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Abstract 

An emergency department (ED) is a specialized area where patients usually arrive in critical condition and require 
immediate care. Medical staff know that in these cases reacting quickly is crucial for saving patients’ life. Since 
supplies, personnel and infrastructure are limited resources, the efficiency in their use is fundamental to operate 
adequately. Therefore, planning well in advance is fundamental to optimize the use of the existing resources. This 
research presents an interesting approach to forecast the number of patients received at the ED of a public hospital 
by means of implementing and comparing model bases in machine learning algorithms. This investigation was 
carried out following a 4-phase methodology: analysis, design, development, and validation. During the phase of 
analysis, the ED database with recorded collected during 2020 was reviewed and preprocessed. Data were prepared 
and organized to show number of patients visiting ED every day. During the phase of design, machine learning 
algorithms for forecasting were analyzed and compared. Among others: linear regression, artificial neural network, 
machine support vectors, and Gaussian methods. The development and the validation phases were carried out 
entirely using the data processing software WEKA 3.9.6 with the forecasting package version 1.1.27. In total, over 
seventy thousand records corresponding to ED visits occurred during 2020 were used in the investigation. Data were 
divides in two datasets: one for building forecasting models and another one for comparing predicted and actual 
values. Six forecasting horizons were study: 60, 45, 30, 15, 10, and 6 days. For each horizon four machine learning 
algorithms were used to predict the number of ED visits. To evaluate and compare predictions, the usual error 
metrics were considered: MAE, MSE, RMSE, and MAPE. Forecasting results revealed notorious differences in the 
accuracy of the predicted values. Although no big differences are noticeable when forecasting short periods, the 
prediction error is considerable when forecasting a long period of 60 days. In this case, MAPE fluctuated between 
39% and 16% depending on the algorithm. When forecasting short periods, for instance 5 days, MAPE varied 
between 17% and 14%. In conclusion, experimental results showed that ML-based forecasting algorithms can be 
used to predict the number of ED visits with accuracy even when with long forecasting horizons. The application of 
such approach might be of great help to estimate resource requirements and to support decision making.    

Keywords 
Demand Forecasting, Machine Learning Algorithms, Emergency Department, Linear Regression, and Artificial 
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1. Introduction
In many countries, including Chile, the government is the most important funding source for healthcare. Since it is 
money collected from tax-payers, there is a real necessity for being efficient in the use of these resources (Budarin 
and Elbek, 2022). 

The overcrowding in emergency departments is a serious and globalized problem. It so commonly associated with 
ineffective or incomplete treatments that difficult discharging unrecovered patients. Counting with accurate forecasts 
of future demand for medical care would help planning and allocating resources more efficiently, improving both 
the efficiency and the overall quality perceived by patients (Tuominen et al., 2022). 

Different statistical tools and forecasting models have been used for decades in the health care sector. Recently, in 
Kenya a SEIR model (Susceptible, Exposed or latent, Infectious or Removed) to forecast the COVID-19 pandemic 
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was developed using ARIMA (autoregressive integrated moving averages). The results and findings were crucial to 
develop strategies to stop the propagation of the pandemic (Kiarie et al., 2022). 

Another example, is the development of a reliable short-term prediction model to predict the number of respiratory 
tract infections (RTI) in northeast China using seasonal autoregressive integrated moving average (SARIMA) 
models, memory long-term (LSTM), and Facebook’s Prophet (Prophet) for predicting the number of hospitalized 
RTI patients (Feng et al., 2022).  

In Philippines, a multilayer perceptron neural network was implemented to forecast the progress of the COVID-19 
crisis using data obtained from the Philippines HIV/AIDS and ART Registry (Aribe et al., 2022). 

In China an investigation proposed a hybrid ensemble forecasting technique including the accumulated generating 
operation (AGO), least squares support vector regression (LSSVR), and time trend element to forecast a seasonal 
time series characterized by nonlinearity and uncertainty (Zhou et al., 2023). 

