operating expenditure in power generation, then the expected net cost value of the project over the system life-span 
can be minimized as: 
min∑ 𝑥𝑥𝑖𝑖𝐶𝐶𝑔𝑔𝑖𝑖𝑖𝑖 + ∑ 𝑁𝑁𝑑𝑑

(1+𝑟𝑟)𝐿𝐿
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿=1 ∑ (𝑎𝑎𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑃𝑃𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡)𝑖𝑖,𝑡𝑡      (1) 

Where: 
𝑥𝑥𝑖𝑖   the binary design decision for power unit i (0 means no and 1 yes); 
𝑈𝑈𝑖𝑖,𝑡𝑡  the binary operational/scheduling decision variable representing the on/off status of unit i at period 
t; 
𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡  start-up cost variable of unit i in period t; 
𝑃𝑃𝑖𝑖,𝑡𝑡  power output variable of unit i in period t; 

𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖  coefficients of the fuel cost function of unit, their values are shown in Table 5 

𝐶𝐶𝑔𝑔𝑖𝑖  the capital cost of i generating unit (3,246 $/kW, the capital cost for coal power plant) 

∑ 𝑁𝑁𝑑𝑑
(1+𝑟𝑟)𝑦𝑦

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦=1  coefficient to convert the daily operating cost into net value, where 𝑁𝑁𝑑𝑑, denotes number of days 

per year (365 days/year), 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  represents the life time (i.e. system life span and it was assumed to be 25 years) of 
the generating units (10 Units) and 𝑟𝑟 denotes the discount rate (12%)  
Minimum and maximum power generation: Equation (2) ensures that the power produced by unit i at time t is within 
the generation power limits of that unit. (i.e. upper limit 𝑃𝑃𝑖𝑖𝑈𝑈 and lower limit 𝑃𝑃𝑖𝑖𝐿𝐿). The values of the upper and lower 
power generating limits are shown in Table 5. These constraints fix units availability at zero when units are ‘off’ 
(𝑈𝑈𝑖𝑖,𝑡𝑡 = 0) and specify the lower and upper bounds of units capacity when units are active (𝑈𝑈𝑖𝑖,𝑡𝑡 = 1). 
𝑈𝑈𝑖𝑖,𝑡𝑡𝑃𝑃𝑖𝑖𝐿𝐿 ≤ 𝑃𝑃𝑖𝑖,𝑡𝑡 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡𝑃𝑃𝑖𝑖𝑈𝑈                                                        𝑡𝑡 = 1, … ,𝑇𝑇;  , 𝑖𝑖 = 1, … . , 𝐼𝐼    (2) 
Electricity demand and reserve: Electricity demand should be satisfied at any t time by equation (3). In this 
deterministic case, the average value of Ontario demand for 2018 was used. It was assumed that we want to satisfy a 
portion of Ontario’s demand (i.e.~ 7% of total Ontario demand in 2018 (Hourly Ontario and Market Demands 
2018)). More details on demand data collection and mean calculation are shown in the section 4.  
∑ 𝑃𝑃𝑖𝑖 ,𝑡𝑡𝑖𝑖 ≥ 𝐷𝐷𝑡𝑡                                                            𝑡𝑡 = 1, … . ,𝑇𝑇      (3) 
Equation (4) guarantees spinning reserve by the available capacity of the active units, where, 𝑅𝑅𝑡𝑡  represents the 
reserve requirements. Spinning reserve (i.e. spinning means active units that already connected to the grid) means 
that from the pool of available capacity, a portion is selected for a back-up role. It is assumed that the spinning 
reserve requirement to be met is set at 10% of the load demand for each time period.  
∑ 𝑃𝑃𝑖𝑖𝑈𝑈𝑈𝑈𝑖𝑖,𝑡𝑡𝑖𝑖 ≥ 𝐷𝐷𝑡𝑡 + 𝑅𝑅𝑡𝑡                                                                𝑡𝑡 = 1, … . ,𝑇𝑇     (4) 
Minimum up and down time of thermal generating units: Once a decision has been made to turn a thermal power 
plant on or off, it must remain in that state for a minimum amount of time. Equation (5) and equation (6) determine 
the online/offline status of unit i in its earliest periods of operation which are specified by its initial status (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) and 
its minimum up (𝑇𝑇𝑇𝑇𝑖𝑖) and down (𝑇𝑇𝑇𝑇𝑖𝑖) times. 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 denotes the number of periods that unit i has been initially offline 
(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0) or online (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0) if .The following constrains ensure that when the simulation is started if unit i is 
offline for 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, it will continue to be offline until it satisfies its minimum down requirement (𝑇𝑇𝑇𝑇𝑖𝑖) and vice versa 
for the online unit.  
𝑈𝑈𝑖𝑖,𝑡𝑡 = 1                              ∀ 𝑖𝑖 ∶ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0;   𝑡𝑡 = 1, . . , (𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)     (5) 
𝑈𝑈𝑖𝑖,𝑡𝑡 = 0                              ∀ 𝑖𝑖 ∶ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0;   𝑡𝑡 = 1, . . , (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)      (6) 
Equation (7) and equation (8) are expressing the constraints on minimum uptime and downtime unit as follows: 

𝑈𝑈𝑖𝑖,𝑡𝑡 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡+𝑗𝑗                             𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇 ;  𝑗𝑗 = 1, … , (𝑇𝑇𝑈𝑈𝑖𝑖 − 1)   (7) 
𝑈𝑈𝑖𝑖,𝑡𝑡+𝑗𝑗 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1                             𝑖𝑖 = 1, … , 𝐼𝐼, ;  𝑡𝑡 = 2, … ,𝑇𝑇;   𝑗𝑗 = 1, … , (𝑇𝑇𝐷𝐷𝑖𝑖 − 1)   (8) 
In the first time period equation (7) and equation (8) reduce to equation (9) and equation (10) respectively. 
𝑈𝑈𝑖𝑖,1 ≤ 𝑈𝑈𝑖𝑖,1+𝑗𝑗                                             𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0;    𝑖𝑖 = 1, … , 𝐼𝐼;   𝑗𝑗 = 1, … , (𝑇𝑇𝑈𝑈𝑖𝑖 − 1)   (9) 
𝑈𝑈𝑖𝑖,1+𝑗𝑗  ≤ 𝑈𝑈𝑖𝑖,1                                             𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0;   𝑖𝑖 = 1, … , 𝐼𝐼;    𝑗𝑗 = 1, … , (𝑇𝑇𝐷𝐷𝑖𝑖 − 1)   (10) 
Unit ramp rates: Thermal generating units are limited with respect to how quickly they can change their power 
output and also this limit is known as a unit’s ramp rate (𝑅𝑅𝑅𝑅𝑖𝑖 ramp-up rate, 𝑅𝑅𝑅𝑅𝑖𝑖ramp-down rate, 𝑆𝑆𝐷𝐷𝑖𝑖  shutdown ramp 
rate and 𝑆𝑆𝑈𝑈𝑖𝑖 is start-up ramp rate per unit of time period ) . The ramp-up and ramp-down rates of each unit are set to 
be at 20% of the unit maximum power output per time period. Whereas the start-up and shutdown ramp rates of each 
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unit are chosen to be at its maximum generation output (Simopoulos et al. 2006). The ramp rate limits are modelled 
by equation (11) and equation (12) 
𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑖𝑖,𝑡𝑡−1 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡−1 + 𝑆𝑆𝑈𝑈𝑖𝑖�1 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1�                                         𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 2, … ,𝑇𝑇   (11) 
𝑃𝑃𝑖𝑖,𝑡𝑡−1 − 𝑃𝑃𝑖𝑖 ,𝑡𝑡 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡−1 − 𝐷𝐷𝑈𝑈𝑖𝑖(1 − 𝑈𝑈𝑖𝑖,𝑡𝑡)                                             𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 2, … ,𝑇𝑇   (12) 
Start-up and shut-down unit costs: The costs involved in turning on and off generating units are essential and 
considered to be an important element of the operation cost of power thermal unit. In this study, it is assumed that 
there are two fixed start-up costs per unit (hot start and cold start), depend on the time periods that the unit was off 
(Marcovecchio et al. 2014). The start-up cost function is defined as a hot start cost (𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡 = 𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖) if downtime ≤ 
(𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ) and a cold start cost (𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖) otherwise. Where 𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖  and 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  are parameters that 
represent the hot start cost of unit i, the cold start cost of unit i, and the cold start hour of unit i, respectively. The 
values of these parameters are reported in Table 5. This start-up cost function can be modelled by equations (13 -16) 
�𝑈𝑈𝑖𝑖,𝑡𝑡 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1�𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡                                    𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇      (13) 
𝑈𝑈𝑖𝑖,1𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡                                                        𝑖𝑖 = 1, … , 𝐼𝐼;𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0     (14) 
�𝑈𝑈𝑖𝑖,𝑡𝑡 − ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡−𝑗𝑗𝑗𝑗< 𝑇𝑇𝐷𝐷𝑖𝑖+𝑇𝑇𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 � 𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡          𝑖𝑖 = 1, … , 𝐼𝐼;   𝑡𝑡 > 𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶     (15) 
�𝑈𝑈𝑖𝑖,𝑡𝑡 − ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡−𝑗𝑗𝑗𝑗<𝑡𝑡 �𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡                𝑖𝑖 = 1, … , 𝐼𝐼;  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0 ;𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑡𝑡 < 𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 1 (16) 