Nowadays, new forecasting techniques based on machine learning are being used with good result in the health care 
sector. To name few examples: 

i. Starting from the premise that readmissions have a negative impact in the health system, a study carried out
in the Komotini General Hospital to predict the number of readmissions was implemented with the
following four machine learning algorithms: support vector machines with a linear kernel, support vector
machines with a radial basis function (RBF) kernel, balanced random forests, and weighted random forests
(Michailidis et al., 2022).

ii. Inspired by the problems faced by a palliative care center that provides various medical, nursing,
psychological and social services, two deep learning models based on long-shot term memory (LSTM)
were proposed to predict demand at individual and at collective level. The first one predicts the type and
time of the demanded service for patient with a given demographic and health profile. The collective model
predicts demand for a set of services in the following week and for patients with an specific profile (Soltani
et al., 2022).

iii. In England, at a Hospital for Children, electronic record data from non-identifiable patients were analyzed
to understand the effect of mitigation measures on seasonal respiratory infection rates. The results were
compared to predictions obtained forecasting models based on machine learning (Bowyer et al., 2022).

This investigation compared the predictions of various forecasting models based on machine learning algorithms 
(linear regression, support vector machines for regression, back propagated multilayer perceptron neural network, 
and Gaussian processes) to estimate the numbers of patients who visit the emergency room of a large public hospital 
located in the south of Chile. All modes were entirely developed using WEKA 3.9.6 with the forecasting package 
version 1.1.27 (Witten et al, 2017). Predicted values are compared to actual values by means of the classical error 
measures: MAE, MSE, RMSE, and MAPE (Khan and Osińska, 2023).  

1.1 Objective 
To estimate the number of patients visiting an emergency department by means of comparing the predicted values 
generated by forecasting algorithms based on machine learning. 

2. Literature Review
2.1 Machine learning
Machine learning is usually referred as the branch of artificial intelligence (AI) that uses algorithms to find patterns
and to learn from datasets through experience. There several types of machine learning algorithms: supervised,
unsupervised, and reinforcement algorithms. In supervised learning, the training is carried out using labelled
datasets. This means that the class or the value to be predicted is included in the dataset so it can be used for
training. In the case of unsupervised learning, instead, the desired class is not known.

2.2 Time series 
A time series consist of a collection of data points in time order, usually taken at successive equally spaced points in 
time. For instance, daily, weekly, or month number of patients who visit an ED.  
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2.3 Forecasting 
When working with time series, forecasting can be understood as the prediction of future values based on the 
analysis of historical data by means of applying statistics and modeling techniques. Time series are can be 
characterized by five components: level, trend, seasonality, cyclicity, and noise (Figure 2). Not necessarily all of 
need to be present always.  
 Level: it can be understood as a base line where other components are superposed. 
 Trend: it represents the increase or decrease of the time series over time.  
 Seasonality: it is pattern periodically repeated over time.  
 Cyclicity: is as pattern not periodically repeated over time. 
 Noise: It is the random component of data. 
 
2.4 Linear regression 
Algorithms based on a linear regression learns to make a weighted sum of the considered features in such a way that 
they all approach the actual value. During the model construction, wi and bias are adjusted to fit the actual value. 
Actual value = w1 * feature1 + … + wn * featuren + bias  
A common practice is the inclusion of lags to shift actual values to move them to a different point of time. 
 
2.5 Gaussian processes 
A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian 
distribution (Rasmussen and Williams, 2006). It is a Bayesian non-parametric method (Roberts et al, 2013) whose 
theoretical background and its used in forecasting has been deeply studied (Tolba et al., 2019). 
 
3. Methods 
This investigation is carried out following a classic 4-phase methodology: analysis, design, construction, and 
validation (Figure 1). 
 

 
Figure 1. Four-phase methodology 

 
3.1 Analysis 
During the phase of analysis, ED database was preprocesses and prepared for the following phases. For the purposes 
of this investigation, data only data collected 2020 were considered.  
 
ED database contained approximately seventy thousand records of visit. Every time a patient visited ED a new 
record was added. Every record consists of over 50 fields with data about patients, from arrival time to insurance 
type. For forecasting purposes though, not all fields were necessary. In fact, the number of daily patients was 
enough. Monthly and daily ED visits are shown in Table 1 and Figure 2) respectively. 

 
Table 1. Monthly ED patient arrivals 

 
Month Visits 

January 9,025 
February 8,042 
March 6,518 
April 3,674 
May 4,213 
June 4,374 
July 5,226 
August 5,734 

Design Construction Analysis Validation 
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September 6,317 
October 6,388 
November 6,142 
December 6,094 

 

 
Figure 2. Daily ED patient arrivals 

 
3.2 Design 
ED database can be seen as a matrix whose rows represents the arrival or visit of a patient and whose columns are 
fields with data related to the visit. 
  