Equation (17) ensures that variable 𝑪𝑪𝑼𝑼𝒊𝒊,𝒕𝒕, takes value 0 when the unit is not turned on at the time period 

0 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡                                    𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 1, … ,𝑇𝑇       (17) 
We assumed that there is no shut-down cost when units are turned off (Alhameli 2017 and Marcovecchio et al. 
2014).  

Design constraints: The following constraints (equations (18 & 19)) ensure that the thermal unit will not be develop 
if it is not used (not needed). 𝑥𝑥𝑖𝑖 denotes a binary decision variable to determine whether unit i should be installed or 
not. 

𝑈𝑈𝑖𝑖,𝑡𝑡 ≤ 𝑥𝑥𝑖𝑖                                          𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇       (18) 
𝑥𝑥𝑖𝑖 ≤ ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡𝑡𝑡                                             𝑖𝑖 = 1, … , 𝐼𝐼        (19) 
Variable specification: Finally, the specification on the variables is as follows: 
𝑈𝑈𝑖𝑖,𝑡𝑡  ∈ [0,1]        𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 1, … ,𝑇𝑇        (20) 
𝑥𝑥𝑖𝑖  ∈ [0,1]        𝑖𝑖 = 1, … , 𝐼𝐼          (21) 
After that, these equations are solved, and results obtained are shown in section 6.  
 
3.2 Stochastic Mathematical Formulation of Power Generation Design and Operation 
 

This section discusses the model for the stochastic problem for the design and operation of a power generation under 
uncertain demand. The mathematical model was formulated as a two-stage stochastic with recourse, where the first-
stage decisions decide the existence of the thermal generating unit while the second-stage decisions plan the 
operation of the system (i.e. power scheduling). One main difference of stochastic model compared to the 
deterministic one, is that the optimal power scheduling can be different for each different realization of the 
uncertainty (in each cluster of demand in the system). The two-stage stochastic recourse formulation is basically a 
bi-level optimization formulation whose inner optimization problems mimic the second-stage planning process. Due 
to its special structure, two-stage stochastic programs can be naturally reformulated into an equivalent single-level 
optimization problem. Therefore, the single-level optimization formulation of two-stage recourse of power 
generation design and operation can be directly written as follows:  
Objective Function: The objective function in equation (22) represents the net present cost of the stochastic power 
generation design and operation. The second part of the equation denotes the annual net cost from operating the 
power unit (i.e. basically fuel consumption because of power generation), which depends on the scenario of 
uncertainty realization 𝑠𝑠 with probability 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑠𝑠:  
min∑ 𝑥𝑥𝑖𝑖𝐶𝐶𝑔𝑔𝑖𝑖𝑖𝑖 + ∑ 𝑁𝑁𝑑𝑑

(1+𝑟𝑟)𝐿𝐿
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿=1 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑠𝑠(𝑎𝑎𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 + 𝑏𝑏𝑖𝑖𝑃𝑃𝑖𝑖,𝑠𝑠 + 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠)𝑖𝑖,𝑡𝑡,𝑠𝑠      (22) 

The remaining equations are almost the same as the deterministic one, except the new subscript 𝑠𝑠. where the new 
subscript 𝑠𝑠 [ {1, … 𝑆𝑆}] is used in the stochastic model for all the variables and parameters whose values may be 
different in the 𝑆𝑆 different uncertainty scenarios (the uppercase s denotes the total number of scenarios). 
Minimum and maximum Power generation 
𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠𝑃𝑃𝑖𝑖𝐿𝐿 ≤ 𝑃𝑃𝑖𝑖,𝑡𝑡 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠𝑃𝑃𝑖𝑖𝑈𝑈                     𝑡𝑡 = 1, … ,𝑇𝑇;  , 𝑖𝑖 = 1, … . , 𝐼𝐼; 𝑠𝑠 = 1, … , 𝑆𝑆    (23) 
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Electricity demand and reserve  
∑ 𝑃𝑃𝑖𝑖 ,𝑡𝑡,𝑠𝑠𝑖𝑖 ≥ 𝐷𝐷𝑡𝑡,𝑠𝑠                                       𝑡𝑡 = 1, … . ,𝑇𝑇;  𝑠𝑠 = 1, … , 𝑆𝑆      (24) 
∑ 𝑃𝑃𝑖𝑖𝑈𝑈𝑈𝑈𝑖𝑖,𝑡𝑡𝑖𝑖 ≥ 𝐷𝐷𝑡𝑡,𝑠𝑠 + 𝑅𝑅𝑡𝑡,𝑠𝑠                     𝑡𝑡 = 1, … . ,𝑇𝑇;   𝑠𝑠 = 1, … , 𝑆𝑆      (25) 
Minimum up and down time of thermal generating units  
𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 = 1                                    ∀ 𝑖𝑖 ∶ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0;   𝑡𝑡 = 1, . . , �𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�;  𝑠𝑠 = 1, … , 𝑆𝑆    (26) 
𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 = 0                                   ∀ 𝑖𝑖 ∶ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0;   𝑡𝑡 = 1, . . , �𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�;  𝑠𝑠 = 1, … , 𝑆𝑆     (27) 
𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡+𝑗𝑗,𝑠𝑠       𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇 ;  𝑗𝑗 = 1, … , (𝑇𝑇𝑈𝑈𝑖𝑖 − 1);  𝑠𝑠 = 1, … , 𝑆𝑆   (28) 
𝑈𝑈𝑖𝑖,𝑡𝑡+𝑗𝑗,𝑠𝑠 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠       𝑖𝑖 = 1, … , 𝐼𝐼, ;  𝑡𝑡 = 2, … ,𝑇𝑇;   𝑗𝑗 = 1, … , (𝑇𝑇𝐷𝐷𝑖𝑖 − 1);  𝑠𝑠 = 1, … , 𝑆𝑆   (29) 
𝑈𝑈𝑖𝑖,1,𝑠𝑠 ≤ 𝑈𝑈𝑖𝑖,1+𝑗𝑗,𝑠𝑠                        𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0;    𝑖𝑖 = 1, … , 𝐼𝐼;   𝑗𝑗 = 1, … , (𝑇𝑇𝑈𝑈𝑖𝑖 − 1);  𝑠𝑠 = 1, … , 𝑆𝑆   (30) 