During the design phase, six datasets were prepared. Each representing a different horizon of time. The first one 
containing the number of visits between January and October, leaving November and December to make 
comparison with the predications (Table 2). 
 
Given that February of 2020 had 29 days, there are 366 days with data. Figure 3 shows graphical the data, or days, 
considered to build each forecasting model. 
 

Table 2. Dataset creation 
 

Dataset Construction data (days) Prediction horizon (days) 
DS-305 305 61 
DS-320 320 46 
DS-335 335 31 
DS-350 350 16 
DS-355 355 11 
DS-360 360 6 

 
 

 
 

Figure 3. Days included in the construction of forecasting models 
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The idea is to use a fraction of the actual ED visits to build forecasting models based on machine learning which be 
used to predict the number of future ED visits. Predicted values were then compared to actual values. 
 
The scheme used to compare the accuracy of predicted values is presented in Table 3. For each dataset, forecasting 
models based on four different machine learning algorithm were constructed. Predicted values for the number of ED 
visits were compared to actual values using MAE, MSE, RMSE, and MAPE.  

 
Table 3. Dataset creation 

 
Algorithm MAE MSE RMSE MAPE 

Linear regression √ √ √ √ 
Artificial neural network √ √ √ √ 
Gaussian methods √ √ √ √ 
Support vector machine √ √ √ √ 
 
3.3 Construction 
The construction of the forecasting models commenced with the smallest dataset. It contained 305 days of data 
corresponding to the lapse between January and October of 2020. The remaining 61 days of 2020 were held out to 
be compared to the predicted values later on. 
 
A graphic comparison of the predicted values and the actual values is given in Figure 4, where ANN stands for 
artificial neural network, and SVM stands for support vector machine. The correlation coefficient between the 
corresponding set of values is presented in Table 4. 
 

 
Figure 4. Actual and predicted values for 61-day forecasting 

 
Table 4. Correlation matrix 61-day forecasting 

 
 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.14 1    
Gaussian processes 0.12 0.99 1   
ANN 0.25 0.38 0.37 1  
SVM 0.68 0.55 0.52 0.49 1 
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The forecasting models behind the predicted values are not trivial. For instance, in the case of lineal regression, 
multiple lags and additional variables were included as it is shown below: 
 
Predicted value =     15.5351 * DayOfWeek=wed,thu,tue,fri,mon + 

      -9.131  * DayOfWeek=thu,tue,fri,mon + 
     12.3468 * DayOfWeek=tue,fri,mon + 
     27.5242 * DayOfWeek=mon + 
    -15.5353 * Weekend + 
     -0.1223 * Date-remapped + 
      0.7106 * Lag_Patients-1 + 
     -0.1244 * Lag_Patients-2 + 
      0.2732 * Lag_Patients-3 + 
      0.0852 * Lag_Patients-4 + 
     -0.1513 * Lag_Patients-5 + 
      0.2708 * Lag_Patients-6 + 
     -0.1652 * Lag_Patients-7 + 
      0      * Date-remapped^3 + 
     -0.0017 * Date-remapped*Lag_Patients-1 + 
      0.0013 * Date-remapped*Lag_Patients-2 + 
     -0.0006 * Date-remapped*Lag_Patients-4 + 
      0.0007 * Date-remapped*Lag_Patients-5 + 
      0.0004 * Date-remapped*Lag_Patients-7 + 166,735 

 
Figure 5 and Table 5 presents the graphical comparison and the correlation coefficients between the actual values 
and the predicted values in the case of the 46-day forecasting. Both ANN and SVM-based models’ prediction are 
more accurate when forecasting 46 days ahead.  
 

 
Figure 5. Actual and predicted values for 46-day forecasting 

 
Table 5. Correlation matrix 46-day forecasting 

 
 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.32 1    
Gaussian processes 0.19 0.98 1   
ANN 0.60 0.14 0 1  
SVM 0.59 0.83 0.71 0.62 1 
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Figure 6 and Table 6 presents the graphical comparison and the correlation coefficients between the actual values 
and the predicted values in the case of the 31-day forecasting. In this case, only the model based on Gaussian 
processes is notoriously inaccurate.  
 

 
Figure 6. Actual and predicted values for 31-day forecasting 

 
 

Table 6. Correlation matrix 31-day forecasting 
 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.63 1    
Gaussian processes 0.49 0.54 1   
ANN 0.68 0.91 0.50 1  
SVM 0.62 0.95 0.37 0.91 1 
 
Figure 7 and Table 7 presents the graphical comparison and the correlation coefficients between the actual values 
and the predicted values in the case of the 16-day forecasting. Here all models predict values close to actual values. 
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Figure 7. Actual and predicted values for 16-day forecasting 
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Table 7. Correlation matrix 16-day forecasting 
 

 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.57 1    
Gaussian processes 0.53 0.85 1   
ANN 0.27 0.66 0.65 1  
SVM 0.62 0.98 0.81 0.61 1 
 
Figure 8 and Table 8 presents the graphical comparison and the correlation coefficients between the actual values 
and the predicted values in the case of the 11-day forecasting. As the forecasting horizon decreases all models seem 
to predict more accurate values. 
 

 
Figure 8. Actual and predicted values for 11-day forecasting 

 
Table 8. Correlation matrix 11-day forecasting 

 
 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.22 1    
Gaussian processes 0.26 0.91 1   
ANN -0.11 0.82 0.74 1  
SVM 0.20 0.96 0.96 0.78 1 

 
Figure 9 and Table 9 presents the graphical comparison and the correlation coefficients between the actual values 
and the predicted values in the case of the 6-day forecasting. 
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Figure 9. Actual and predicted values for 11-day forecasting 

 
Table 9. Correlation matrix 6-day forecasting 

 
 Actual values Lin. Regression Gaussian processes ANN SVM 
Actual values 1     
Lin. Regression 0.61 1    
Gaussian processes 0.54 0.97 1   
ANN 0.61 0.91 0.87 1  
SVM 0.68 0.98 0.98 0.92 1 
 
3.4 Validation 
Part of the available data of 2020 was held out with the only intension of comparing predicting values to actual 
values that were not used during the construction of the forecasting models. Eliminating in this way, any possible 
bias caused by a validation made with preciously know data. In other words, the validation data were completely 
unknown to the forecasting models. 
 
4. Data Collection 
The accuracy of the predictions, expressed in terms of error measures, depends on the forecasting horizon. Even 
though noticeable differences in the values of the error measures exist, the fluctuation depends greatly on the 
algorithm in use and not only on the horizon. This fact is shown in Table 10, Table 11 Table 12, and Table 13, 
where the accuracy obtained with the based on support vector machines when the horizon varies from 61 to 6 days is 
better. 
 

Table 10. Forecasting with linear regression 
 

 61-day 46-day 31-day 16-day 11-day 6-day 
MAE 95.35 46.00 20.49 21.40 27.70 37.02 
MSE 12,331.41 2,968.45 549.12 632.23 1,005.20 1,758.98 
RMSE 111.05 54.48 23.43 25.14 31.70 41.94 
MAPE 50.39 24.80 11.11 10.92 13.60 17.07 
 

Table 11. Forecasting with Gaussian processes 
 

 61-day 46-day 31-day 16-day 11-day 6-day 
MAE 108.46 73.97 53.47 21.80 24.76 32.97 
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MSE 15,971.89 7,412.56 3,773.93 861.83 833.78 1,307.02 
RMSE 126.38 86.09 61.43 29.35 28.88 36.15 
MAPE 57.07 39.30 29.05 12.21 13.04 15.33 
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Table 12. Forecasting with ANN 

61-day 46-day 31-day 16-day 11-day 6-day
MAE 39.85 35.86 18.06 28.29 33.62 33.04 
MSE 2,948.19 1,939.65 471.67 1,180.69 1,625.65 1,707.41 
RMSE 54.29 44.04 21.72 34.36 40.32 41.32 
MAPE 20.98 17.66 9.40 14.31 16.81 15.45 

Table 13. Forecasting with SVM 

61-day 46-day 31-day 16-day 11-day 6-day
MAE 23.94 30.95 19.05 21.01 27.28 30.17 
MSE 903.41 1,355.37 551.16 708.19 978.89 1,327.71 
RMSE 30.06 36.82 23.48 26.61 31.29 36.44 
MAPE 13.25 16.92 10.17 10.26 14.21 14.12 

5. Results and Discussion
A set of complete side by side comparisons of the proposed models for different forecasting models is presented in 
Table 14, Table 15, Table 16, Table 17, Table 18, and Table 19. Differences in terms of error measures are evident. 
Being predictions made with SVB-based models the most consistent of all. 