𝑈𝑈𝑖𝑖,1+𝑗𝑗,𝑠𝑠  ≤ 𝑈𝑈𝑖𝑖,1,𝑠𝑠                       𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0;   𝑖𝑖 = 1, … , 𝐼𝐼;    𝑗𝑗 = 1, … , (𝑇𝑇𝐷𝐷𝑖𝑖 − 1);  𝑠𝑠 = 1, … , 𝑆𝑆   (31) 
Unit ramp rates 
𝑃𝑃𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑃𝑃𝑖𝑖,𝑡𝑡−1,𝑠𝑠 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠 + 𝑆𝑆𝑈𝑈𝑖𝑖�1 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠�                  𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 2, … ,𝑇𝑇;  𝑠𝑠 = 1, … , 𝑆𝑆  (32) 
𝑃𝑃𝑖𝑖,𝑡𝑡−1,𝑠𝑠 − 𝑃𝑃𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠 − 𝐷𝐷𝑈𝑈𝑖𝑖�1 − 𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠�                      𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 2, … ,𝑇𝑇;  𝑠𝑠 = 1, … , 𝑆𝑆  (33) 
Start-up and shut-down unit costs 
�𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑈𝑈𝑖𝑖,𝑡𝑡−1,𝑠𝑠�𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠              𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇;  𝑠𝑠 = 1, … , 𝑆𝑆     (34) 
𝑈𝑈𝑖𝑖,1,𝑠𝑠𝐻𝐻𝐻𝐻𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠                                            𝑖𝑖 = 1, … , 𝐼𝐼;𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0; 𝑠𝑠 = 1, … , 𝑆𝑆    (35) 
�𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 − ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡−𝑗𝑗,𝑠𝑠𝑗𝑗< 𝑇𝑇𝐷𝐷𝑖𝑖+𝑇𝑇𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 � 𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠               𝑖𝑖 = 1, … , 𝐼𝐼;   𝑡𝑡 > 𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶;  𝑠𝑠 = 1, … , 𝑆𝑆  (36) 
�𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 − ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡−𝑗𝑗,𝑠𝑠𝑗𝑗<𝑡𝑡 �𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠   ∀ 𝑖𝑖;  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0 ;𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑡𝑡 < 𝑇𝑇𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 1;  𝑠𝑠 = 1, … , 𝑆𝑆 (37) 
0 ≤ 𝐶𝐶𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠                  𝑖𝑖 = 1, … , 𝐼𝐼; 𝑡𝑡 = 1, … ,𝑇𝑇;  𝑠𝑠 = 1, … , 𝑆𝑆       (38) 
Design Constraints 
𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤ 𝑥𝑥𝑖𝑖                           𝑖𝑖 = 1, … , 𝐼𝐼;  𝑡𝑡 = 2, … ,𝑇𝑇 ;  𝑠𝑠 = 1, … , 𝑆𝑆      (39) 
𝑥𝑥𝑖𝑖 ≤ ∑ 𝑈𝑈𝑖𝑖,𝑡𝑡,𝑠𝑠𝑡𝑡                                             𝑖𝑖 = 1, … , 𝐼𝐼 ;  𝑠𝑠 = 1, … , 𝑆𝑆      (40) 
 
4. Data-Driven Uncertainty Scenario Construction Using Clustering 
 

In this section, we propose a method on how to generate scenarios from demand data using a clustering algorithm. 
These scenarios with its corresponding occurrence can be used as input parameters for the stochastic model. This 
method begins by collecting historical data of the attribute or uncertain parameter under study (in this study it was 
electrical demand). Following which, the raw input data must be pre-processed into the right format. The raw data 
time-series (i.e. electricity demand) are first processed (arranged) into the candidate periods (considered to be 365 
days for 1 year, with each day consisting of 24 hours). This reordering process is shown in the following matrix (see 
Figure 1) in which the number of columns is defined by the multiple of the number of time steps (i.e. 24 hour) and 
number of rows corresponding to the number of periods (i.e. 365 days). A single row represents a candidate period 
(i.e. one day). Raw data of electricity demand are reshaped into new matrix where the number of rows represent the 
number of days in one year (i.e. 365 days) and the number of columns represent the number of hours in one day (i.e. 
24 hours).  
 

 
 

Figure 1. Process of rearranging the dimension electricity demand 
 
As it can be noticed in the demand data in Figure 2, there are some daily oscillations. The benefit of clustering the 
demand data is that, instead of using the whole set of data only the centroids (i.e. centres of each cluster) of each 
uncertain parameter (in this study we have one uncertain parameter; electrical demand) will be used. These centroids 
can represent the whole set of data. Based on the matrix introduced in Figure1.,k-mean (Pedregosa et al. 2011) 
clustering algorithm was applied to group the independent candidate periods (i.e. each row/day of the processed data 
matrix) into cluster. Accordingly, representative periods are derived. Each cluster/group of each uncertain parameter 
(i.e. demand) is represented by a representative profile (i.e. curve). These representative profiles are the centres of 
each cluster. Each uncertain parameter (e.g. demand, wind speed, solar intensity, fuel supply) will be represented by 
several clusters with each cluster corresponding to one scenario with a certain probability of occurrence. The 
probability of occurrence corresponds to the weight of each cluster. Figure 4 shows the process of scenario 
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construction for stochastic optimization using clustering machine learning algorithm. In order to determine the most 
applicable cluster number needed to divide electricity demand data. The k-mean clustering algorithm was applied to 
the processed data (i.e. electricity demand) using different number of clusters. The clustering algorithm was applied 
to the processed electricity demand using a different number of clusters. Figures 5 and 6 show the error average and 
standard deviation as a function of the cluster number for electricity demand. The following relative error function 
(see equation (41)) was used as a validation measure between the representative cluster profile (centre) and the 
actual processed data (i.e. candidate period or row/day) which correspond to that cluster. 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑐𝑐,𝑑𝑑,ℎ(%) = 𝐶𝐶𝑙𝑙𝑐𝑐,ℎ−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,ℎ

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,ℎ
∗ 100        (41) 

An ideal cluster would be compact and isolated (Alhameli 2017). In other words, an ideal cluster would have a 
minimum error average with a minimum standard deviation. The error and standard deviation average in clustering 
appears to drop as the number of clusters increases until they reach a certain value and after that it starts to oscillate 
as it can be seen in Figure 5 and 6. This reveals that there is some sort of optimal number of representative curves 
(i.e. cluster) for the electricity demand. Therefore, the number of clusters (i.e. cluster centre and its corresponding 
weight/ probability) with the minimum error average were selected as scenarios that represent the uncertain 
parameter of the stochastic power generation model. Figure 7 shows actual data and cluster centres used as 
representatives of the data for electricity demand. As it can be noticed in Figure 7, clustered results are in good 
agreement with demand data. 
It can be seen from Figures 5 and 6 that the minimum error happens when the number of clusters was 9 for 
electricity and Figure 3 shows the clustering result that will be used for stochastic programming. By comparing the 
demand clustering profiles with its actual daily profile, we can say that the clustering results are following the actual 
demand profile.  
 