It must be cleat that, although the same algorithm is used, models are different for each horizon because they were 
constructed with different number of days. Thus, a SVM-base model for 61-day forecasting is different from a 
SVM-based model for 45-day forecasting.  

Table 14. Error measures for 61-day forecasting 

Error Measure Lin. Regression Gaussian processes ANN SVM 
MAE 95.35 108.46 39.85 23.94 
MSE 12,331.41 15,971.89 2,948.19 903.41 
RMSE 111.05 126.38 54.29 30.06 
MAPE 50.39 57.07 20.98 13.25 

Table 15. Error measures for 46-day forecasting 

Error Measure Lin. Regression Gaussian processes ANN SVM 
MAE 46.00 73.97 35.86 30.95 
MSE 2,968.45 7,412.56 1,939.65 1,355.37 
RMSE 54.48 86.09 44.04 36.82 
MAPE 24.80 39.30 17.66 16.92 

Table 16. Error measures for 31-day forecasting 

Error Measure Lin. Regression Gaussian processes ANN SVM 
MAE 20.49 53.47 18.06 19.05 
MSE 549.12 3,773.93 471.67 551.16 
RMSE 23.43 61.43 21.72 23.48 
MAPE 11.11 29.05 9.40 10.17 

Table 17. Error measures for 16-day forecasting 
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Error Measure Lin. Regression Gaussian processes ANN SVM 

MAE 21.40 21.80 28.29 21.01 
MSE 632.23 861.83 1,180.69 708.19 
RMSE 25.14 29.35 34.36 26.61 
MAPE 10.92 12.21 14.31 10.26 

 
Table 18. Error measures for 11-day forecasting 

 
Error Measure Lin. Regression Gaussian processes ANN SVM 

MAE 27.70 24.76 33.62 27.28 
MSE 1,005.20 833.78 1,625.65 978.89 
RMSE 31.70 28.88 40.32 31.29 
MAPE 13.60 13.04 16.81 14.21 

 
Table 19. Error measures for 6-day forecasting 

 
Error Measure Lin. Regression Gaussian processes ANN SVM 

MAE 37.02 32.97 33.04 30.17 
MSE 1,758.98 1,307.02 1,707.41 1,327.71 
RMSE 41.94 36.15 41.32 36.44 
MAPE 17.07 15.33 15.45 14.12 

 
6. Conclusion 
ED database is an extensive collection of data from which valuable information about daily operations can be 
extracted. Since the efficiency in the use of limited resources is crucial for the public health system, it is worthwhile 
exploring new approaches, methodologies and tools to help support planning and managing tasks. 
Monthly number of ED patients revealed the presence of trends, seasonality, and randomness. All of which is an 
obstacle for any prediction attempts.  
 
Contrary to classical and well-studied approaches, this works was focused in the use of machine learning instead. 
The idea was simple, splitting up the data leaving a fraction for building forecasting models and the part for 
comparing predicted and actual values. Four algorithms were used to forecast and four error measures were used to 
compare results. In all cases, six forecasting horizons were compared. 
 
Experimental work showed that for short forecasting periods all algorithms were able to forecast accurately and 
MAPE fluctuating between 14% and 17%. In the case of long forecasting periods, for instance 61 days, predicted 
values were usually far from actual values. However, values predicted with ANN and SVM were clearly closer to 
actual values than those ones predicted with models based either on linear regression or Gaussian processes. Here 
MAPE fluctuated between 13% and 57%.  
 
Another interesting fact is the consistency in the accuracy of the prediction with the SVM-based model regardless 
the magnitude of the forecasting horizon. Other models’ performances seemed to be affected by the extension of the 
forecasting period . 
 
Finally, this word showed that some forecasting models based on machine learning algorithms delivers good results 
even when the dealing with long forecasting horizons. The consistency in the accuracy of the predictions obtained 
with a SVM-based model indicates that the proposed approach can be useful to predict the number of ED patients 
and therefore, it could be used to support planning and managing tasks.  
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