5. Results and discussions  
 
The deterministic power generation model (Equations (1-21)) was implemented in GAMS. The average electrical 
demand profile was used to solve the deterministic problem (the representative average day of one year is 
calculated by averaging each column (i.e. each time step; hour) of the processed matrix for the whole time period 
(365 days)). The model was solved using the MILP (Mixed Integer-Linear Programming) solver CPLEX which is 
based on the branch and cut algorithm (Elf et al. 2001). The MILP problem contains 250 discrete variables and 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
continuous variables. The number of constraints are 2923. The GAMS program executes successfully in 0.2 
seconds on an Intel Core i7 commodity personal computer.  
It was discussed in the previous section that 9 clusters (i.e. scenarios) were chosen to represent the uncertain 
demand (see Figure 4). The stochastic model (Equation (22-40)) was also implemented in GAMS. The model was 
solved using the MILP (Mixed Integer-Linear Programming) solver CPLEX. The stochastic problem contains 2170 
binary variables and 4323 continuous variables. The GAMS program executed successfully in 145.687 seconds.  
Table 1 shows the design results and the objective function values of three different cases, namely, deterministic, 
stochastic and the worst-case scenario. The worst-case scenario was generated by tackling the maximum 
representative demand day for the whole year (extreme demand). It was calculated by taking the maximum demand 
value of each column (i.e. each time step; hour) of the processed matrix (see Figure 1) for the whole period (365 
days). As it can be noticed in Table 1 that the deterministic approach gives the lowest expensive solution whereas, 
the worst-case is the most expensive. However, the deterministic approach has the lowest reliability because it was 
designed for certain parameters (e.g. demand) which made it incapable of resolving most real-case scenario 
problems. The stochastic approach is more expensive than the deterministic because there is a price for the 
uncertainty. The stochastic approach is designed for the most likely scenarios while the worst-case is designed for 
the extreme demand which rarely occurs. The development of the system under the worst-case scenario will cause 
the system to be over-designed and therefore, the full capacity of the power generation will not be of use or rarely 
used. Table 2 shows the difference if we are using the stochastic design solution with external electricity supply 
when the demand is extreme in the worst-case scenario. We assumed that the extra electricity required by the 
extreme demand will be supplied by an external power provider with very expensive price (the levelized cost was 
assumed to be 300 $/MWh, which is double the levelized electricity cost reported by EIA for coal in 2018). If we 
assume that 20% of the year will be subjected to extreme demand, the extra cost that will be added to the stochastic 
solution is 0.293 billion$ as it can be seen in Table 2. Therefore, the total cost of the stochastic solution with 
external electricity needed for extreme demand is less than if we design the power generation plants for worst-case.  
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We can say from this analysis that the design and operation under stochastic approach is more practical than 
designing under extreme case (i.e. worst-case scenario) that rarely happens. 
Table 3 shows comparison between the size of the problem if use the whole year demand data and the stochastic 
data-driven approach. It can be said that, machine learning method (clustering) was applied to the data set to get a 
reduced size data set that represent the whole data set. Moreover, the stochastic data-driven approach does not 
require to fit the data into known distribution as the case for the regular stochastic optimization where the uncertain 
parameter should be fit into know distribution and only samples from the distribution are used in the stochastic 
optimization. Furthermore, sometimes fitting uncertain parameter into a common distribution is complicated and 
impractical.  
 
Table 3 comparison between the size of the problem if use the whole year demand data and the stochastic data-
driven approach 
 
 whole year demand data stochastic data-driven 
Binary Variables 87610 250 
Continuous Variables  175203 4323 

 
6. Conclusion 

 
A deterministic and stochastic data-driven power system design and operation models were developed. The 
deterministic approach was based on a single population parameter (i.e. mean) from data which does not perfectly 
cover the data behavior and consequently its solution is unreliable. On the other hand, the stochastic data-driven 
approach was based on more detailed information from the data without explicitly knowing its distribution and 
therefore its solution was more reliable. In the stochastic data-driven approach, instead using the whole set of 
available data for the design and planning model which will be computationally expensive, machine learning 
method (clustering) was applied to the data set to get a reduced order data set (i.e. clusters) that was used in the 
mathematical model (i.e. design and planning model). We can say that the proposed data-driven stochastic method is 
a trade-off between computational effort and data accuracy. 
In the future, this model can be further expanded to include the integration of renewable energies such as solar and 
wind. The interconnected power units that powered with different type of fuel will be studied and the optimal 
scheduling of these units will be determined. Moreover, a carbon capture unit can be added to the power generating 
unit and the system behavior can be demonstrated under real data behavior. The carbon capturing unit could be 
modeled using a surrogate data-driven model, the developed model will be added to the stochastic data-driven power 
generating formulation. 
 

 

Figure 2. Demand profile for selected days 

 

Figure 3. Electricity demand clusters 
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Figure 4. Stochastic data-driven design and operation of power system 

 

Figure 5. Effect of cluster number on the average error 
for electricity demand 

 

Figure 6. Effect of clusters number on the average 
standard deviation for electricity demand 

 

 
Figure 7. Actual electricity demand and its computed cluster centres for 1-year time horizon 

 
Table 1. Comparison between deterministic, stochastic and worst-case design and objective function solution of 

power generating model 
 

Deterministic Stochastic Worst-case scenario 

Number of 
generating units Capacity (MW) 

Number of 
generating 

units 

Capacity 
(MW) 

Number of 
generating units Capacity (MW) 

2 455 2 455 2 455 

Optimization framework
First stage Second stage

Stochastic data-driven
optimization

Uncertainty scenarios 

Data Collection Data pre-processing K-mean clustering
Data Analysis Framework

Reduced data size

Time (hr)

Raw demand Data Processed demand data
Occurrence

Time (hr) Time (hr)

Cluster centers

Design decisions Operational  decisions

352



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Toronto, Canada, October 23-25, 2019 

© IEOM Society International 

1 130 2 130 2 130 
1 162 1 162 1 162 
1 80 1 80 1 85 

  2 55 1 80 
3 55 

Total thermal 
generating units 

5 with total capacity of 1282 
(MW) 

8 with total capacity of 1522 
(MW) 10 with total capacity of 1662 (MW) 

Objective 
function (net 
present cost) 

Total cost: 5.56 billion $ 
Capital: 4.16 billion $ 

Operating: 1.40 billion $ 

Total cost: 6.35 billion $ 
Capital: 4.94 billion $ 

Operating: 1.41 billion $ 

Total cost: 7.37 billion $ 
Capital: 5.40 billion $ 

Operating: 1.97 billion $ 
 

Table 2. Comparison between stochastic solution with external electricity supply and worst-case design objective 
function solution of power generation model 

 
 Stochastic solution with external electricity supply Worse-case scenario 
Total cost 6.64 billion $ 

6.35 billion $ (stochastic solution)  
0.29 billion $ (extra needed when 20% of year demand is extreme) 

7.37 billion $ 

 
Table 5. Data for the thermal generating unit 

 

Unit PL PU a b TU TD Hsc Csc Tcold Tini RD RU 
 MW MW $/h $/MWh H H $/h $/h h h MW/h MW/h 
1 150 455 960.61 16.479 8 8 4500 9000 5 8 91 91 
2 150 455 944.56 17.447 8 8 5000 10000 5 8 91 91 
3 20 130 691.13 16.9 5 5 550 1100 4 -5 26 26 
4 20 130 670.65 16.817 5 5 560 1120 4 -5 26 26 
5 25 162 423.06 20.447 6 6 900 1800 4 -6 32.4 32.4 
6 20 80 355.05 22.972 3 3 170 340 2 -3 16 16 
7 25 85 477.93 27.827 3 3 260 520 2 -3 17 17 
8 10 55 656.49 26.188 1 1 30 60 0 -1 11 11 
9 10 55 663.11 27.414 1 1 30 60 0 -1 11 11 
10 10 55 668.53 27.902 1 1 30 60 0 -1 11 11 
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